Toggle Main Menu Toggle Search

Open Access padlockePrints

Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus

Lookup NU author(s): Dr Louise Tailford, Emeritus Professor Harry Gilbert

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides. Approximately one-third of these putative proteins (57) are predicted to contain carbohydrate binding modules derived from 13 of the 49 known families. Sequence analysis reveals approximately 130 predicted glycoside hydrolases that target the major structural and storage plant polysaccharides. In common with that of the colonic prokaryote Bacteroides thetaiotaomicron, the genome of C. japonicus is predicted to encode a large number of GH43 enzymes, suggesting that the extensive arabinose decorations appended to pectins and xylans may represent a major nutrient source, not just for intestinal bacteria but also for microorganisms that occupy terrestrial ecosystems. The results presented here predict that C. japonicus possesses an extensive range of glycoside hydrolases, lyases, and esterases. Most importantly, the genome of C. japonicus is remarkably similar to that of the gram-negative marine bacterium, Saccharophagus degradans 2-40T. Approximately 50% of the predicted C. japonicus plant-degradative apparatus appears to be shared with S. degradans, consistent with the utilization of plant-derived complex carbohydrates as a major substrate by both organisms. Copyright © 2008, American Society for Microbiology. All Rights Reserved.


Publication metadata

Author(s): DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE

Publication type: Article

Publication status: Published

Journal: Journal of Bacteriology

Year: 2008

Volume: 190

Issue: 15

Pages: 5455-5463

ISSN (print): 0021-9193

ISSN (electronic): 1098-5530

Publisher: American Society for Microbiology

URL: http://dx.doi.org/10.1128/JB.01701-07

DOI: 10.1128/JB.01701-07

PubMed id: 18556790


Altmetrics

Altmetrics provided by Altmetric


Share