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The Bacterial Cytoskeleton Modulates Motility, Type 3
Secretion, and Colonization in Salmonella
David M. Bulmer 1, Lubna Kharraz 1, Andrew J. Grant 2, Paul Dean 1, Fiona J. E. Morgan 2, Michail H.
Karavolos 1, Anne C. Doble 1, Emma J. McGhie 3, Vassilis Koronakis 3, Richard A. Daniel 1, Pietro Mastroeni 2,
C. M. Anjam Khan 1*
1 Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom,2 Department of
Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 3 Department of Pathology, University of Cambridge, Cambridge, United Kingdom

Abstract

Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our
knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to
the ability of Salmonellato express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB
polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As
mreBappears to be an essential gene, we have constructed a viableDmreCdepletion mutant in Salmonella. Using a broad
range of independent biochemical, fluorescence and phenotypic screens we provide evidence that theSalmonella
pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of
MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical
genetic approach to disrupt the functionality of MreB. Although the fitness ofDmreCis reducedin vivo, we observed that
this defect does not completely abrogate the ability ofSalmonellato cause disease systemically. By forcing on expression of
flagella and SPI-1 T3SSin transwith the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for
the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and
adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and
identified the sensor kinase RcsC as a key phenotypic regulator inDmreC. Further genetic analysis revealed the importance
of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results
suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is
mediated by the two-component system sensor kinase RcsC.
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Introduction

Salmonellae remain major global pathogens causing a broad
spectrum of disease ranging from gastroenteritis to typhoid fever
[1,2]. The emergence of multidrug resistant salmonellae is
complicating the management of disease [3,4]. Hence, there is
an urgent need to identify novel bacterial targets for the
development of new antimicrobial agents or vaccines to combat
infection.

The view that bacteria do not possess a cytoskeleton has
radically changed in recent years with the discovery of intracellular
filamentous protein assemblies with cell-shape defining function
[5]. Although there is little primary sequence identity between
eukaryotic cytoskeletal proteins and those in prokaryotes, proteins
with actin- and tubulin-like structural motifs have been identified
in bacteria. Bacterial cytokinesis is dependent on FtsZ which
contains a structural fold mirroring tubulin. FtsZ displays similar
dynamic properties to tubulin and is able to polymerise
unidirectionally in a GTP-dependent manner to produce poly-

meric filaments [6,7]. Polymers of FtsZ are able to assemble into a
transient helical structure and subsequently form a ring-like
structure around the circumference of the mid-cell [8]. This Z-ring
is required for recruiting proteins for the assembly of the cell
division complex [8]. The intermediate filament-like protein
crescentin determines the vibroid shape ofCaulobacter crescentus
cells [9].

The bacterial proteins MreB, Mbl, and ParM display the
structural and dynamic properties of eukaryotic actin [10].
Amongst these proteins, MreB is the most homologous to actin
in terms of primary sequence, structure, and size [11,12]. The
most conserved region of this actin-superfamily is the ATPase
domain. MreB can polymerise into helical filamentous structures
important for cell morphology. Live cell microscopy inBacillus
subtilisrevealed that MreB forms large cables which follow a helical
path close to the cytoplasmic membrane [5]. An equivalent MreB
protein has been found inEscherichia coli. When MreB is depleted,
rod-shapedB. subtilisand E. colicells become spherical [5,13±15].
In C. crescentusMreB has been implicated to play a role in the
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control of cell polarity [16]. In rod-shaped bacteria the MreB
polymeric structures control the localisation of cell wall growth by
providing a scaffold for enzymes involved in cell wall assembly
[17].

The MreB operon inE. coliandB. subtilisencodes for a number
of additional genes, which do not possess any similarity to actin
[18]. These include the cellular membrane proteins MreC and
MreD, which also have a helical disposition. MreC forms a dimer
and interestingly inC. crescentusMreC is localised in spirals in the
periplasm [19]. Recent studies by Rothfield and colleagues
provide convincing evidence to suggest that inE. coli MreB,
MreC and MreD form helical structures independently of each
other [20]. Using affinity purification and bacterial two hybrid
assays, MreC and MreD appear to interact together [13]. InE. coli
there is evidence to suggest that MreB interacts with MreC, but
this may not be the case inRhodobacter sphaeroidesor C. crescentus
[21]. As well as playing a key role in cell morphogenesis, MreB
also has a pivotal function in chromosome segregation [22±24].
Adding the MreB inhibitor A22 [S-(3,4-Dichlorobenzyl) iso-
thiourea] to synchronised cultures ofC. crescentusinhibited
segregation of GFP-tagged chromosomal origins [22]. However
MreB may not function in chromosome segregation inBacillus
[15]. Recently another helically distributed cytoplasmic mem-
brane protein which interacts with MreB named RodZ has been
identified [25±27]. Cellular components including the RNA
degradosome and lipopolysaccharide have also been identified to
be localised in helical structures within the cell [28,29].

In spite of these major advances in our understanding of the
structure and organization of the bacterial cytoskeleton, there are
major gaps in our knowledge of its role in bacterial pathogenicity.
In this study we wished to gain insights into understanding the
function of the bacterial cytoskeleton in the pathogenicity of
Salmonella.

Materials and Methods

Ethics Statement
The in vivoexperiments were covered by a Project License

granted by the Home Office under the Animal (Scientific
Procedures) Act 1986. This license was approved locally by the
University of Cambridge Ethical Review Committee.

Culture Conditions
S. Typhimurium SL1344 and mutant derivatives used in this

study are described in Table 1. Strains were routinely grown in
Luria-Bertani (LB) broth with appropriate antibiotics at the
following concentrations: (kanamycin 50mg ml2 1), ampicillin
(100mg ml2 1 or 30 mg ml2 1 for pNDM220). A22 (Calbiochem)

was added at 10mg ml2 1. Bacteria were grown overnight in 5 ml
LB, before 25ml of culture was used to inoculate 25 ml of fresh LB
in a 250 ml flask and grown at 37uC shaking (200 rpm) unless
otherwise stated.DmreCwas maintained in media containing
100 mM IPTG, however for phenotypic testing this was removed
unless otherwise mentioned.

For the SPI-1 T3S studies cells were grown overnight in LB
before subculturing 1/100 into 25 ml fresh LB and growing at
37uC for approximately 5 hrs with good aeration until
OD600nm, 1.2 in 250 ml flasks [30]. For the SPI-2 T3S studies
cells were grown in SPI-2 induction media (100 mM Tris-base,
0.1% w/v casamino acids, 0.1% w/v glycerol, 10mM MgSO4,
40 mg ml2 1 histidine, pH 5.8). Cells were grown overnight in LB
before subculturing 1/100 in 25 ml SPI-2 inducing media before
growing for 16 h at 37uC in 250 ml flasks before sampling.

Motility Assays
Cells were inoculated from a fresh LB plate onto the semi-solid

motility agar (10 g l2 1 Bacto-tryptone, 5 g l2 1 NaCl, 3 g l2 1 agar)
and incubated upright for a minimum of 5 h. Distinct zones of cell
motility were measured and compared to WT SL1344 and non-
motile SL1344 strains.

Chromosomal Gene Disruptions and Depletion Mutants
Chromosomal gene deletions were constructed using the

lambda Red method as described previously [31], before
transducing the mutation into a genetically clean parent strain
using bacteriophage P22int. In the case ofDmreCand DmreDthe
mutations were transduced into a parent strain containing
pTK521 (lac-mreBCD E. coli) to complement the mutation in the
presence of 100mM isopropyl beta-D-1-thiogalactopyranoside
(IPTG). Gene deletion primers typically encompassed the first
and final 20 bases of the coding sequence of the respective gene
were synthesised. However, as themreCand mreDgene coding
sequences overlap by a single base, to ensure only a single coding
sequence was disrupted the respectivemreC39primer andmreD59
primer were moved internally into their coding sequence such as
to produce no overlapping mutations. Gene deletions for the two-
component systems (DqseF,DphoBR, DyjiGH, DbaeSR, DbasSR,
DhydH, DqseBCDtctDE, DcpxAR,DrcaA, DrcsB, DrcsC,DrcsD,
DrcsDB, andDrcsCBD), were constructed in SL1344 WT using
classical lambda Red methods before transducing into theDmreC
strain using bacteriophage P22int. Primers are listed in Table 2.

Construction of the MreB-GFP Fusion Vector
GFP was amplified from pZEP08 and cloned along with a new

multiple cloning site into theEcoRI and HindIII sites of pBR322 to
create pBR322GFP.mreBalong with its natural promoter was
amplified from genomic DNA and cloned into theEcoRI and XbaI
sites of pBR322GFP, before themreB-gfpfusion was subcloned
from the pBR322mreB-gfpinto pNDM220 using theEcoRI and
BamHI sites.

Transcriptional Reporter Fusions
Flagella and SPI1 transcriptional reporter plasmids were

transformed into SL1344 andDmreCmutant cells. Expression
from the lux transcriptional reporters was measured during the
growth cycle of 102 3 diluted overnight cultures cells grown in
microtitre plates (200ml total volume) for a minimum of 15 h at
37uC with periodic shaking. Optical density (600nm) and relative
luminescence was measured at 15 minute intervals using a Tecan
Infinity200 luminometer. Samples were tested in triplicate, and
repeated at least 3 times.

Author Summary

Salmonellaare major global pathogens responsible for
causing food-borne disease. In recent years the existence
of a cytoskeleton in prokaryotes has received much
attention. In this study the Salmonellacytoskeleton has
been genetically disrupted, causing changes in morphol-
ogy, motility and expression of key virulence factors. We
provide evidence that the sensory protein RcsC detects
changes at the cell surface caused by the disintegration of
the bacterial cytoskeleton and modulates expression of
key virulence factors. This study provides insights into the
importance of the integrity of the bacterial cytoskeleton in
the ability of Salmonellato cause disease, and thus may
provide a novel target for antimicrobial drugs or vaccines.

SalmonellaCytoskeleton and Pathogenicity
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Table 1. Strains and plasmids.

Strain Genotype Reference

SL1344 Parent Strain [69]

DmreC1 SL1344mreC::kan This work

DmreD1 SL1344mreD::kan This work

DmreC SL1344mreC::kan pTK521 This work

DmreD SL1344mreD::kan pTK521 This work

DSPI-1 RM69 SPI-1::kan [70]

DSPI-2 12023ssaV::kan [71]

DflhDC LT2flhDC::kan [72]

DrcsA SL1344rcsA::kan This work

DrcsB SL1344rcsB::kan This work

DrcsC SL1344 rcsC::cat This work

DrcsD SL1344rcsD::kan This work

DrcsF SL1344rcsF::kan This work

DrcsDB SL1344rcsDB::kan This work

DrcsCBD SL1344rcsCBD::kan This work

DmreCDrcsA SL1344mreC::cat rcsA::kan This work

DmreCDrcsB SL1344mreC::cat rcsB::kan This work

DmreCDrcsC SL1344mreC::kan rcsC::cat This work

DmreCDrcsD SL1344mreC::cat rcsD::kan This work

DmreCDrcsDB SL1344mreC::kan rcsDB::cat This work

DmreCDrcsCBD SL1344mreC::cat rcsCBD::kan This work

DmreCDrcsF SL1344mreC::cat rcsF::kan This work

DmreCDqseF SL1344mreC::kan qseF::cat This work

DmreCDphoBR SL1344mreC::kan phoBR::cat This work

DmreCDyjiGH SL1344mreC::kan yjiGH::cat This work

DmreCDbaeSR SL1344mreC::kan baeSR::cat This work

DmreCDbasSR SL1344mreC::kan basSR::cat This work

DmreCDhydH SL1344mreC::kan hydH::cat This work

DmreCDqseBC SL1344mreC::kan qseBC::cat This work

DmreCDtctDE SL1344mreC::kan tctDE::cat This work

DmreCDcpxAR SL1344mreC::kan cpxAR::cat This work

YVM004 SJW1103gfp-fliG [32]

YVM004mreC SJW1103gfp-fliG mreC::kan [32]

TH3724 PflhDC::T-POP (DEL-25)flhC5213::MudJ [33]

Plasmid Description Reference

pBR322 Cloning vector [73,74]

pBAD24 Cloning vector [75]

pZEP08 GFP+ transcriptional fusion vector [76]

pBR322-gfp pBR322 withgfp This work

pBR322-mreBgfp pBR322gfp with mreB This work

pNDM220 Low copy cloning vector [77]

pNDM220-mreBgfp mreBgfpsubcloned from pBR322-mreBgfp This work

pKD13 Lambda Red template [31]

pKD46 Lambda Red recombinase [31]

pLE7 gfpmreB [36]

pTK521 pNDM220 pA1/O4/O3::mreBCD [14]

pCS26 luxCDABEpromoter reporter vector [49]

pCS26-hilA hilA [49]

pCS26-hilC hilC [49]

pCS26-hilD hilD [49]

SalmonellaCytoskeleton and Pathogenicity

PLoS Pathogens | www.plospathogens.org 3 January 2012 | Volume 8 | Issue 1 | e1002500



Construction of Complementation Plasmids
The hilA and rcsCopen reading frames were amplified from

SL1344 genomic DNA and cloned into theEcoRI and XbaI or the
EcoRI and HindIII sites of pBAD24 to create pBADhilA and
pBADrcsCrespectively.

Protein Manipulation
Whole cell total protein samples were obtained by pelleting an

appropriate volume of bacterial culture, followed by resuspension
in SDS-loading buffer and boiling for 10 mins. Culture
supernatants were filter sterilized (0.22mm) and proteins were
ammonium sulphate precipitated (4 g 10 ml2 1 supernatant)
overnight at 4uC. Precipitated secreted proteins were resuspended
in H2O and then combined with an equal volume of sample buffer
(Biorad). Whole cell and culture supernatant samples were run on
12% SDS/PAGE and transferred on Protran nitrocellulose
transfer membranes (Schleicher & Schuell) using a wet transfer
apparatus (Biorad). Western blot analysis was performed using
polyclonal SipA, SipB, SipC or PrgH for testing SPI-1 T3S
functionality, coupled with a goat anti-mouse horseradish
peroxidase-labelled secondary antibody (Dako Cytomation).
Detection was carried out using 4-chloro-1-naphthol (Sigma)
according to the manufacturer's instructions.

In vivo Inoculation and Growth Curves
Female C57BL/6 mice were purchased from Harlan Olac Ltd.,

(Blackthorn, Bicester, UK). Mice were used when over eight weeks
of age. Bacterial suspensions for injection were grown for 16 h as a
stationary culture at 37oC in LB broth. Bacteria were diluted in
PBS prior to injection into a lateral tail vein. Mice were killed by
cervical dislocation and the livers and spleens aseptically removed.
Each organ was homogenised (separately) in a Seward Stomacher
80 Biomaster (Seward) in 10 ml of distilled water and viable
bacterial counts in the homogenate were assayed on pour plates of
LB agar. Representative bacterial colonies were kept and re-tested
for phenotypic changes.

Construction of Flagella Live Cell Imaging Strains
Wild type SalmonellaSJW1103 cells with chromosomal N-

terminal GFP fusion tofliG (YVM004) [32] were P22 transduced
with themreC::kanmutation to create YVM004DmreC. This strain,
along with the WT control, was subsequently transduced with a
chromosomally-based inducibleflhDClocus derived from TH2919
[33].

Visualisation of Type 3 Secretion Systems and Flagella
Cells were grown to the appropriate growth phase (mid-log for

SPI-1 and flagella, or stationary phase for SPI-2) in relevant media
(LB or SPI-2 inducing media). Flagella visualisation strains (fliG-
gfp), were mounted on 1% agarose beds for imaging. Samples for
visualising the type 3 secretion apparatus were fixed in 4%
paraformaldehyde diluted in PBS for 1 h before washing for
15 minutes in three changes of PBS. Samples were incubated with
either aSipA, aSipB, aSipC, aSipD (SPI-1) oraSseB (SPI-2)
antibodies diluted 1:1000 in PBS for 3 h with gentle agitation.
Samples were subsequently washed in PBS before incubating in
1:1000 Alexa Fluor 488 conjugated goat anti-rabbit antibody
(Invitrogen-Molecular Probes, Paisley, U.K.), washed for 30 mins
in fresh PBS before mounting onto agarose beds.

Tissue Immunostaining for Fluorescence Microscopy
Half of each organ was fixed overnight in 4% paraformaldehyde

diluted in PBS, washed for 90 min in three changes of PBS and
then immersed in 20% sucrose (in PBS) for 16 h at 4oC before
being embedded in Optimal Cutting Temperature (OCT)
(Raymond A Lamb Ltd, Eastbourne, U.K.) in cryomoulds (Park
Scientific, Northampton, U.K.). Samples were frozen and stored at
-80oC. 30mm sections were cut, blocked and permeabilised for
10 min in a permeabilising solution containing 10% normal goat
serum and 0.02% Saponin in PBS (Sigma, Poole, UK). Sections
were stained with 1:1000 dilution of rat anti-mouse CD18+

monoclonal antibody (clone M18/2, BD Pharmingen), together
with a 1:500 dilution of rabbit anti-LPS O4 agglutinating serum
(Remel Europe Ltd), for 16 h at 4oC. Subsequently, sections were
washed in PBS then incubated with 1:200 Alexa Fluor 568-
conjugated goat anti-rat antibody (Invitrogen-Molecular Probes,
Paisley, U.K.) and a 1:1000 dilution of Alexa Fluor 488-
conjugated goat anti-rabbit antibody (Invitrogen-Molecular
Probes, Paisley, U.K.). All sections were mounted onto Vecta-
bond-treated glass slides (Vector Laboratories Ltd.) using Vecta-
shield containing DAPI (Vector Laboratories Ltd.).

Microscopy
All phase contrast and fluorescence images were captured using

an Andor iXonEM+ 885 EMCCD camera coupled to a Nikon Ti-
E microscope using a 100x/NA 1.4 oil immersion objective.
Images were acquired with NIS-ELEMENTS software (Nikon)
and processed using ImageJ. Fluorescence images were decon-

Plasmid Description Reference

pSB401 luxCDABEpromoter reporter vector [41]

pBA409 sopBpromoter reporter [41]

pRG34 pSB401-fliA [41]

pRG38 pSB401-flhD [41]

pRG46 pSB401-fliC [41]

pRG51 pSB401-flgA [41]

pMK1-lux luxCDABEpromoter reporter vector [52]

pMK1-lux-ssaG pMK1-lux-ssaG This work

pBAD24-hilA hilA inducible expression plasmid This work

pBAD24-rcsC rcsCcomplementation plasmid This work

doi:10.1371/journal.ppat.1002500.t001

Table 1. Cont.
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Table 2. PCR primers.

Primer Sequence (5 9-39)

mreC-P1 GGATTGTCCTGCCTCTCCGACGCGAGAATACGCATAGCCTGTGTAGGCTGGAGCTGCTTC

mreC-P4 CATCAGGCGCTCATTGGCGACGCGGTGAACCTCTTCCGGATTCCGGGGATCCGTCGACC

mreC5 ATACGGGCAGGATTATCCCT

mreC3 GCGCAATAAGAAACGAGAGC

mreD-P1 GGCGCGACCACGCCGCCTGCGCGTGCGCCGGGAGGGTAGTGTAGGCTGGAGCTGCTTC

mreD-P4 GGGGAACCGGAAGCAAGATACAGAGTTGTCATATCGACCTATTCCGGGGATCCGTCGACC

mreD5 ATCAACGCAACCATCGCCTT

mreD3 TCAATAATTCCTGGCGACGC

qseBCP1 GTTAACTGACGGCAACGCGAGTTACCGCAAGGAAGAACAGGTGTAGGCTGGAGCTGCTTC

qseBCP4 AAATGTGCAAAGTCTTTTGCGTTTTTGGCAAAAGTCTCTGATTCCGGGGATCCGTCGACC

qseBC59 ACATCGCCTGCGGCGACAAG

qseBC39 GCGGTGCGGTGAAATTAGCA

rcsAP1 GTAAGGGGAATTATCGTTACGCATTGAGTGAGGGTATGCCGTGTAGGCTGGAGCTGCTTC

rcsAP4 AATTGAGCCGGACTGGAGGTACATTGCCAGTCCGGATGTCATTCCGGGGATCCGTCGACC

rcsA59 GATTATGGTGAGTTATTCAG

rcsA39 CGAGAAGGCGGAGCAGGACT

rcsBP1 GCCTACGTCAAAAGCTTGCTGTAGCAAGGTAGCCCAATACGTGTAGGCTGGAGCTGCTTC

rcsBP4 ATAAGCGTAGCGCCATCAGGCTGGGTAACATAAAAGCGATATTCCGGGGATCCGTCGACC

rcsB59 CGTGAGAAAGATGCTCCAGG

rcsB39 TGAGTCGACTGGTAGGCCTG

rcsCP1 GTCACACTCTATTTACATCCTGAGGCGGAGCTTCGCCCCTGTGTAGGCTGGAGCTGCTTC

rcsCP4 TTTTACAGGCCGGACAGGCGACGCCGCCATCCGGCATTTTATTCCGGGGATCCGTCGACC

rcsC59 CGTCATTTACCGCTACCTTA

rcsC39 GGCCTACCAGTCGACTCATC

rcsDP1 CCTTCACCTTCAGCGTTGCTTTTACAGGTCGTAAACATAAGTGTAGGCTGGAGCTGCTTC

rcsDP4 ACCTTGCTACAGCAAGCTTTTGACGTAGGCGTCAATGTCGATTCCGGGGATCCGTCGACC

rcsD59 TTCATTACCCTTTATACTGC

rcsD39 CATATTGTTCATGTATTGGG

rcsFP1 TTCAATATCTGGCAATTAGAACATTCATTGAGGAAATATTGTGTAGGCTGGAGCTGCTTC

rcsFP4 GGGGAGCGAATAACGCCGATTTGATCAAACTGAAAGCTGCATTCCGGGGATCCGTCGACC

rcsF59 TCATTTATGCAAGCTCCTGA

rcsF39 CGGCGAATTTTTCTTTATAG

rcsCBDP1 GTCACACTCTATTTACATCCTGAGGCGGAGCTTCGCCCCTGTGTAGGCTGGAGCTGCTTC

rcsCBDP4 CCTTCACCTTCAGCGTTGCTTTACAGGTCGTAAACATAAATTCCGGGGATCCGTCGACC

rcsCBD59 CGTCATTTACCGCTACCTTA

rcsCBD39 TTCATTACCCTTTATACTGA

rcsDBP1 CCTTCACCTTCAGCGTTGCTTTTACAGGTCGTAAACATAAGTGTAGGCTGGAGCTGCTTC

rcsDBP4 ATAAGCGTAGCGCCATCAGGCTGGGTAACATAAAAGCGATATTCCGGGGATCCGTCGACC

rcsDB59 TTCATTACCCTTTATACTGC

rcsDB39 TGAGTCGACTGGTAGGCCTG

phoBRP1 ATGGCGCGGCATTGATAACTAACGACTAACAGGGCAAATTGTGTAGGCTGGAGCTGCTTC

phoBRP4 CATCCGCTGGCTTATGGAAAGTTATACTTACGAAAGGCAAATTCCGGGGATCCGTCGACC

phoBR59 TGTCATAAATCTGACGCATA

phoBR39 CTGCAAAGAAAATAAGCCAG

qseFP1 GGCGCCGTCGCCGTCACAAGATGAGGTAACGCCATGATAAGTGTAGGCTGGAGCTGCTTC

qseFP4 TTAAACGTAACATATTTCGCGCTACTTTACGGCATGAAAAATTCCGGGGATCCGTCGACC

qseF59 CAAACCCGCGACGTCTGAAG

qseF39 GTCGCCTGTGTTTTGATCGG

cpxARP1 CGCCTGATGACGTAATTTCTGCCTCGGAGGTACGTAAACAGTGTAGGCTGGAGCTGCTTC

cpxARP4 CGAGATAAAAAATCGGCCTGCATTCGCAGGCCGATGGTTTATTCCGGGGATCCGTCGACC
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volved using Huygens Deconvolution software (Scientific Volume
Imaging). Cell measurements were taken on a Nikon Ti-E
microscope with NIS-ELEMENTS software. Immunofluorescence
images from tissue sections were analysed multi-colour fluores-
cence microscopy (MCFM) using a Leica DM6000B Fluorescence
microscope running FW4000 acquisition software.

Transepithelial Resistance and Bacterial Effector
Translocation Assays

The effect ofSalmonellainfection on transepithelial resistance
(TER) was determined for differentiated Caco-2 cells as previously
described [34]. Briefly, the Caco-2 cells were grown on transwell
inserts (Corning, UK) until differentiated (12±14 days), before the
transepithelial resistance was measured for each well.Salmonella
strains were then added to the cells at a multiplicity of infection
(MOI) of 20, and the cells incubated for 4 h. TER measurements
were taken every hour and the results given as a ratio of TER (t)/

(t0) to show the percentage change in TER over the course of the
experiment. Data were collated and analysed for statistical
differences (Student's t-test) in Minitab.

Samples for the assay of translocated effector proteins were
isolated from differentiated Caco-2 cells grown in 6 well plates
after infection with an MOI of 20 for 4 h. Excess bacteria were
washed off before the cells were solubilised in 0.01% Triton X-100
and centrifuged to remove bacteria and host cell membranes. The
host cell cytoplasmic fractions were analysed by western blotting
with aSipB antibody.

Results

In silicoIdentification of the SalmonellaActin Homologue
mreB

We wished to identify and characterise putativeSalmonella
cytoskeletal gene homologues. A BLAST search of theS.

Primer Sequence (5 9-39)

cpxAR59 GTAAAGTCATGGATTAGCGA

cpxAR39 CTCCCGGTAAATCTCGACGG

tctDEP1 AATTCCCTTTCAATGCGGCAGAAACTTTACAGGATGTGATGTGTAGGCTGGAGCTGCTTC

tctDEP4 TTTTTGTAAACGTGCTTTACCGCTGACACATTTGTCCGCAATTCCGGGGATCCGTCGACC

tctDE59 TGTTAAAACAATAACCTTTC

tctDE39 GTCACACCTCAAGATGCGAC

yjiGHP1 TTCCTGCTCCCAGCTCCGGCCTGCGTCAACACCTGTTTCTGTGTAGGCTGGAGCTGCTTC

yjiGHP4 TAAACTCCGCGGCGGATAAATCAGGCATGATAACTCCTTAATTCCGGGGATCCGTCGACC

yjiGH59 TCAAATTTATTTCTCCTTTT

yjiGH39 GTGCGCACCCTGTAATAAGG

HydHP1 TCTGGTTGCCAGTGATAGCGAGACAACAGGATTAACAAGGGTGTAGGCTGGAGCTGCTTC

HydHP4 GTAACGACATTGGCTGGCGCGCCATTGAGCGTGAGCAAAAATTCCGGGGATCCGTCGACC

HydH59 TAAAGGCGCGGTCTTTACTA

HydH39 CTGGGACGGCAGCTTCAGCC

BasSP1 CTACATGCTGGTTGCCACTGAGGAAAGCTAAGTGAGCCTGGTGTAGGCTGGAGCTGCTTC

BasSP4 AGTTTTATCTATGTGTGGGTCACGACGTATTAAACGCCTGATTCCGGGGATCCGTCGACC

BasS59 CGCACGGTTCGCGGGTTTGG

BasS39 GTAGTGTGCTGATTGTCAGC

BaeSRP1 TGGTCATTTCACGGCGTAAAAGGAGCCTGTAATGAAAGTCGTGTAGGCTGGAGCTGCTTC

BaeSRP4 ATATCGTCTTACGACCTTGTTATTGTTATGCCAATAATCAATTCCGGGGATCCGTCGACC

BaeSR59 CCGCGTGCCGAACGATACAC

BaeSR39 CAGAATAGCGTTGGCGGAAA

pEGFP5 GCGGAATTCAGGTACCCCCGGGCCATGGTCTAGAATGGTGAGCAAGGGCGAGG

pEGFP3 GCGAAGCTTTTACTTGTACAGCTCGTCC

mreB5 Eco GCGGAATTCGCAGATGTTTGTCAACACATC

mreB3 Xba GCGTCTAGACTCTTCGCTGAACAGGTCGCC

ssaG5 Eco GCGGAATTCCGACAGTATAGGCAATGCCG

ssaG3 Bam GCGGGATCCCCACTAATTGTGCAATATCC

BADhilA5 GCGGAATTCATGCCACATTTTAATC

BADhilA3 GCGTCTAGATTACCGTAATTTAATC

BADrcsC5 GCGGAATTCTTGAAATACCTTGCTTC

BADrcsC3 GCGAAGCTTTTATGCCCGCGTTTTACGTACCC

Bold indicates restriction enzyme recognition sites.
doi:10.1371/journal.ppat.1002500.t002

Table 2. Cont.
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Typhimurium genome sequence database (www.ncbi.nlm.nih.gov)
[35] for the known E. coliactin-homologue MreB identified a
putativemreoperon of high sequence identity. Comparison of the
Salmonellagenes to those ofE. colishowed 100% (mreB), 88% (mreC)
and 94% (mreD) homology at amino acid level, comparisons of
these same genes to those inB. subtilisrevealed sequence
homologies of 57%, 24% and 27% respectively.

MreB Proteins Are Helically Localised
In order to determine the localisation of MreB inSalmonella,

vectors expressing N and C terminal fusions of MreB to GFP were
used. The N-terminal fusion plasmid has already been described
[36], and we constructed a C-terminal fusion vector. Both
constructs revealed a helical distribution of MreB along the long
axis of the cell. The helices were discerned by assembling a series
of z-stack images taken in successive planes by using Metamorph
imaging and Huygens deconvolution software (Figure 1A).

Construction ofmre Mutants
The mreBgene appears to be essential in bacteria including

Salmonella(data not shown), andDmreBviable cells often contain
compensatory mutations [37]. Each of the components of the
cytoskeletal complex, for example MreB, MreC, or MreD, are
essential for its function. As an alternative strategy to study the
function of the cytoskeleton we therefore generated amreC
depletion strain under conditions designed to minimise selective
pressures for undefined secondary compensatory mutations [37].
Using the lambda Red one-step gene disruption method, we
successfully constructed amreC::kanmutant in theS. Typhimurium
wild-type strain SL1344 [31]. This mutation leaves intact the first
gene in the operonmreB.Using bacteriophage P22int the mreC::kan
mutation was then transduced into a genetically ``clean'' SL1344
strain harbouring plac-mreoperon (pTK521) [14] and the resulting
strain designatedDmreC. The plac-mreoperon is a low copy
number plasmid expressing themreoperon from the IPTG-
inducible lac promoter. The identity of the mutation was
confirmed by PCR and DNA sequencing. Expression of MreC
was assessed by western blotting in the mutant strains, revealing no
detectable levels MreC unless complementation was induced
(Figure S1). In addition to theDmreCmutant, the lambda Red
method was used to generateDmreD.

Morphology and Growth Rates
When the morphology of theDmreCmutant was examined

microscopically, the cells were no longer rod-shaped but spherical
(Figure 1B). Upon the addition of IPTG the morphology of the
DmreCstrain was restored to the wild-type rod shape. Under
microscopic examination theDmreDmutant displays a similar
morphological phenotype to theDmreC. WT cells were measured
to be on 1.61(+/ 2 0.49)mm in length and 0.75(+/ 2 0.17)mm in
width, whereas theDmreCcells were 2.03(+/ 2 0.60)mm in length
and 1.21(+/ 2 0.41)mm in width. Complementation of theDmreC
mutant with 100mM IPTG resulted in wild type shaped cells
1.82(+/ 2 0.44) mm in length and 0.78(+/ 2 0.24) mm in width.
Measurements were taken from a minimum of 350 cells per strain.
Growth rates of the strains were determined in LB media at 37uC
revealing a, 50% increase in the lag phase of theDmreCmutants
(Figure S2), which subsequently grow at a comparable rate to that
of the wild type or complemented mutant strains during log phase.

Motility and Expression of Flagellin Subunits
The motility phenotype ofDmreCwas examined on semi-solid

agar plates. In contrast to the isogenic parent, theDmreCcells were

no longer motile. Surprisingly, this motility defect has not been
reported in eitherE. coli or B. subtilis. Cellular and secreted
proteins of the parent SL1344 andDmreCwere examined by SDS-
PAGE and western blotting using antibodies directed against the
phase-1 and phase-2 flagellin subunits FliC and FljB. Neither of
these subunits were present in either the secreted or cellular
proteins, explaining the inability of the cells to swim (data not
shown). The non-motile phenotype was fully complementablein
transupon the addition of IPTG to the mutant strain harbouring
pTK521 (Figure S3).

Expression of Flagella Genes
We observed that theSalmonellaDmreCdepletion strain was non-

motile and failed to express flagella subunits FliC or FljB. The
regulation and assembly of flagella inSalmonellais complex.
Flagella genes are arranged into 14 operons and their transcription
is organised into a regulatory hierarchy of early (class I), middle
(class II), and late genes (class III) [38]. The class IflhDCoperon is
the master regulator, with FlhD and FlhC forming a hetero-
tetramer that is required for transcriptional activation of the class
II genes, which encode the hook-basal body complexes and the
alternative sigma factor FliA (sigma28). FliA alone or with FlhDC,
activates expression of the class III operon genes, which encode
the filament protein, hook-associated proteins, motor proteins, and
chemotaxis proteins [39,40]. The class III genes are further
subdivided intofliA-independent expression class IIIa or class IIIb
[41]. In order to systematically investigate the mechanistic basis
for theDmreCmotility phenotype we have taken selected class I, II,
and III regulated flagella gene promoter fusions to a luciferase
reporter gene, and monitored their expression by luminescence in

Figure 1. Localization and morphological role of the S.
Typhimurium Mre proteins. (A) Fluorescence microscopy montage
showing z-sections taken of MreB-GFP fusions in WT SL1344 revealing a
helical distribution. Slices taken at 0.1mm intervals on live cells in mid
log phase going from left to right followed by maximum intensity
projection (boxed). (B) Morphology of WTS.Typhimurium (I) andDmreC
(II) reveal the mutant has changed from rod to round-shaped, with
some heterogeneity in size noted. In all images the bar represents
1 mm.
doi:10.1371/journal.ppat.1002500.g001
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wild type andDmreCstrains. Constructs withflhD(class I), fliA, flgA,
(class II), andfliC (class III) promoters fused to the luciferase
reporter gene were used. The reporter plasmid pSB401 has a
promoterlessluxCDABEoperon and was used as a control.

The class IflhD promoter displayed a reduction in the level of
expression inDmreCcompared to the wild-type strain suggesting
the class I promoter has reduced activity. Notably greater changes
in the expression profiles occur in other class II and class III genes.
The class II promoters for the operons encoding the transcrip-
tional regulatorsfliAZYand flgAMdisplay significant reductions in
expression levels inDmreC(Figure 2). As predicted from the
western blotting data expression of thefliC class III promoter was
significantly reduced. Collectively, the promoter-reporter activity
data can account for the motility defect.

Expression of SPI-1 and SPI-2 Type 3 Secretion System
Proteins

Type 3 secretion systems are essential for the virulence of a
range of pathogens includingSalmonella[42,43]. The secretion
apparatus assembles into a supramolecular needle-complex.
Secreted effector proteins in the bacterial cytoplasm traverse
through the needle-complex and the bacterial multi-membrane
envelope, directly into host cells [44±46]. The apparatus anchors
to the cell envelope via a multi-ring base.Salmonellapossess two
T3SS's encoded by pathogenicity islands (SPI's). The SPI-1 T3SS
is important for invasion of intestinal epithelial cells and the SPI-2
T3SS plays a central role in survival within the hostile
environment of a macrophage. The SPI-1 T3S system translocates
virulence effector proteins into the cytosol of epithelial cells
resulting in rearrangements of the actin cytoskeleton which enable
Salmonellato invade [47]. To investigate whether themreC
mutation has an impact on SPI-1 T3S, we used western blotting

to determine the presence and functionality of the system using
antibodies to an apparatus protein PrgH as well as the effector
proteins SipA and SipC, in both SL1344 andDmreC. In contrast to
the wild-type SL1344, the T3S structural and effector proteins
were not expressed in the cellular or secreted fractions from the
DmreCdepletion mutant (Figure 3A). This suggests that SPI-1 T3S
in the DmreCmutant is not fully functional. The expression and
secretion phenotypes were fully complementablein transupon the
addition of IPTG (data not shown).

The functional assembly of SPI-1 T3SS was also confirmed
using transepithelial resistance (TER) assays in differentiated
Caco-2 cells, showing a reduced ability to disrupt epithelial tight
junctions in theDmreCmutant compared to the wild type strain
(Figure 4).

To further assess the disruption of the functionality of the SPI-1
T3S, a translocation assay was performed in Caco-2 cells infected
with the strains. Host cell cytoplasmic proteins were probed for the
bacterial effector protein SipB using western blotting (Figure S4).
This revealed the inability of theDmreCmutants to infect host
epithelia and disrupt their tight junctions. In addition,DmreCwas
fully complementable in this assay following IPTG induction.

The SPI-2 T3SS is pivotal for the establishment of theSalmonella
containing vacuole (SCV) inside macrophages and subsequent
survival [43]. We next investigated the effect of theDmreC
mutation on the functionality of the SPI-2 T3SS. The strains were
grown under SPI-2 inducing conditions and the T3S of the
translocon protein SseB monitored. SseB together with SseC and
SseD function as a translocon for other effector proteins and SseB
is normally found associated with the outer surface ofSalmonella.
Thus membrane fractions were purified to monitor expression and
T3S by western blotting. This revealed that in contrast to the SPI-
2 negative control (ssaV), SseB was secreted and associated with the

Figure 2. Impact of DmreC on the transcription of flagellar genes. Transcriptional expression profiles offlhD, flgA, fliA and fliC promoter
reporters in WT SL1344 (blue diamonds) andDmreC(red squares) expressing thePhotorhabdus luminescensLuxCDABE luciferase. Experiments were
repeated at least three times and error bars indicate standard deviation.
doi:10.1371/journal.ppat.1002500.g002
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Figure 3. Expression of SalmonellaSPI-1 and SPI-2 effector proteins in DmreC. (A) Expression of SPI-1 proteins in WT SL1344,DmreC, DSPI-1,
and DSPI-2 mutants during SPI-1 inducing conditions as revealed by western blotting with polyclonalaSipA andaSipC antibodies. Expression of SPI-2
in WT SL1344,DmreC, DSPI-1, andDSPI-2 mutants during SPI-2 inducing conditions as revealed by western blotting of membrane fraction samples
with polyclonal aSseB antibody. Samples representing total proteins and secreted proteins are shown. Arrows indicate the respective protein bands.
(B)Transcriptional expression profiles ofhilA, hilC, hilD, sopB(SPI-1) andssaG(SPI-2) promoter reporters in WT SL1344 (blue diamonds) andDmreC(red
squares). Experiments were repeated at least three times and error bars indicate standard deviation.
doi:10.1371/journal.ppat.1002500.g003
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bacterial membrane surface in both the wild-type andDmreC
strains (Figure 3A). This provides qualitative evidence to suggest
that in contrast to the SPI-1 T3SS, the SPI-2 T3SS appears to
remain functional.

Expression of SPI-1 and SPI-2 Type 3 Secretion System
Regulatory Genes

Several environmental signals and transcriptional factors
modulate expression of the SPI-1 T3SS. We wished to understand
the mechanistic basis by which expression of the SPI1-T3SS is
down-regulated. Within SPI-1 there are key transcriptional
activators which regulate expression of SPI-1 genes: HilC, HilD,
HilA, and InvF. Both HilC and HilD activate expression of SPI-1
genes by binding upstream of the master regulatory genehilA to
induce its expression[48]. HilA binds and activates promoters of
SPI-1 operon genes encoding the type 3 secretory apparatus,
several secreted effectors, and the transcriptional regulator InvF.
InvF activates expression of effector genes inside SPI1 and also
effector genes outside SPI-1 such assopBand sopE[47].

Expression of selected SPI-1 T3SS genes was monitored using
transcriptional promoter reporters inDmreC, using constructs
harbouring thehilA, hilC, hilD, invFandsopBpromoters fused to the
promoterlessluxCDABEoperon that produces light in response to
gene expression [49±51]. Each construct was introduced into both
wild-type SL1344 andDmreCdepletion mutant, and the level of
expression of the promoters in these strains monitored by
luminescence assays. WT SL1344 andDmreCcells harbouring
pCS26 or pSB401 vectors alone were used as controls, and did not
produce any luminescence as expected. The reporter assays
revealed that the SPI-1 transcription factor gene promoters for
hilA, hilC, hilD, and invF were completely inactive inDmreCin
contrast to the wild-type strain. However the promoter ofsopB
located in SPI-5 remained active but its activity was marginally
lower than in the wild-type strain (Figure 3B). The regulation of
many T3SS genes often require multiple signals for maximal
expression and clearly other signals remain in theDmreCdepletion
mutant which drive expression of the SopB in SPI-5.

Expression of SPI-2 T3SS genes were monitored using a
transcriptional reporter for the SPI-2 genessaG, whose promoter
was cloned upstream of theluxCDABEluciferase operon in the
plasmid pMK1-lux[52]. The construct was transformed into wild-
type SL1344 andDmreC, and the luminescence and OD600
measured during growth in SPI-2 inducing conditions (Figure 3B).
The ssaGpromoter remains active in theDmreCmutant although
expression appears to be delayed, and is marginally less than in
WT. This evidence supports the western blot data withaSseB and
suggests that in contrast to the SPI-1 T3SS, the SPI-2 T3SS
remains functional in the absence of the cytoskeleton.

Function of the RcsC Two-Component System in
Regulation of SPI-1 T3S and Motility inDmreC

Two-component regulatory systems are vital in sensing environ-
mental and cell surface signals, enabling bacteria to rapidly adapt to
ever changing conditions [53,54]. These signals are detected by
histidine protein sensor kinases, which subsequently transfer phosphate
groups to an aspartate residue in the response regulator proteins, thus
modulating their regulatory activities. The environmental signals are
thus transmitted by a phosphorelay system to regulate gene expression.

In order to identify putative regulators of theDmreCobserved
phenotypes, we have constructed knockout mutations in a range of
two-component systems. As an initial screen, a panel of nine
separate two-component system mutant strains were constructed as
double mutants withDmreC. One two-component system sensor
kinase mutationDrcsCresulted in recovery of SPI-1 effector
expression in theDmreCbackground as judged by western blotting
using aSipC sera (Figure 5 panels A and B). Interestingly the
amount of SipC protein expressed and secreted from the cell was
less than the wild-type suggesting there are additional repressors
continuing to operate (Figure 5 panels A and B and Figure S5).
Furthermore, disruption ofrcsCalso significantly de-repressed
motility (Figure 6 and Figure S6) in aDmreCmutant similar to
SPI-1 expression, again suggesting there are additional repressors
involved. Expression of the RcsC proteinin transwas able to restore
the phenotype ofDmreCDrcsCback to the equivalent of aDmreC

Figure 4. Percentage change in transepithelial resistance of differentiated Caco-2 cells after 4hr infection. TER of polarised Caco-2
monolayers exposed toSalmonellastrains at an MOI of 20. TER change is expressed as a percentage alteration at 4hr compared to the initial value at
time zero. Error bars indicate the standard deviations derived from at least three independent experiments.* Indicates statistical difference from WT
(p, 0.05).
doi:10.1371/journal.ppat.1002500.g004
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strain, with respect to repressing SPI-1 type 3 secretion and motility.
These complementation studies provide further evidence support-
ing the regulatory role of RcsC in theDmreCphenotypes (Figure S7).

Rcs is a highly complex multi-component phosphorelay system
and was originally identified in regulating genes involved in capsule
synthesis inEscherichia coli[55,56]. The RcsC sensor kinase
phosphorylates RcsD, which subsequently phopshorylates the
DNA binding response regulator RcsB. The unstable RcsA protein
and additional auxillary proteins can also interact and regulate
RcsB. The Rcs system is involved in down-regulating the expression
of flagella, SPI1-T3S and increasing biofilm formation [57].

We therefore also constructedDmreCDrcsB, DmreCDrcsD, DmreC
DrcsDBandDmreCDrcsCBDmutants, which however did not restore
either SPI-T3S or motility (Figures 5, 6, and S6). We propose that in
the absence of RcsC signalling, phosphorylated levels of RcsB are
depleted enabling de-repression of FlhDC and motility. The
presence of RcsDB appears essential for restoring motility in the
absence of RcsC [55]. The functionality of SPI-1 T3SS in theDmreC
DrcsC andDmreCDrcsDBmutants were assessed in a TER assay,
which revealed partial restoration of tight junction disruption in the
DmreCDrcsCmutant, but not in theDmreCDrcsDB(Figure S8).

It has been suggested that the outer membrane protein RcsF
may perceive some of the environmental signals necessary to

activate the Rcs phosphorelay system. To investigate this we
constructed aDmreCDrcsFmutant which failed to restore motility
or SPI-1 T3S and appeared phenotypically identical toDmreC
(Figure 5, S6). This would suggest that RcsF is not involved in the
observedDmreCphenotypes. Furthermore as the auxillary protein
RcsA can interact and regulate RcsB, we therefore disrupted the
rcsAgene inDmreCand which also resulted in no impact on the
observed phenotypes (Figure 5, S6).

In summary, we propose that RscC is sensing cell surface
perturbations [58] inDmreC, resulting from a disrupted cytoskel-
eton, and subsequently down-regulating the expression of SPI-1
T3S and motility. This signalling appears to be independent of
both RcsF and RcsA.

Chemical Genetic Inactivation of the Essential MreB
Protein

A cell permeable compound named A22 [S-(3,4-Dichlorobenzyl)
isothiourea] has been demonstrated to perturb MreB function [59].
As an alternative approach to genetically disrupting the essential
genemreB, we exposed wild-typeSalmonellacultures to A22 and
observed a morphological change from rod to spherical-shaped
cells. In addition we phenotypically screened and tested A22-treated
cells for motility and T3S. The A22-treated cells were phenotyp-

Figure 5. Western blotting screen of DmreC two-component system double mutants for recovery of SPI-1 T3S. Panels A and B show
western blots of total protein samples obtained from SL1344 WT,DSPI-1,DmreC, DmreCDqseF,DmreCDphoBR, DmreCDyjiGH, DmreCDbaeSR, DmreC
DbasSR, DmreCDhydH, DmreCDqseBC, DmreCDtctDE,DmreCDcpxAR,DmreCDrcsDB, andDmreCDrcsCstrains withaSipC antibody. Panels C and D
show western blot of total protein samples obtained from SL1344 WT,DrcsA,DrcsB,DrcsC, DrcsD,DrcsF,DrcsDB,DrcsCBDand DmreCstrains along
with the DmreCDrcsA,DmreCDrcsB,DmreCDrcsC,DmreCDrcsD,DmreCDrcsF,DmreCDrcsDB, and DmreCDrcsCBDdouble mutants with aSipC
antibody. SipC is indicated at approximately 43kDa.
doi:10.1371/journal.ppat.1002500.g005
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ically identical toDmreCwith respect to cell shape, motility, SPI-1
T3S, and also SPI-2 T3S (data not shown). The effects of A22 were
completely reversible following its removal (data not shown). Thus
the chemical genetic inactivation of MreB, independently corrob-
orates the phenotypic observations made withDmreC.

The Salmonella mreOperon Plays an Important Role in
Colonization duringin vivo Infection

The DmreCdefect clearly has an impact on the expression of
important virulence determinants ofSalmonella in vitro. We therefore
wished to investigate the contribution of the bacterial cytoskeleton
on the virulence ofSalmonella in vivousing the mouse model. We
observed that the SPI-1 T3SS inDmreCis completely down-
regulated, and as this virulence system is important for infection
through the oral route of inoculation the strain would be attenuated.

We therefore explored the colonization ofDmreCusing the
intravenous route allowing us to examine the impact of the host
on the further down-stream stages of infection. Groups of 5 female
C57/BL6 mice were inoculated intravenously withcirca103 colony
forming units of either control SL1344 orDmreC. The times taken
for clinical symptoms to appear were determined. Viable bacterial
numbers in the spleen and liver for SL1344 were determined at days
1 and 4, andDmreCat days 1, 4, 7, and 10. Thein vivobacterial net
growth curves vividly demonstrate two clear phenotypic effects
upon the growth ofDmreCcompared to the wild-type. Firstly, there
is a greater initial kill ofDmreC, and this is secondly followed by a
slower net growth rate. However, in spite of the reduced growth rate
of DmreC, the bacterial numbers steadily increase over 6 days. This
eventually causes the onset of clinical symptoms necessitating
termination of the experiment at day 10 (Figure 7). During these
stagesSalmonellainfect and multiply within macrophages and the

Figure 6. Motility of Salmonella mutant cells. Representative images showing the motility of SL1344 WT,DflhDCDmreC1, DmreC, DmreCplus
IPTG,DrcsC, DmreCDrcsC, DmreCDrcsDB,and SL1344 WT plus A22 cells grown on motility agar at 37uC. White circles highlight the limits of motility
on the agar plates.
doi:10.1371/journal.ppat.1002500.g006
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SPI-2 T3SS is essential for survival. Thus providing further
evidence to support the presence of a functional SPI-2 T3SS in
DmreC. Collectively, these observations imply themreCdefect
reduces the virulence of the strain, but does not completely
abrogate its ability to multiply and cause disease systemicallyin vivo.

Morphology in vivo
Strains recovered fromin vivopassage were tested for changes in

morphology, motility and T3S, and were found to be identical to
the input strain. Furthermore thein vivomorphology of the strain
within livers and spleens was determined by immunofluorescence

microscopy. Sections of livers and spleens were taken and stained
as described in the materials and methods. Figure 8 demonstrates
the SalmonellaDmreCmutant strain retains the round morphology
in vivocompared to the rod shaped wild-type control. Collectively
these data suggests that the mutation has remained stable during
the in vivopassage for the virulence phenotypes tested.

Role of the Cytoskeleton in the Assembly, Regulation and
Function of SPI-1 T3SS and Flagella

The regulation and assembly of SPI-1 T3SS and flagella are
complex. When the bacterial cytoskeleton is disrupted both the

Figure 8. Morphology of DmreC in host tissues. Representative fluorescence micrograph ofSalmonellaSL1344 WT andDmreC within a
phagocyte in infected livers of C57BL/6 mice at 72 h p.i. CD18+ expressing cells (red),SalmonellaDmreC (green), nucleic acid is indicated by DAPI
(blue). Scale bar, 5mm.
doi:10.1371/journal.ppat.1002500.g008

Figure 7. Contribution of DmreC to in vivo colonization. In vivogrowth kinetics of WT SL1344 andDmreCin livers and spleens of C57BL/6 mice
inoculated intravenously with 103 colony forming units. Viable bacterial counts in the spleen and liver were performed at days 1, 4, 7 and 10, and
expressed as mean log10 viable count +/2 standard deviation.
doi:10.1371/journal.ppat.1002500.g007
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SPI-1 T3SS and flagella expression are down-regulated. A
hypothesis is that the integrity of the cytoskeleton is essential for
the correct assembly of these complex macromolecular structures
and in its absence the SPI-1 and flagella gene expression are down-
regulated to conserve resources. Alternatively, in the absence of a
functional cytoskeleton the bacterial cell is stressed and shuts down
the expression of energetically expensive ``non-essential'' machin-
ery. To test these ideas we wished to force on the expression of
SPI-1 T3S and flagella genes, and examine whether these systems
are correctly assembled and functional. We therefore expressedin
transfrom heterologous inducible promoters either the flagella
master regulator FlhDC or the SPI-1 T3S regulator HilA in a
panel of strains includingDmreC.Strikingly, expression of FlhDC
restored both the expression and assembly of flagella on the cell
surface as determined by fluorescence microscopy (Figure 9A) and
motility assays (data not shown) inDmreC.Furthermore, expression
of HilA in transup-regulated expression of the SPI-T3SS and its
assembly on the cell surface as determined immunofluorescence
microscopy (Figure 9B) western blotting withaSipB antibody
(Figure S9) or functionally by TER measurements (Figure 4). In
contrast to SPI-1 T3SS and flagella, the expression of the SPI-2
T3SS was not turned off in theDmreCmutant as shown in
(Figure 9C). Interestingly, in WT cells the SPI-1 T3S apparatus
and flagella appear to be present in around six to eight copies
mainly along the long axis of the cell. In marked contrast the SPI-2
apparatus is typically present in one or two copies located at the
poles of the bacterial cell [42], whereas their localisation appears
less clear in theDmreCmutant, possibly due to perturbations in the
cell envelope and the indistinct cell polarity in these cells caused by
disruption of the cytoskeleton. The complementation of the
functional assembly of SPI-1 T3SS was also confirmed using
TER assays, where the levels of decrease in resistance after
infection with DmreCstrain reverted to that of the parent strain
upon induction of the transcriptional regulatorhilA(Figure 9B and
S9), or complementation of theDmreCmutation (Figure 4). Taken
together the data support the notion that the cytoskeleton is not
required for the correct assembly of these virulence factors but
essential for their expression.

Discussion

Bacterial cells possess dynamic cytoskeletons composed of
diverse classes of self-assembling polymeric proteins. Some of
these proteins resemble eukaryotic actin, tubulin, and intermediate
filaments both structurally and functionally [5,7,11,12]. The
bacterial tubulin FtsZ plays a key role in cell division. Bacterial
actins provide vital functions in maintaining cell morphology,
segregating DNA, and positioning bacterial organelles. It has
recently been demonstrated inHelicobacter pylori, that MreB is
essential not for cell shape but for maintenance of the full
enzymatic activity of urease, an essential virulence factor [60].
Furthermore the MreB cytoskeleton is also essential for the polar
localisation of pili inPseudomonas aeruginosa[61].

Using a variety of approaches we have demonstrated the
importance of the bacterial cytoskeleton in the pathogenicity of
Salmonella. MreC and MreD form a complex in the cytoplasmic
membrane, which subsequently interacts with MreB. ThemreB

gene appears to be essential in many organisms including as we
discovered inSalmonella. Viable mreBmutants often contain
compensatory changes in other genes e.g.ftsZwhich compensate
for the lethality of themreBlesion [37]. As an alternative strategy to
investigate the function of the bacterial cytoskeleton and avoid
these deleterious effects, we carefully constructed depletion
mutants of mreCin strains harbouring a single-copy plasmid
expressing the MreB operon from thelacpromoter. In addition we
confirmed the phenotypic effects of themreCgenetic lesion by
disrupting the functions of MreB using a chemical genetics
approach and inactivating MreB with A22.

Removal of the gratuitous inducer IPTG from the growth
medium of theDmreCdepletion mutant resulted in cells changing
from rod to a spherical shaped morphology. Using fluorescence
microscopy MreB was observed to be no longer distributed in a
helical fashion throughout the cell but rather diffusely throughout
the cytoplasm (data not shown). Presumably MreB polymers are
no longer able to contact the cytoplasmic membrane via MreD
attachment sites resulting in mis-assembly of the entire cytoskel-
eton. In growing cells, this disruption of the cytoskeleton leads to
loss of the rod-shape.

We next examined the motility ofDmreCdepletion strain to
assess the functionality of flagella. The strains were non-motile and
western blotting revealed absence of the flagellin filament subunit
proteins FliC and FljB in both secreted and also cytoplasmic
protein fractions, suggesting expression of these alternative
subunits had been switched off. Flagella gene expression is
complex and involves a regulatory hierarchy of Class I, Class II,
and Class III genes [38]. The class IflhDCoperon is the master
regulator, and FlhDC complex is required for transcriptional
activation of the class II genes including the specialized flagellar
sigma factor FliA. FliA alone or with FlhDC complex, activates
expression of the class III operon genes encoding motor proteins,
hook-associated proteins, the filament protein, and chemotaxis
proteins [39,40]. Expression of the FlhDC complex was reduced
but still appeared comparable between the wild-type and the
DmreCsuggesting changes in the promoter activity offlhDC alone
are not responsible for the observed phenotype. Class II gene
expression was significantly reduced. Expression of the Class III
genefliC was completely down-regulated confirming the western
blot observations. Hence these independent observations are in
accordance with theDmreCmotility data. Thus in the absence of
the cytoskeleton expression of class II and class III flagella genes
appears to be down-regulated.

Expression of the SPI-1 T3S system is essential for invasion of
intestinal epithelial cells and the SPI-2 T3SS plays a central role in
survival within the hostile environment of a macrophage [43].
Western blotting revealed the SPI-1 T3S structural protein PrgH
and the effectors SipA and SipC were no longer expressed or
secreted in theDmreCdepletion mutant. The phenoptype was fully
complementable by the addition of IPTG. Several environmental
signals and transcriptional factors modulate expression of the SPI-
1 and SPI-2 T3SS [43,45,62]. We wished to understand the
mechanistic basis by which expression of the SPI1-T3SS is down-
regulated. Within SPI-1 there are key transcriptional activators
which regulate expression of SPI-1 genes: HilC, HilD, HilA, and
InvF. Using promoter-luciferase transcriptional reporter assays it

Figure 9. Localization of flagella and Type 3 secretion systems. Panel A shows representative images ofSalmonellaSL1344 WT,DflhDC,
DmreC, and flagella-complementedDmreCpTETflhDCcells. Panel B shows representative images ofSalmonellaSL1344 WT,DSPI1,DmreC, and SPI-1
complementedDmreCpBADhilA cells. Panel C shows representative images ofSalmonellaSL1344 WT,DSPI2, andDmreC. Fluorescence images of (A)
GFP-FliG, (B) Alexa488-aSipD or (C) Alexa488-aSseB (top panels) and phase merged images (bottom panels) are shown in each panel. Scale bar
representing 1mm is indicated in the bottom right panel.
doi:10.1371/journal.ppat.1002500.g009
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was revealed that the SPI-1 transcription factor gene promoters for
hilA, hilC, hilD, and invFwere completely inactive inDmreC,in
marked contrast to the control wild-type strain. Surprisingly, the
promoter ofsopBlocated outside of SPI-1 in SPI-5 remained active
but its activity was marginally lower than in the wild-type strain.
The regulation of many T3SS genes often require the input of
multiple signals for maximal expression and clearly other signals
remain in theDmreCdepletion mutant which drive expression of
the SopB in SPI-5. It therefore appears that the SPI-1 T3SS is
completely down-regulated in the absence of an cytoskeleton by an
unidentified regulatory factor. In contrast, the SPI-2 T3SS
remains functional as evidenced by western blotting with SseB
antibody and promoter-reporter assays. This is further corrobo-
rated with thein vivoevidence that following systemic inoculation,
DmreCis able to survive and multiply within the host. This takes
place within the hostile environment of the macrophage where
SPI-2 T3S is essential for biogenesis of theSalmonellacontaining
vacuole and survival [43,63,64].

We wished to gain further insights into the mechanistic basis of
the down-regulation of both SPI- T3SS and motility inDmreC.
Two-component systems play an essential role in sensing and
responding to environmental and cell surface signals [54]. To
investigate if two-component systems contribute to the regulation
of theDmreCphenotypes, we constructed a panel of separate two-
component system mutant strains in anDmreCbackground. The
double mutants were screened for recovery of motility and
expression of the SPI-1 T3SS. A mutation in thercsCsensor kinase
gene resulted in significant but not complete recovery of both
motility and expression of the SPI-1 T3SS.

The Rcs phosphorelay system regulates a broad range of genes
from capsule synthesis inE. colito increasing biofilm formation
[58]. RcsC also plays an important role in repressing expression of
flagella and SPI-1 T3SS inSalmonellaTyphi [57]. The RcsC sensor
kinase normally phosphorylates RcsD, which subsequently
phosphorylates the DNA binding response regulator RcsB.
However, in DmreCDrcsDBand DmreCDrcsCBDthere was no
restoration of either motility or expression of the SPI-1 T3SS
suggesting that RcsC signals repression and requires the presence
of rcsDBto mediate this effect. We propose that inDmreC, the
sensor kinase RscC detects cell surface perturbations and down-
regulates expression of flagella and the SPI-1 T3S apparatus [58].
This signalling is independent of both the outer membrane
lipoprotein RcsF sensor and the auxilliary regulatory protein
RcsA.

There are a number of explanations to provide a bacterial
rational for this shutdown in expression. In the absence of a
functional cytoskeleton the flagella and SPI-1 T3SS are either not
being correctly assembled, triggering a feedback loop to repress
expression, or alternatively are down-regulated to prevent the cell
from wasting valuable resources under these conditions. To test
the assembly idea, we forced on the expression of flagella and SPI-
1 T3SS genes by expressing the regulatorsflhDCor hilA in transin
DmreC.Using independent methods we observed the correct
assembly and function of these macromolecular machines
suggesting the cytoskeleton is not essential for functionality. The
cytoskeleton could also have a role in sensing cellular stress, as has
recently been suggested by Chiu and colleagues [65]. They
propose that the integrity of the cytoskeleton may be exploited by
the cell to monitor oxidative stress and physiological status. If the
cytoskeleton disintegrates in the absence of MreC, this may be
sensed by the cell leading to a shut-down of the SPI-1 T3S
apparatus and down-regulation of flagella protein expression. We
have provided mechanistic insights into the regulation of motility
and SPI-1 T3S inDmreC. We have identified the two-component

system sensor RcsC as an important regulator controlling
expression of these systems, presumably as a consequence of
sensing membrane perturbations brought about by the disruption
of the cytoskeleton [58].

With a non-functional SPI-1 T3SS, we would expect theDmreC
would be attenuated in mice when administered by the oral route
as it is unable to invade intestinal epithelial cells by the SPI-1
T3SS. We therefore explored the colonization ofDmreC in vivo
using the intravenous route of inoculation [66]. This provides an
opportunity to examine the impact ofDmreCon the down-stream
stages of infection.Salmonellainfect and multiply within macro-
phages during the systemic stages of infection. Survival within the
hostile environment of the macrophage would require a functional
SPI-2 T3SS in theSalmonella-containing vacuole to remodel the
host cell environment and survive attack from reactive oxygen free
radicals [64,67,68]. By examining thein vivonet bacterial growth
curves within livers and spleens two clear phenotypic effects were
revealed withDmreCcompared to the wild-type. Greater initial
killing of DmreCis followed by a slower net growth rate with the
bacterial numbers steadily increasing over six days. Clinical
symptoms begin to appear and by day ten these symptoms
necessitate termination of the experiment. The phenotypic data
clearly imply the DmreCdefect reduces the colonization of
Salmonella, but does not completely abrogate its ability to multiply
and cause disease systemicallyin vivo. This would suggest that the
second T3S inSalmonellaencoded on SPI-2 remains sufficiently
functional to permit growth in the absence of the cytoskeleton.

In the absence of an intact cytoskeleton inDmreCthe expression
of the SPI-1 T3SS and flagella are clearly down-regulated.
Strikingly however, the SPI-2 T3SS appears to remain functional
contributing to the virulence of theDmreCstrain observedin vivo. A
possible explanation could be that the regulation of the SPI-2
T3SS is co-ordinated independently of the integrity of the
cytoskeleton in contrast to flagella and SPI-1 T3SS. Collectively
these data highlight the importance of the bacterial cytoskeleton in
the ability of Salmonellato cause disease, and may provide
opportunities for the development of new antimicrobials to target
the cytoskeleton.

Supporting Information

Figure S1 Expression of MreC in complemented DmreC
cells. Western blot of total protein samples from SL1344 WT,
DmreC1, DmreC, andDmreCplus 100mM IPTG cells usingaMreC
antibody. MreC is indicated at approximately 38kDa and is
distinguishable from background bands.
(TIF)

Figure S2 Growth curve of Salmonella mutant cells. Log
phase growth of SL1344 WT,DmreC1, DmreC, DmreCplus 100mM
IPTG, and A22 treated SL1344 WT cells. Strains were grown in
LB media at 37uC.
(TIF)

Figure S3 Motility of Salmonella Dmre mutant cells.
Motility of SL1344 WT, DflhDC, DmreC1, DmreC, DmreCplus
100 mM IPTG, and A22 treated SL1344 WT shown as a
percentage of the wild type. Strains were grown on motility agar
at 37uC. Experiments were repeated at least three times and error
bars indicate SD.* Indicates statistical difference from WT
(p, 0.05).
(TIF)

Figure S4 Translocation of SipB SPI-1 effector protein
into Caco-2 cells. Western blot of host cytosol fractions with
aSipB antibody following infection of cells with Salmonella
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SL1344 WT,DSPI-1,DmreC1, DmreC(+/ 2 IPTG) mutants. SipB
is indicated at approximately 65kDa.
(TIF)

Figure S5 Secretion of SPI-1 effector protein SipC in
DrcsC mutant cells. Western blot of secreted protein samples
from SL1344 WT, DmreC, DSPI-1, DSPI-2, DrcsC, and DmreC
DrcsCcells usingaSipC antibody. SipC is indicated at approxi-
mately 43kDa.
(TIF)

Figure S6 Motility of Salmonella Drcs mutant cells.
Motility of SL1344 WT, DmreC,DflhDC, DrcsA,DrcsB,DrcsC,
DrcsD,DrcsF,DrcsDB,DrcsCBD,DmreCDrcsA,DmreCDrcsB,DmreC
DrcsC,DmreCDrcsD,DmreCDrcsF,DmreCDrcsDB,and DmreC
DrcsCBDcells shown as a percentage of the wild type. Experiments
were repeated at least three times and error bars indicate SD.
Strains were grown on motility agar at 37uC.
(TIF)

Figure S7 Effect of rcsC expression on SipC production
and motility. Panels A and B show western blots from SL1344
WT, mreC, and SPI-1 control strains, and SL1344 WT
pBADrcsC, mreC pBADrcsC, rcsCpBADrcsC, and mreC rcsC
pBADrcsCstrains (+/ 2 arabinose) withaSipC antibody. SipC is
indicated at approximately 43kDa. Panel C shows motility of
SL1344 WT, mreC, SL1344 WT pBADrcsC, mreC pBADrcsC,
rcsCpBADrcsC, and mreC rcsCpBADrcsCstrains (+/ 2 arabinose)
shown as a percentage of the wild type. Experiments were
repeated at least three times and error bars indicate standard
deviation.
(TIF)

Figure S8 Percentage change in transepithelial resis-
tance of differentiated Caco-2 cells after 4hr infection
with Drcs mutant strains. TER of polarised Caco-2

monolayers exposed toSalmonellastrains at an MOI of 20. TER
change is expressed as a percentage alteration at 4hr compared to
the initial value at time zero. Error bars indicate the standard
deviations derived from at least three independent experiments.
* Indicates statistical difference from WT (p, 0.05).
(TIF)

Figure S9 Complementation of Salmonella Pathogenic-
ity Island SPI-1 in DmreC mutant. Expression of SPI-1
proteins in WT SL1344,DSPI-1, and DmreCmutants, and
complementedDmreCpBADhilA strain during SPI-1 inducing
conditions as revealed by western blotting with polyclonalaSipB
antibody. SipB is indicated at approximately 63kDa, and a
breakdown product is evident.
(TIF)
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