
Copyright:

© 2014. This manuscript version is made available under the [CC-BY-NC-ND 4.0 license](http://creativecommons.org/licenses/by-nc-nd/4.0/)

DOI link to article:

http://dx.doi.org/10.1016/j.atherosclerosis.2014.07.020

Date deposited:

07/08/2015

Embargo release date:

04 August 2015

This work is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence](http://creativecommons.org/licenses/by-nc-nd/4.0/)

Newcastle University ePrints - eprint.ncl.ac.uk
Abstract

Statins are one of the most potent drugs in delaying age-related inflammatory changes in the arterial vessel wall, slowing down the progression of atherosclerosis. Statins have also been shown to abrogate telomere-attributed cardiovascular risk. The goal of our study was to explore a potential effect of atorvastatin on telomerase activity in peripheral blood mononuclear cells (PBMCs) and T-lymphocytes (T cells).

Methods and Results: Treatment with pharmacologically relevant concentrations (0.1-0.3 μM) of atorvastatin resulted in a 6-fold increase of telomerase activity (TA) (p<0.0001) in human and mouse PBMCs and CD4 T cells, translating into moderate proliferation of T lymphocytes. In contrast, high doses of atorvastatin (2 - 5 μM) or the addition of LDL cholesterol completely inhibited proliferation, thereby abrogating telomerase activity. The proliferative effect of atorvastatin was ablated by the absence of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT). Using transgenic GFP-\(mTert\) reporter mice, we observed a decrease in telomerase-positive lymphocytes from 30% to 15% during the first 5 months of age (p<0.01). This suggests that the decrease in immune cell turnover during normal development and maturation is mirrored by a reduction in telomerase activity in lymphocytes in-vivo.

Conclusion: Atorvastatin and cholesterol have opposing effects on telomerase in mononuclear cells and T-lymphocytes. Our study suggests a link between cholesterol metabolism and telomere-related cardiovascular risk.

Abstract word count: 209
Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism

Karim Bennaceur*#, PhD, Mark Atwill*#, BSc, Nayef Al Zhrany*, Jedrzej Hoffmann*, MD, Bernard Keavney*, MD, David Breault§, MD, PhD, Gavin Richardson*, PhD, Thomas von Zglinicki‡, PhD, Gabriele Saretzki‡, PhD, Ioakim Spyridopoulos*, MD

Institute of Genetic Medicine*, and Institute of Ageing and Health‡ at Newcastle University, UK.

§ Department of Pediatrics, Childrens Hospital and Harvard Stem Cell Institute, Cambridge, Boston, MA.

*both authors contributed equally

Corresponding author:
Ioakim Spyridopoulos, MD
Professor of Cardiology, Chair of Cardiovascular Gerontology
Institute of Genetic Medicine, Newcastle University
Central Parkway
Newcastle Upon Tyne, NE1 3BZ, UK

phone: +44-191-2418675
fax: +44-191-2418666
email: ioakim.spyridopoulos@ncl.ac.uk

Running Title: Atorvastatin and Telomerase in T cells

Keywords:
Atorvastatin, Telomerase, TERT, T-lymphocytes, mouse, human

Funding
This work was supported by a British Heart Foundation award to IS (PG/12/47/29681) (http://www.bhf.org.uk/), the Newcastle Healthcare Charity (http://www.newcastle-hospitals.org.uk/donations_charity-matters_about-us.aspx, I.S.), CISBAN (T.v.Z.) and BBSRC (BB/C008200/1, G.S.).

Word count: 4479 without references
Introduction
Telomerase is a ribonucleoprotein composed of an RNA subunit (TERC), serving as a template for telomere repeat addition, and a reverse transcriptase (TERT) subunit that facilitates the replication of telomeres, the ends of chromosomes [1,2]. TERT also has additional functions beyond telomere maintenance. These include the control of gene expression, chromatin organisation and mitochondria shuttling [3-5]. Multiple studies so far have provided evidence for an association of short telomeres with conditions of increased oxidative stress, including smoking, obesity and coronary heart disease (CHD) [6-11]. In a cohort of 1500 patients the WOSCOPS substudy identified that the telomere-attributed risk of developing coronary heart disease was attenuated by treatment with pravastatin [12]. Atorvastatin has been demonstrated to reduce oxidative stress in various clinical studies, including patients with atherosclerosis, hypercholesterolemia, rheumatoid arthritis, chronic kidney disease and polycystic ovarian syndrome [13-18]. However, it remains unclear whether short telomere length is only a bystander in atherosclerosis and whether statins can exert a direct effect on telomere length. We previously published that telomere length shortening in CHD patients, when compared to age-matched controls, is more pronounced in T-lymphocytes (T cells) than in myeloid cells, suggesting that T cells could play an important role in ageing- and telomere-mediated atherogenesis [19]. T cell mediated immune responses play important roles at all stages of atherosclerotic lesion development [20] with the majority of T cells in an atherosclerotic lesion being CD4+ T-helper cells (Th1) that produce interferon-\(\gamma\) [21-23].

In vitro, atorvastatin has been shown to inhibit T cell activation and proliferation, thereby exerting an anti-inflammatory effect [24,25]. However, these and similar studies used drug concentrations of up to 10 \(\mu\)M, 30 times higher than in the plasma of atorvastatin-treated patients [26]. In pharmacologically relevant dosages, statins have been shown to induce the Akt pathway and promote proliferation in endothelial cells [27]. We have also shown that statins induce telomere-repeat binding factor TRF2 in endothelial progenitor cells [28]. Telomere length was found to be longer in patients under statin therapy compared to those without [29]. A recent study of 230 subjects showed that statin therapy was associated with higher telomerase activity independently of multiple covariates, including age, gender, cardiovascular risk factors and systemic inflammation [30]. In the same study, subjects on statin treatment also showed significant lower telomere erosion along with aging. The goal
of our study was to investigate the *in-vitro* effect of atorvastatin on telomerase and the mechanistic relation between proliferation and telomerase in this context.

Methods

T-cell receptor ligation and culture of human PBMCs

Human peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-hypaque density gradient (using Biochrom AG Biocoll L 6113/5) and prepared at 5x10^5/ml in supplemented RPMI 1640. For T-cell activation, 24 well plates (VQR 734-2325) were coated overnight with anti-CD3 (BD 550367) and anti-CD28 (BD 555725) antibodies prepared at 1µl/ml PBS at 4°C, except for unstimulated controls. Cells were then cultured in RPMI 1640 (Gibco 21875-034) supplemented by 3mM L-glutamine, 10% foetal bovine serum (PAA A15-151) and 30µg/ml of pen/strep (Gibco 15070-063). Buffy coats were purchased from the National Blood Service, Newcastle Upon Tyne. Ethical approval was granted by the Newcastle University faculty of medical sciences ethics committee, 000205/2009.

Animals

TERT (Jax strain B6.129S-Tert tm1Yjc/J) [31] and TERC (Jax strain B6.Cg-Terc tm1Rdp/J) [32] animals were purchased from Jackson Laboratory, Maine, USA. *mTert*-GFP transgene reporter mice were previously described [33,34]. To confirm the phenotype of GFP transgenic mice, blood from the mouse tail was taken and mixed with 1% of PBS/EDTA solution before lysis of red blood cells in Red Blood Cell Lysing Buffer (Life Technologies uk) for 20 min at 4°C. Cells were then washed and resuspended in PBS solution and DAPI to confirm cell viability. All the samples were collected using FACS Calibur (BD Biosciences, UK) and were analysed with BD FACSDiva software. All work complied with the guiding principles for the care and use of laboratory animals in the UK. Mice were provided with sawdust and paper bedding and had ad libitum access to food and water. Mice were housed at 20 +/- 2°C under a 12h light/12h dark photoperiod. All mice were held under the UK Home office animal license PPL 60/3864.

Mouse PBMC cell culture

Cells were grown in complete RF10, RPMI 1640 (Gibco 21875-034) supplemented with 0.5mM 2-mercaptoethanol (Sigma M7522), 25mM Hepes Buffer (Gibco 15630-080), 10% FBS (PAA A15 151). 24 well plates were coated overnight with anti CD3 (BD 553238) and CD28 (BD 553295) antibodies prepared at 1µl/ml PBS at 4°C.
PBMCs were isolated by Ficoll-hypaque density gradient and prepared at 2x10^6/ml in supplemented RPMI 1640.

Long-term culture and growth curves
Long-term culture of human PBMCs was prepared at 5x10^6 cells per 2ml RPMI 1640, and supplemented with MACSibead human T cell activation beads at a ratio of 1 bead to every 4 cells (Miltenyi 130-091-441) in flat bottom 24 well plates. Medium was changed as cells were counted by Neubauer chamber, and re-stimulated at day 14 with additional beads as per manufacturer’s instructions. Mouse cultures were established from 2x10^6 cells per ml RPMI 1640 supplemented by MACSibead mouse T cell activation beads (Miltenyi 130-093-627) at a ratio of 1 bead to every 2 cells. Medium was changed every 2-3 days with addition of IL-2 and atorvastatin (cells split 1:2 if necessary) and cells re-stimulated every 7 days as per manufacturer's instructions. Individual wells were compiled after a total cell number of 25x10^6 was reached, the resultant aspirated pellet resuspended in 50ml complete mouse medium to achieve the required 2x10^6 /ml in 50ml flasks.

Hypoxia and normoxia culture conditions
Hypoxia (3%) and normoxia (atmospheric 20%) culture conditions were maintained throughout experiments in Heraeus Hera Cell 150 incubators. Conditions of 5% CO_2 and 37°C were constant.

Pharmacological activators and inhibitors
Atorvastatin was kindly donated by Pfizer and prepared in dimethyl sulfoxide (DMSO, Sigma 472301) to working dilutions of 5µM, 2µM, 0.3µM, 0.1µM and 0.02µM. Interleukin-2 (IL-2, R&D 202-IL) was prepared from frozen stocks (-20°C) of 100µg/ml and added in a working concentration of 1.5µg/ml. Ly294002 (Cell Signaling 9901) was prepared at working doses of 10µM, 2µM and 0.4µM in DMSO. Akt kinase 1/2 inhibitor (Sigma A6730) was prepared at working doses of 10µM, 2µM and 0.4µM in DMSO. For all experiments and conditions, DMSO concentrations in culture medium never exceeded 0.1% and 0.1% DMSO was added to control wells.

Addition of LDL cholesterol in cholesterol-free media
Human plasma LDL cholesterol (Sigma L7914) was diluted in 150 mM NaCl and 0.01% EDTA to working stocks of 200, 100 and 50mg/dl added to RPMI supplemented by 10% lipoprotein deficient serum (Sigma S5394) 30µg/ml of pen/strep (Gibco 15070-063). Cholesterol was added serially at each media change
every 2-3 days.

Immunomagnetic sorting of human CD4 and CD8 T-cells

Single cell suspensions of PBMCs were centrifuged in a Ficoll-Hypaque gradient, and re-suspended in 90μl ice-cold MACS buffer (2mM EDTA, 0.5ml BSA per 100ml PBS) per 10⁷ cells. PBMC suspensions were then incubated with 10μl per 10⁷ cells anti-CD8 mAb labelled magnetic beads (Miltenyi Biotec 130-045-201) under refrigerated conditions to prevent antibody capping and non-specific binding. Cells were then passed through a pre-cooled magnetic LS column (Miltenyi 130-042-401) apparatus and the column was repeatedly washed with buffer. Immediately collected cells constituted a fraction depleted of CD8 T cells, which were retained in the column and forced into a separate collection tube by replacement of the column plunger. This fraction was passed down the column a second time to improve its purity. The depleted fraction was identically treated with anti-CD14 beads (Miltenyi 71-5775-40), and the depleted fraction with anti CD4 beads (Miltenyi 71-5775-40). A multi conjugated anti CD3 (PE), CD8 (FITC), CD4 (PerCP) [BD Tritest 342445] antibody was added at 10μl per 5x10⁵ cells and incubated for 20 min at 4°C to measure purity of CD4+ and CD8+ populations post isolation (above 80% was acceptable). Analysis was performed using the FACSCanto apparatus (BD Biosciences) with the use of FACSDiva software (BD Biosciences).

Proliferation assay with CSFE

Human PBMCs were isolated by Ficoll-Hypaque density gradients and cultured in RPMI 1640 (Gibco 21875-034), supplemented by 3mM L-glutamine, 10% foetal bovine serum (PAA A15-151) and 30μg/ml of pen/strep (Gibco 15070-063). Cells at 5x10⁵/ml in serum free RPMI 1640 were incubated at 37°C for 3 min with 0.25 μM carboxyfluorescein diacetate (CFSE, Invitrogen CellTrace C34554). Staining was terminated by addition of 10% foetal bovine serum (PAA A15-151) at 37°C for 10 mins. Cells were cultured at 5x10⁶/well in 100 μl of culture medium in 24 flat-bottom plates in a standard 37°C CO₂ incubator for 3 to 5 days. Cultures were stimulated with 1.5μg/µl IL-2 and atorvastatin (Pfizer US). Dry cell pellets (1x10⁶) were stained with anti-CD4 (BD PE Cy-7560644), CD8 (APC-H7 560273) and CD14 (Invitrogen Pacific Blue MHC D1428) antibodies for 20 mins in the dark at RT, washed in 1xPBS before aspirated pellets were suspended in 500μl FACS buffer (1xPBS supplemented with 1mM EDTA, 25mM HEPES and 1% FBS) and measured on FACSCanto II (BD) using FacsDiva. Murine PBMCs from TERT⁺/⁺ and TERT⁻/⁻ mice were isolated by Ficoll density gradient centrifugation, and freshly isolated PBMCs
were resuspended in PBS (0.1% BSA) at 1x10^6 cells/ml before incubation with CFSE (final concentration: 0.25 μM) for 10 min at 37°C. Cells were washed and resuspended in culture medium for 15 min to stabilize CFSE staining and then cultured in a 48-well plate at 1x10^6 per well with 10% foetal bovine serum RPMI 1640 (Gibco 21875-034). Cultures were stimulated with 1.5μg/μl IL-2 and atorvastatin (Pfizer US) for 5 days in a standard 37°C CO₂ incubator. For T-cell activation of human and murine cells, wells were coated overnight with anti-CD3 and anti-CD28 antibodies as described above.

TRAP telomerase activity assay

Telomerase activity was measured by the telomeric repeat amplification protocol (TRAP) assay as previously established using an end-labeled telomerase substrate (TS)[5'-AatorvastatinCCGTCGAGCAGAGTT-3'] primer and ACX [5'-GGGCGG(CTTACC)_2CTAACC-3'] reverse primer. The PCR mastermix volume was 25μl per sample and contained 1xSYBR Green (Applied Biosystems Mastermix 4309155), ds.H₂O and 1mM EGTA supplemented by 0.1μg of each primer. PCR was performed in MicroAmp Fast-tubes (Applied Biosystems 4358293) each sample in triplicate. The reaction mixture was first incubated at 25 °C for 30 min to allow the telomerase in the protein extracts to elongate the TS primer by adding TTAGGG repeat sequences. The PCR was then started at 95 °C for 10 min, followed by a 40-cycle amplification (95 °C for 15 s, 60 °C for 1min) and 60 minute melting curve stage (95°C for 15s, 60°C for 1min, 95°C for 15s). The fluorescent dye SYBR Green (Applied Biosystems 4309155) was used to bind to ds DNA as new amplicons were produced and generate fluorescent signals. These were collected and analysed with detection software (Applied Biosystems). Telomerase activity in cell lines or samples was calculated based on the threshold cycle (Cₜ).

Telomere length (Flow-FISH)

Telomere length measurements were carried out as previously described [28,35,36]. In brief, each sample, containing 100,000 bovine thymocytes as an internal standard and 200,000 cells from the patient, was resuspended in a hybridization mixture containing telomere-specific N-terminal FITC-conjugated (C₃Tₐ₂)₃ peptide nucleic acid probe, washed and counterstained with propidium iodide before analysing by FACS analysis.
Statistics
Significance between data was compared by one-way ANOVA followed by Tukey's post hoc analysis, or 2 way ANOVA followed by Bonferroni's post-hoc analysis. P<0.05 was considered statistically significant.
Results

Atorvastatin induces telomerase at pharmacological dosages
PBMCs were isolated from healthy volunteers and co-stimulated with α-CD3 and α-CD28 in culture. The addition of atorvastatin lead to an 6-fold increase in telomerase activity, peaking at 0.3 μM concentration after 5 days (Figure 1A). A time course study confirmed that telomerase activity (TA) was only temporarily induced and reached its maximum after 5 days, then receding back to baseline levels at day 10 (Figure 1B). Statins have been shown to exert some of their protective effects on vascular cells through the Akt/PI3 kinase pathway [27]. Induction of telomerase by atorvastatin was prevented by inhibitors of the Akt and PI3 kinase pathway, respectively (Figures 1B and 1C). To determine whether specific subsets of T cells were affected by atorvastatin, we examined populations of purified human CD4 and CD8 T cells seperately. Here we found that induction of TA was most pronounced in CD4 compared to CD8 T cells (650% vs 256%, Figure 1E). Finally, we analysed mononuclear cells from patients with acute ST elevation myocardial infarction (STEMI), a state of high inflammation. We found TA in unstimulated PBMCs to be 5-fold reduced compared to controls (p<0.05 vs healthy controls, p<0.01 vs post-infarction; Figure 1F).

The effect of atorvastatin on T-lymphocyte proliferation is dose-dependent
In order to test the effect of statins on T-cell proliferation, mononuclear cells from healthy volunteers were co-stimulated and treated with a wide dose range of atorvastatin. Physiologically relevant dosages of up to 0.3 μM led to a significant increase in cell number after 5 days in culture (Figure 2A) as well as a moderate increase after 28 days (Figure 2B). Proliferation assays using CSFE and co-staining for CD4 T cells demonstrated an increase in the rate of proliferating CD4 T cells from 42±4% up to 73±1% under 0.3 μM atorvastatin (p<0.001, Figures 2C-D). As previously published, higher concentrations (2 - 5 μM) of atorvastatin inhibited T-cell proliferation (Figure 2D) without inducing cell death (data not shown). Baseline as well as statin-induced proliferation was completely abrogated by co-treatment with an Akt-kinase inhibitor (Figure 2E).

LDL cholesterol suppresses telomerase
We next sought to investigate whether the statin effect on telomerase was co-dependent on cholesterol metabolism. For this we used cholesterol free media and...
added increasing concentrations of LDL cholesterol. At 100 mg/dl TA was completely suppressed and no statin effect visible (Figure 3A). To exclude that the reduction in telomerase activity was not an artificial result of the PCR-based assay, we performed growth curves in human (Figure 3B) and murine (Figure 3C) T-cells. For both species, LDL cholesterol significantly inhibited T cell proliferation.

Telomerase activation in lymphocytes declines with age

We have previously generated an mTert-GFP transgenic mouse model in which GFP expression indicates endogenous mTert expression and telomerase activity. mTert-GFP+ cells among peripheral blood lymphocytes decreased from 30% to 15% continuously between the 2nd and the 5th month (p<0.01, Figure 3D and 3E), suggesting a correlation of telomerase-positive lymphocytes with cell turnover in-vivo.

Telomerase mediates the proliferative effect of atorvastatin

Atorvastatin induced TA under 3% (p<0.001, Figure 4A) and to a lesser degree under 20% (Figure 4B) oxygen in murine T cells. The linearity of the TRAP assay was confirmed for murine cells (Figure 4C). So far we have shown that the induction of TA is paralleled by a moderate increase in T cell proliferation. To prove a causal relationship, we isolated murine splenocytes with a genetic knockdown of TERT [31], the catalytic subunit of telomerase, and monitored T cell proliferation over 4 weeks in culture. As expected, T cells from heterozygous TERT+/− mice already displayed reduced proliferation (p<0.05, Figure 4D). Knock-out of TERT further reduced T cell growth over 4 weeks (p<0.0001 vs wild type, Figure 4D). Atorvastatin only enhanced proliferation in TERT+/− splenocytes with preserved telomerase activity at a dose of 0.3 μM, but not in TERT−/− cells (Figure 4E). At the highest dose (5 μM), atorvastatin completely inhibited 3H-thymidine incorporation at later timepoints, independent of telomerase (data not shown).

To exclude the possibility that differences in proliferation were secondary to telomere length (TL) shortening in the telomerase-deficient animals, we measured mean telomere length of splenocytes. As expected, splenocytes from first generation (F1) mTert−/− mice did not reveal any TL shortening (Figure 5A), while heterozygous mTerc+/− mice already displayed shorter TL (p<0.001). Finally, we attempted to explain the role of telomerase for statin-induced T cell proliferation. The statin-induced increase in proliferation was completely dependent on functional mTert (Figure 5B) with a residual effect in TERC−/− T cells (Figure 5C). Again, shorter TL in
cells from second generation TERC mice (F2) had no impact on the statin effect (Figure 5B and 5C).

Discussion

Statins are established as a first-line therapy for secondary prevention in patients with documented coronary heart disease, improving morbidity and mortality. While the preponderance of evidence strongly suggests that a lower serum concentration of LDL cholesterol is the principal mechanism responsible for improved outcome, the benefits of statin therapy, particularly in primary prevention, may extend beyond those attributable to lipid-lowering (termed pleiotropic effects) [37]. Taking into account that atherosclerosis is an inflammatory disease characterized by intense immunological activity, these data suggest the possibility that statins are, in addition to their lipid-lowering capacity, potential “anti-inflammatory” drugs targeting monocytes, macrophages and lymphocytes. By contrast, however, a recent meta-analysis of data from 170,000 patients showed that each 1 mmol/L LDL cholesterol reduction reduces the risk of occlusive vascular events by about 20%, irrespective of baseline cholesterol concentration [38]. Thus, although an attractive concept, the existence of pleiotropic effects of statins remains highly controversial. Convincing mechanistic support for such effects has yet to be demonstrated. Many of the hypothesised pleiotropic effects have been thought to occur through inhibition of isoprenoid synthesis with subsequent inhibition of isoprenoid-mediated activation of small GTP-binding proteins, such as Rho family members, Rac1 and RhoA, observed in vitro [24-26]. Nevertheless, the dosages of statins commonly used in those in-vitro studies by far exceed therapeutic concentrations. The inhibitory concentration IC$_{50}$ for cholesterol biosynthesis is 9.8 nM, while IC$_{50}$ for protein prenylation is 2.6 µM (lovastatin). Given that therapeutic plasma levels of statins do not exceed 0.3 µM, it seems unlikely that inhibition of protein prenylation will play a role in vivo [26]. Our results clearly show though, that the anti-proliferative effect of atorvastatin only occurs at suprapharmacological doses (2-5 µM) as a result of blocked protein prenylation. Therefore it is highly unlikely to expect that statin therapy exerts an anti-proliferative effect on lymphocytes in-vivo. On the other side, inhibition of cholesterol synthesis seems to parallel the pro-proliferative effect of atorvastatin and activation of telomerase. Although the principal target cell responsible for the effect of statins on plasma cholesterol is the hepatocyte, statins lead to inhibition of cholesterol synthesis in all extra-hepatic tissues [39]. A recent study suggests that therapeutic concentrations of statins modulate key cell signaling pathways in diverse
cell types as a direct consequence of cholesterol depletion [40]. The authors show that lovastatin induces Ras signaling in a cholesterol-dependent fashion. Depletion of cholesterol from kidney and endothelial cells had the same effect as lovastatin treatment. The PI3-kinase/Akt-kinase pathway is a downstream target of Ras signalling, and a positive regulator of telomerase [41]. Thus, telomere and telomerase dependent effects on cell metabolism could very well be a consequence of lower intracellular cholesterol concentrations due to statin therapy. Our study shows that pro-telomeric effects of atorvastatin are downstream of Akt and counteracted by direct addition of LDL cholesterol. Should statins prove to exert telomerase-dependent effects on atheroprotective lymphocyte populations, telomerase could become a direct target for other forms of age-decelerating therapy. Finally, we provide further evidence that the proliferative capacity of T-lymphocytes is not dependent on, but can be significantly augmented by the activation of telomerase. Using the TERT-GFP reporter mouse, we also show that high turnover in the lymphocyte compartment at an early age is paralleled by a high number of telomerase-positive cells in-vivo. Together, our results indicate a bidirectional relationship between proliferation and telomerase – inhibition of one will negatively affect the other.

Given the importance of T-lymphocytes in atherogenesis and our findings that in patients with CHD telomeres from peripheral blood lymphocytes shorten faster than in myeloid cells,[19,36] our data suggest that telomere length might be a downstream target in T cells. However, this does not exclude that critically short telomeres in subsets of human T cells will affect their proliferation by driving a senescent phenotype of these cells. Restoring telomerase activity in T-cells, e.g. through small molecule activators such as TA-65 [42,43], could prove to be a powerful therapeutic intervention in age-related diseases such as atherosclerosis. Future studies have to identify the cell-specific role of telomerase in atherogenesis. In the mouse model, this can be accomplished by studying cholesterol-fed Apo E null x mTert-GFP reporter mice. We could not find identify telomerase-independent functional differences in murine T cells. However, mouse telomeres are several-fold longer than human telomeres. In our opinion, decreased telomerase activity in human T cells might accelerate telomere shortening and cellular senescence over a long period of time. Our unpublished data from the Newcastle 85+ study (Spyridopoulos et al., manuscript in preparation) suggests that immunosenescence can be an independent predictor of outcome in the elderly, possible via accelerated atherosclerosis.
Disclosures
None.

Acknowledgements
Atorvastatin was donated by Pfizer.
References

[20] Rossmann, A, Henderson, B, Heidecker, B et al. T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp Gerontol

Figure Legends

Figure 1: Atorvastatin induces telomerase in T-lymphocytes. A. Telomerase activity in human PBMCs, activated by T-cell receptor ligation with α-CD3 and α-CD28 antibodies coated to wells (n=5 different donors). Atorvastatin was added at the appropriate concentrations and cells cultured for 5 days under normoxia. **B.** Telomerase activity over a 10-day time course of human PBMCs (n=3 different donors). **C-D.** Telomerase activity in activated human PBMCs. An Akt kinase-specific inhibitor (C) and a PI3-kinase specific inhibitor (Ly294002, D) were added at day 0 at the indicated concentrations (n=3 different donors). **E.** Comparative telomerase activity in MACS isolated CD4 and CD8 human T cells (n=3 different donors). **F.** Telomerase activity of human PBMCs isolated from patient blood samples. Samples from healthy controls (n=13), patients with acute STEMI (n=8) and 3 months post STEMI (n=17) were collected and measured by TRAP qPCR. ns=not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 2: Atorvastatin induces proliferation in CD4 T-lymphocytes by an Akt-dependent pathway. A. Cell counts of human PBMCs measured after 5 days in culture, activated by T-cell receptor ligation with α-CD3 and α-CD28 antibodies. **B.** Long-term growth curves of isolated human CD4 T-cells grown over 28 days using expansion kit beads. **C.** Representative histograms of gated CD4 T cells from a single CSFE experiment. **D.** Proliferation of human CD4 T cells with atorvastatin, quantified as CD4^{hi}CSFE^{lo} cells among all PBMCs. **E.** Proliferation of human CD4 T cells under 0.3 µM atorvastatin treated with an Akt kinase-specific inhibitor that was added at day 0 at the indicated concentrations. AT = atorvastatin, IL-2 = interleukin-2, un=unstimulated cells, co=activated cells without statin, ns=not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All p-values are against control, calculated by 1-way ANOVA and Tukey post-hoc tests. All experiments n=3 different donors.

Figure 3. LDL cholesterol suppresses telomerase and proliferation in T-lymphocytes. A. Telomerase activity measured by qPCR in activated human lymphocytes grown in lipoprotein free medium (n=5 different donors). un = unstimulated cells, co = control, atorvastatin concentrations in µM. **B.** Cell counts of human lymphocytes after 5 day culture with cholesterol free medium with the addition of LDL-cholesterol (n=2 different donors, AT = atorvastatin 0.3 µg/ml). **C.** Growth
curve of mouse splenocytes with cholesterol free medium with the addition of LDL-cholesterol (n=3 different donors). **Gating strategy for mTert-GFP** lymphocytes. Peripheral blood was obtained from the tail vein and counterstained with DAPI. **Quantification of GFP-positive lymphocytes in the peripheral blood at different ages. ns=not significant, **p<0.01.

Figure 4. Atorvastatin-induced T-cell proliferation depends on functional TERT.

A-B. Telomerase activity measured by qPCR of splenocytes from TERT+/− (n=6 experiments, all from different mice) and TERT−/− (n=6) after 5 day culture under 3% and 20% oxygen conditions. **C.** Telomerase activity measured by qPCR of a titration of TerT−/+ splenocytes after 5 day culture under 3% oxygen. **D.** Long-term growth curve of splenocytes from TERT+/+ (n=4), TERT+/− (n=4) and TERT−/− (n=3) under 3% oxygen conditions. **E.** Proliferation of splenocytes from TERT+/+ (n=3) and TERT−/− F1 (n=3), measured at 72 hours under 20% oxygen by gating on CSFElo cells. ‘−’ indicates unstimulated cells, ‘co’ indicates α-CD3 and α-CD28 stimulated cells without atorvastatin. ns=not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 5. Atorvastatin-induced T-cell proliferation depends on functional TERT.

A. Mean telomere length of T lymphocytes from TERT+/+ (n=6 experiments, all from different mice), F1−/− (n=3), F4−/− (n=6), TERC+/+ (n=6), TERC−/− (n=3) and TERC−/− F2 (n=6) mice determined by Flow-FISH. Human PBMCs and bovine thymocytes served as a control. Long-term growth curve of splenocytes from TERT+/+ (n=4) and TerT−/− (n=3) under 3% oxygen conditions. AT = atorvastatin 0.3 µg/ml. All comparisons against TERT wt using 1-way ANOVA with Tukey’s post-hoc tests. **B.** Cell counts of splenocytes from TERT+/− (n=3), TERT−/− F2 (n=3) and TERT−/− F3 mice after 5 day culture under 3% oxygen conditions. **C.** Cell counts of splenocytes from TERC−/+ (n=3) and TERC−/− F2 (n=3) mice after 5 day culture under 3% and 20% oxygen conditions. For dose response curves, 2-way ANOVA with Bonferoni’s multiple comparison test was used. p-values were calculated of each statin dose against control (co). ns=not significant, *p<0.05, ***p<0.001, ****p<0.0001.
Figure 3

A) Telomerase activity (% control) vs. cholesterol levels with atorvastatin treatment.

B) Cell count x10^6/ml vs. cholesterol mg/dL.

C) Mouse PBMCs cell count x10^6/ml over time with different cholesterol levels.

D) Flow cytometry plots showing lymphocytes and monocytes over different time points.

E) TERT- GFP cells (% lymphocytes) vs. age of mice [months].
Figure 4

(A) Telomerase activity at 3% O₂ and 20% O₂ with different concentrations of atorvastatin.

(B) Telomerase activity at 3% O₂ and 20% O₂ with different concentrations of atorvastatin.

(C) Ct value relationship with cell number per reaction.

(D) Cell count over time for different cell lines (TerT wt, TerT het, TerT ko).

(E) Percentage of proliferating cells (CSF-E) with varying concentrations of atorvastatin.
Figure 5

A

Telomere length of lymphocytes

relative telomere length (% bovine thymocytes)

ns

ns

ns

ns

Human TERT wt TERT F1 TERT F4 TERC wt TERC +/- TERC F2

B

TerT

Cell count x10^6/ml

un co 0.02 0.1 0.3 0.5 2 5

Atorvastatin [µM]

sn
sn
sn
sn
sn

C

TerC

Cell count x10^6/ml

un co 0.02 0.1 0.3 0.5 2 5

Atorvastatin [µM]

sn
sn
sn
sn
sn
