
Copyright:

© 2015 American Academy of Neurology

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI link to article:

http://dx.doi.org/10.1212/WNL.0000000000001517

Date deposited:

30/06/2015

This work is licensed under a Creative Commons Attribution 4.0 International License
Primary familial basal ganglia calcification (PFBC) (previously known as idiopathic basal ganglia calcification or Fahr disease) is an autosomal dominant neurodegenerative disorder characterized by bilateral cerebral calcification primarily affecting the basal ganglia. Recently, mutations in SLC20A2, PDGFB, and PDGFB-R have been identified as causing PFBC. However, other than the original study, there has been a paucity of descriptions of families with PFBC.

Herein, we describe 4 cases of PFBC within a family due to a novel mutation in exon 4 of the PDGFB gene (c.C3657T:p.P122L) highlighting significant phenotypic heterogeneity.

Cases. Patient III.2. A 31-year-old woman presented with acute psychosis. She was diagnosed in childhood with mild learning difficulties, but reached normal motor milestones. Over the next 6 years, she had recurrent episodes of psychosis and depression requiring admission. At age 36, a CT scan of her head revealed basal ganglia calcification precipitating neurologic referral (figure, A.b).

Examination revealed jerky ocular pursuit, generalized chorea, and midline ataxia. Investigations revealed a normal full blood count, biochemistry, and autoantibodies. An EEG showed no encephalopathic features.

There was no family history of any neurologic disorder; however, the examining neurologist noted that the patient’s mother, accompanying her to clinic, was ataxic (patient II.4).

Patient II.4. A retired shop worker was referred aged 60 years (figure). Both parents died in their 70s with no neurologic symptoms before death. She had 3 siblings, none of whom she remained in contact with.

She had episodic psychosis and depression for more than 20 years, and a 2-year history of falls and unsteady gait. Medical history included hypertension and heavy smoking. Examination revealed a severe midline ataxia with jerky ocular pursuit. There were no cognitive abnormalities or extrapyramidal features.

Serum biochemistry (including calcium and phosphate) was normal. A muscle biopsy showed normal histology, normal mitochondrial biochemical studies, and no mitochondrial DNA deletions. An EEG revealed transient sharp waves in the temporal regions. MRI showed calcium deposition in the globus pallidus and dentate (figure, A.d).

Over the next 5 years, her ataxia progressed but cognition remained normal (Mini-Mental State Examination score 28/30 at age 66).

Patient III.5. A woman aged 40 years was referred with a 2-year history of gait disturbance. She had no psychiatric history, cognitive symptoms, or evidence of abnormal movements. Examination revealed normal cognition, but a midline ataxia. A CT brain scan showed bilateral calcification of the globus pallidus (figure, A.c). Three years later, she developed a complex motor tic, and dystonic posturing of both feet. Formal neuropsychometry remained normal.

Patient IV.4. A 20-year-old woman was referred with a gait disturbance. She had no other medical or psychiatric history. Neurologic examination was normal. Brain MRI revealed small frontal noncalcified white matter changes not in keeping with PFBC, and no evidence of calcium in the basal ganglia even with susceptibility-weighted imaging (figure, A.a).
Patients III.1 and III.4. Aged 42 and 46 years, respectively, patients III.1 and III.4 were clinically unaffected. Patient III.1 died of a traumatic injury with no evidence of basal ganglia calcification at autopsy. Patient III.4 refused imaging studies.

Exome sequencing. Whole-exome sequencing was performed on patients III.2, II.4, III.5, and IV.4 (appendix e-1 on the Neurology® Web site at Neurology.org) revealing a shared novel missense mutation in exon 4 of PDGFB (c.C3657T:p.P122L), not seen in the 1000 Genomes or ESP6500 database (figure, C), and predicted to be pathogenic by 4 software programs and conserved across all species (MutationTaster). This mutation was confirmed present in cases and absent in unaffected relatives with Sanger sequencing (III.1 and III.4). The p.P122L mutation is in the same exon as published pathogenic alleles.3,6

Discussion. These cases highlight the phenotypic heterogeneity of mutations in PDGFB. Two patients exhibited an early psychiatric phenotype followed by...
late-onset ataxia or chorea; an isolated movement disorder was identified in a third. All 3 had ataxia, which has been described in isolated cases, but not consistently in PDGFB families. In addition, the ataxia in our cases occurred without obvious cerebellar calcification. This suggests that (1) the mechanism may not be primarily mediated by calcium deposition (although we cannot exclude the presence of microcalcification), and (2) there is significant clinical overlap with common neurologic and psychiatric disorders. Our data also show a heterogeneous radiologic phenotype that may be much milder than previously described, and similar to PDGFRB families. In keeping with this, case IV.4 showed no basal ganglia calcification and a normal neurologic examination at age 20 years, providing the first evidence of potential incomplete radiologic penetrance for a pathogenic PDGFB mutation, highlighting that normal imaging does not exclude the diagnosis of PFBC.

From the Wellcome Centre for Mitochondrial Research (M.J.K., A.P., D.D., H.G., K.D., G.E., R.H., P.F.C.), Institute of Genetic Medicine, Centre for Life, Newcastle University; and Royal Victoria Infirmary (M.J.K., J.M., R.H., P.F.C.), Newcastle Upon Tyne, UK.

Author contributions: M.J. Keogh: study concept and design, analysis and interpretation of data, acquisition of data, statistical analysis, drafting/revising the manuscript. A. Pyle: analysis and interpretation of data, statistical analysis. K. Douroudis: statistical analysis. G. Eglon: acquisition of data. J. Miller: acquisition of data, drafting the manuscript. R. Horvath: analysis. K. Douroudis: statistical analysis. G. Eglon: acquisition of data. J. Miller: acquisition of data, drafting the manuscript. R. Horvath: study concept and design. P.F. Chinnery: study concept and design, analysis and interpretation of data, study supervision, drafting the manuscript.

Study funding: Dr. Michael Keogh is a Wellcome Trust Clinical Research Training Fellow. Prof. Horvath is supported by the Medical Research Council (UK) (G1000848) and the European Research Council (309548). Prof. Chinnery is a Wellcome Trust Senior Investigator. He receives funding from the Medical Research Council and the National Institute for Health Research Biomedical Research Centre for Ageing and Age-Related Disease award to the Newcastle Upon Tyne Foundation Hospitals National Health Service Trust.

Disclosure: The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures. The Article Processing Charge was paid by Wellcome Trust.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2015 American Academy of Neurology


Share Your Artistic Expressions in Neurology ‘Visions’

AAN members are urged to submit medically or scientifically related artistic images, such as photographs, photomicrographs, and paintings, to the “Visions” section of Neurology®. These images are creative in nature, rather than the medically instructive images published in the NeuroImages section. The image or series of up to six images may be black and white or color and must fit into one published journal page. Accompanying description should be 100 words or less; the title should be a maximum of 96 characters including spaces and punctuation.

Learn more at www.aan.com/view/Visions, or upload a Visions submission at submit.neurology.org.

© 2015 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Clinical heterogeneity of primary familial brain calcification due to a novel mutation in PDGFB

Michael J. Keogh, Angela Pyle, Daniyal Daud, et al.

Neurology 2015;84;1818-1820 Published Online before print April 1, 2015
DOI 10.1212/WNL.0000000000001517

This information is current as of April 1, 2015

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/84/17/1818.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2015/04/01/WNL.0000000000001517.DC1.html

References
This article cites 7 articles, 2 of which you can access for free at:
http://www.neurology.org/content/84/17/1818.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Movement Disorders
http://www.neurology.org/cgi/collection/all_movement_disorders
Basal ganglia
http://www.neurology.org/cgi/collection/basal_ganglia
Cerebellum
http://www.neurology.org/cgi/collection/cerebellum
Dystonia
http://www.neurology.org/cgi/collection/dystonia
Gait disorders/ataxia
http://www.neurology.org/cgi/collection/gait_disorders_ataxia

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus