History, changing scenarios and future strategies to induce moulting in laying hens

M. YOUSAF1* and A.S. CHAUDHRY1

1School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
*Corresponding author: muhammad.yousaff@yahoo.com

Moulting is a natural phenomenon in birds during which they replace old plumage with new feathers, reduce feed intake, lose body weight and suspend reproduction. Moulting in laying hens can be induced by using photoperiods, feed deprivation or restriction or diets containing minerals or variable amounts of other ingredients. Induced moulting can result in higher egg production and improved quality. It reduces mortality, production costs and investments in new farms and hatcheries. While feed withdrawal has been a most effective way to induce moult in poultry birds, it is illegal on welfare grounds in the UK and Europe. This may have implications for the global poultry industry. Therefore, efforts to find a non feed removal method as a desirable alternative to induce moulting in poultry birds are underway in different countries. This paper reviews the history of induced moulting and its future implications by examining different methods that have been tested in the past and their potential to become a more acceptable alternative to feed removal method of inducing moulting in laying hens.

Keywords: moulting; welfare; induction; physiology

Introduction

The jungle fowl (Gallus gallus) experiences broodiness during its life, at which time the reproductive system involutes, egg production ceases and new feathers develop (Sherry et al., 1980). During broody periods, the hen reduces food intake and loses weight by about 20%, which is termed 'spontaneous anorexia' (Mrosovsky and Sherry, 1980; Sherry et al., 1980). The hen resumes feeding gradually after the chicks hatch and renews her feathers accordingly. One of the most extreme examples of spontaneous anorexia in birds is seen in male emperor penguins (Aptenodytes forsteri) who, during the Antarctic winter, are responsible for incubating eggs laid by their mates. During incubation, access to feed is very difficult and body weight losses of up to 40% may occur (Le Maho, 1977). However, it is a normal feature of all birds, including chickens, to survive on little or no
food for much longer durations (Berry, 2003) and yet maintain themselves before returning from a non-productive to a productive cycle again.

Migrating birds, especially shorebirds, are known to fly non-stop for thousands of kilometres. These flights may last for 100 h (Piersma and Baker, 2000; Battley et al., 2000), and the birds go without food or water during this time, relying exclusively on body stores, despite their high metabolic rates (Butler and Woakes, 1990).

The practice of induced moulting has been beneficial in extending the productive lives of hens which would otherwise be culled as soon as they reached a lower level of egg production. This paper reviews various different aspects of moulting which have been tested in the past and discusses their potential as a desirable method of inducing moulting to sustain production and yet maintain their welfare.

Moult, a natural phenomenon in different animal species

For most wild species of birds and other animals, moulting involves reproductive quiescence (Burton and Burton, 1980). In mammals, moulting is induced by a complexity of factors, including a natural rhythm, seasonal changes in the light duration, and hormones. In snakes, moulting is accomplished by loosening the skin around the lips, which is pushed back, allowing it to crawl out of its old skin. Elephant seals come ashore in their hundreds to moult in the latter half of the summer, which improves their appearance greatly. In Amphibians thyrotrophic hormones stimulate the thyroid gland, triggering the moulting process. In arthropods, moulting involves the secretion of hormones by the epidermis, resulting in the loosening and partial dissolving of the old cuticle, which splits, and allows the arthropod to emerge. A false scorpion moult four times during its two to three years of life. Insects can only increase in their linear dimensions at periodic intervals when the restricting exoskeleton is shed during moulting. Mayflies, after spending up to three years in a ‘nymph’ stage, emerge from the water, usually at night, and moult (shed their skin) into a winged form that usually moult again into an adult mayfly. In crabs, the male and female moult at different times and the males pair with the females when the latter has just cast their shells and are still soft. When a female moult she becomes more attractive to the males. Lobsters grow by periodic moulting of their hard external skeleton about eight times in the first year, two to three times in the next two years and only once after 3rd year. Nematode worms undergo four moults between hatching and maturity (Burton and Burton, 1980).

Induced moulting in avian species

Moult in avian species is defined as the periodic shedding and replacement of feathers (Berry, 2003). Induced moulting in laying hens dates back to early nineteenth century (Rice, 1905; Rice et al., 1908). Scientists investigated different methods for moulting induction, and this practice gained popularity during 1930s. Most of the egg producers in California adopted induced moulting in 1950s. The practice of moulting continued to spread as the number of research papers being published in 1960s and 1970s increased. More recently, induced moulting has been adopted in many egg producing regions of the world as a tool to rejuvenate spent hens (Bell, 2003).

Commercially it is common that layer flocks produce eggs for a 1 year laying cycle and then are sold. Egg production and quality become relatively low towards the end of a laying cycle, particularly if the end of the lay coincides with the hot weather. Small eggs
are laid at the start of egg production, which reduces net farm income (Koelkebeck et al., 1993; Yousaf, 1998). With induced moulting, flocks lay for an additional laying year, thereby spreading fixed costs over a longer time and over more units of production. It is estimated that today more than 75% of all flocks are moulted in the USA as a part of a regular replacement programme (Holt, 2003).

Physiological mechanisms of moultling

During annual rest in laying hens blood lipids decrease as ovary and oviduct decrease in size, similar to those found in the immature state. Lowered reproductive activity has been found to be a prerequisite for moult to occur, with thyroid playing a role in its onset. The most predictable physiological changes observed in moulted hens are associated with ovarian and thyroid activity (Brake and Thaxton, 1979). A general antagonism between the pituitary-ovarian and pituitary-thyroid axis seems to be of crucial importance to the control of feather renewal during the induced cessation of egg laying (Decuypere and Verheyen, 1986). Several hormones have been suggested as candidates to control the process of moultling. Moult induction is accompanied by increases first in thyroxine (T4) and then in T3 (Verheyen et al., 1983). The mechanism of feather replacement or natural moulting is expressed as the ovary became atretic, resulting in the decreased release of oestrogen which discontinues the existing suppressed activation of feather papillae. Thyroxin/progesterone activates the feather papillae in the formation of an underlying new feather that ultimately expelled its predecessor. The fact that old feathers are gradually expelled by newly developing ones during moultling suggests that the hormonal control of moultling is associated with a stimulation of the feather papillae. Conversely, oestrogens are generally accepted as inhibiting the feather follicle activity (Stake et al., 1979). Elevated levels of corticosteroids are reported to cause cessation of egg laying as well as gonadal atrophy (van Tienhoven, 1981).

Moulting methods

Research into moultling strategies has been actively since the 1960s and 1970s, and it is currently gaining more attention in replacing traditional feed removal programmes. Several successful methods of induced moultling have been used to recycle laying hens. The majority of which require an optimum weight loss of 25-35% to achieve maximum egg production during the post moult period. This weight loss is caused primarily by a reduction in organ weights and utilization of body reserves as nutrients during periods of moultling treatments. Excessive body weight loss, as seen in feed withdrawal methods, results in hunger, lowered immunity and higher mortality, while laying hens moulted by non-feed withdrawal exhibit lower body weight loss, better immunity, less mortality and sequential rejuvenation of the reproductive system. Most common methods of induced moultling can be described under the following 4 subsections:

FEED REMOVAL OR /AND FEED RESTRICTION

Conventional feed deprivation or feed restriction procedure is the most widely used practise in poultry production because it is a simple, practicable and economical technique that can be used in combination with light and/or water restriction (Rice et al., 1908; Hembree et al., 1980; Hussein, 1996; Yousaf, 1996; Yousaf, 1998; Koelkebeck et al., 2001; Bell, 2003; Biggs et al., 2004; Chowdhury et al., 2004; El-Deek and Al-
During feed deprivation, the birds are able to utilise their excess body reserves as nutrients for their survival during starvation while going out of production. However, feed deprivation is known to cause catabolism which can lead to abnormal physiological mechanisms including reduced immunity, undesirable behaviour and even mortality of birds. Feed restriction of varying degrees could be a possible alternative to feed deprivation method but its effectiveness depends upon the extent of feed restriction and the ingredient and nutrient density of relevant feeds that are used to induce moulting in laying hens.

VARIABLE NUTRIENT DIETS

Researchers have recently used thyroactive proteins (Kuenzel et al., 2005), different ratios of alfalfa (Donalson et al., 2005; Ricke, 2003; Woodward et al., 2005; Kim et al., 2006; McReynolds et al., 2006), melengestrol acetate (Koch et al., 2005a; 2005b), alfalfa and oligosaccharide (Kim et al., 2006) for inducing moulting in poultry birds. Alfalfa can be used in induced moulting of laying hens due to its higher crude protein and calcium content, along with its slow gut flow rate, resulting in better digestion and microbial fermentation. Although diets varying in nutrient density have been used successfully in moulting birds in different situations, it is difficult to pinpoint a single nutrient or feed type for this purpose. Also the deficiency of a single nutrient could cause potential damage to the bird health.

FEED ADDITIVES

Induction of moult through dietary mineral additives such as Cu, Zn (Stevenson and Jackson, 1984), Na (Harms, 1981), or Al (Hussein et al., 1989) have been practiced by various scientists in the past to enhance the post-moult production. Use of high levels of either aluminium salt (Lipstein and Hurwitz, 1982; Hussein et al., 1989; Hussein, 1996; Yousaf, 2004; Yousaf and Ahmad, 2006) or dietary zinc (Cantor and Johnson, 1984; Yousaf et al., 1998; El-Deek and Al-Harthi, 2004; Moore et al., 2004; Ock et al., 2004; Ahmed et al., 2005; Yousaf and Ahmad, 2006; Koch et al., 2007; Koelkebeck and Anderson, 2007) have been successfully used. However, supplementing low levels of dietary zinc combined with reduced calcium levels in the diet have also induced moulting successfully in laying hens (Cantor and Johnson, 1984; Breeding et al., 1992; Yousaf, 1998; Ricke et al., 2001). The use of a low sodium diet (Naber et al., 1984; Said et al., 1984) is equally effective as a feed restriction technique for inducing moult. Copper is used as an effective moulting agent (Pennington and Calloway, 1973; Davis, 1974; Griminger, 1977; Pearce et al., 1983; Stevenson and Jackson, 1984, Yousaf, 1998, Yousaf, 2004). Supplementation of minerals has resulted in better post-moult production performance in laying hens as compared to a control group. However, induced moulting by high dietary minerals has raised public health concerns regarding the potential residues of these minerals in eggs and meat, which may have implications for human health. This risk of high mineral residues can be minimised by using low mineral diets and yet induce moulting in egg laying hens.

HORMONES

Hormone-induced moulting involves the use of the gonadotrophin-releasing hormone (Gn-RH) agents (Dickerman and Bahr, 1989) and Leuprolide acetate (Burke and Attia, 1994). Higher egg production had been reported in moulted layers following progesterone injections as compared to moult induction by feed restriction (Adams, 1955). Progesterone administration has been successfully practiced for induced moulting of laying hens (Adams, 1956; Hansen, 1960; Furr et al., 1973; Mashaly and
Induced moulting in layers: M. Yousaf and A.S. Chaudhry

Wentworth, 1974; Johnson and Van Tienhoven, 1981; Etches et al., 1984; Herremans et al., 1988, Yousaf, 1998). Laying hens can be effectively moulted by thyroxin hormone (Lofts and Murton, 1972; Pethes et al., 1982; Verheyen et al., 1983a; Sekimoto et al., 1987; Queen et al., 1997; Herremans et al., 1988; Yousaf et al., 1998; Keshavarz and Quimby, 2002). Feather replacement was higher in progesterone administered hens, but post-moult production was lower as compared to the feed withdrawal method. Induced moulting by hormones does not appear to be a practical method for the poultry industry because of variable production performance, intensive hen handling and consequently high costs. Therefore, other non-feed withdrawal methods seem to suit better for induced moulting because of their simple operations and high post-moult hen performance with enhanced economic returns.

Justification and benefits

Induced moulting can be justified on the basis of its positive effects in the form of enhanced productivity, reduced costs and reduced industry investments in breeder farms, rearing farms, and hatcheries. Economic and welfare benefits of an induced moult include the extended use of approximately 50% fewer hens in commercial egg flocks with fewer male chicks hatched (Bell et al., 2004). It is reported that in the USA, almost all the layer flocks are moulted at least once and often twice in their life time. Laying hens from moulted parent flocks are preferred by poultry farmers because of their higher body weight.

Most researchers have reported that induced moulting improves the post-moult performance of the laying hens when compared to the pre-moult performance. Improvements in egg quality parameters are very evident in layers following an induced moult. These improvements include the larger eggs, improved shell quality and enhanced rate of egg production. There is also a marked increase in the internal egg quality as measured by the Haugh units (Zimmermann et al., 1987). In general, albumen quality, candled grade, shell thickness, specific gravity and shell texture improve when poultry flocks are moulted (Hansen, 1967). Induced moulting results in an increase in egg production, greater number of intact eggs, enhanced egg mass and shell quality. A decrease was noted in egg breakage, mortality and culling (Bar et al., 2001). It was observed that egg weight and shell thickness increases following induced moulting (Yousaf, 2006a, Yousaf, 2006b).

The most significant difference in different egg production cycles is for the egg weight and number. Egg weight remains below 60 g up to 20 weeks in the first production cycle. During the initial 10 weeks of lay, egg weights average only 52.3 g as compared to 62.6 g and 63.4 g per egg in first, second and third production cycles, respectively. At 35 week of production, egg weights are 57.4, 63.4, and 63.7 g per egg for the three cycles, respectively (Bell, 2003). The average increase in egg weight in second or third egg cycles can partly be attributed to the increase in bird age and size. However, comparison between the moulted and unmoulted birds of the same age and size also suggest that moulted birds produce bigger and better eggs than unmoulted ones (Bar et al., 2003). In the USA egg market, the eggs from the second and third cycles have a higher level of profit per dozen of eggs than those from the first cycle flocks (Bell, 2003).

In laying hens, in order to minimize the age-related declines in shell quality and egg production, cessation of egg laying can be induced through moult, which involves feed and light restriction. Induced moulting lengthens productive life of flocks and provides a means of optimizing the use of resources with enhanced returns on investments. Under the right economic conditions, the economically useful life of a laying flock may be
extended from less than 80 weeks to 110 weeks or even to 140 weeks through the judicious use of the moulting process.

Moulting programmes involve an estimated 75 to 80% of the commercial flocks in the USA. Approximately one third of the profits of a flock are estimated to come from moulted birds (Holt, 2003). At any point in time, 25 to 30% of the layer are either in a moult or have been moulted earlier. Induced moulting is used as a part of a programme to optimize pullet replacement on commercial layer farms. With current management systems, farms using the single-cycle (non moulted) programme would require 8.4 new flocks per layer house over a 10-year period, whereas only 5.7 flocks would be required for a typical two-cycle (one moult) flock system (Bell, 2003).

All-pullet flocks system require an additional 47% chicks each year which in turn, would require a similar increase in breeder flocks, breeder farms, hatcheries, and pullet-rearing farms. One hundred million more male chicks would have to be destroyed each year, and 47% more spent hens would have to be removed. An all-pullet industry would produce higher percentages of the less popular egg sizes (medium and small), which are less undesirable to retailers. Egg quality would suffer as egg producers would push their flock’s ages beyond the limits of good egg quality. Egg producers would have less flexibility to adjust production to meet the market demand (Bell, 2003).

Induced moulting by feed withdrawal, animal welfare issues and future strategy

An ideal moulting method should be simple and cost-effective. Also it must be able to reduce mortality and improve subsequent performance of laying birds (Swanson and Bell, 1974b). The programmes mostly used in commercial flocks around the world involve feed deprivation over a 7 to 14 day period, causing body weight loss of 25 to 35%, followed by a rest period and then re-stimulation of egg production. Such methods have become standard practice for induced moulting (Webster, 2003).

In recent years, the induction of moult by feed withdrawal has become more of a concern to the poultry industry in the UK and Europe due to the hen welfare and human food safety reasons (Bell, 2003; Gast and Ricke, 2003). Almost all the egg producers in USA still moult their flocks by the feed removal method (UEP, 2006). Feed deprivation results in hunger, which lowers immunity and increases mortality losses of the birds. The mortality rates are greater during the moulting period when the hens are deprived of feed as compared to non feed removal methods. Despite the availability of alternative methods, feed withdrawal is still considered the most effective, practical and economical method in the poultry industry (Yousaf, 1998). The percentage of eggs contaminated with *Salmonella enteritidis* (SE) increases when flocks are moulted by feed withdrawal versus non-moulted hens in commercial flocks (Holt, 1995). The endocrine changes observed in the fasted hens include a large and temporary increase in the circulating levels of corticosterone (Etches *et al.*, 1983) which in turn affects the immunological defences against infection and disease by reducing hen's cell-mediated immune response. Fasting also reduces the ability of the hen to resist pathogenic colonization of the gut (Webster, 2003). Additionally, induced moulting by feed withdrawal not only reduces resistance to pathogens but also resulted in a decline of mineralization of the medullary tibia and the humerus although a gradual recovery during the post-moult period was observed (Mazzuco and Hester, 2005).

While the feed withdrawal method has been the most effective in inducing moulting, it is deemed unacceptable on hen welfare grounds. Therefore, the poultry scientists have the
responsibility to develop and implement suitable alternatives if induced moulting of laying hens is considered essential by the poultry industry (AVMA, 2002).

In the UK and Europe, induced moulting by feed withdrawal is strictly banned (DEFRA, 1994). Induced moulting is still being practiced in many countries, including USA, by feed withdrawal, and may continue in the future. However, it is possible to use non-feed removal methods which do not interfere with the bird welfare to moult poultry flocks in the UK (Edge, 1998). Recently, the initiative taken by the United Egg Producers (UEP) to stop feed withdrawal moulting practices has led to the development of non-feed withdrawal moulting programmes where hens continue to eat during moulting period, stop producing eggs and perform better in the subsequent production cycle. Therefore, the need for an alternative moulting method has dramatically increased with the recent change in the United Egg Producers guidelines where feed withdrawal can no longer be used to induce moulting in laying hens.

Alternatives

The alternative of feed withdrawal involves procedures of either feeding deficient levels of nutrients or the addition of substances in the feed which inhibit egg production. The nutrient restriction procedure is the method of choice in countries that have disallowed feed removal programmes. Nutrient restrictions have been successfully employed using marginal levels of salt or sodium (Naber et al., 1984), calcium (Martin et al., 1973) and low-nutrient diets (Bell et al., 1976, Yousaf, 1998). Various high concentrations of minerals have been used to halt egg production. Examples of these include zinc (Hussein et al., 1988; Cantor and Johnson, 1984; Yousaf, 1998), aluminium (Lipstein and Hurwitz, 1982; Hussein et al., 1989; Yousaf, 2004; Yousaf and Ahmad, 2006), and potassium iodide (McCormick and Cunningham, 1987; Hussein et al., 1989). Additional research has reported that the use of various additives such as progesterone and enheptin can help induce moulting. Good welfare practices require that moulting hens should always have access to a nutritious and palatable maintenance diet, until the flock reaches a pre-production physiological state. Research conducted by academics, industry and the scientific community has demonstrated that a return to the pre-production physiological state can be achieved by providing a maintenance diet. This diet is designed to bring the flock into a non-laying period and rejuvenation of oviduct (UEP, 2006).

Conclusion

Induced moulting is a world-wide practice in poultry industry which significantly increase the productive lives of laying hens and hence the profits of poultry farmers. However, due to the hen welfare concerns regarding the commonly used feed withdrawal method, the practice of induced moulting has become controversial. No doubt, poultry farmers will always need to moult their flocks and for this reason they would welcome a more desirable method of moulting to maintain a well managed, cost-effective and sustainable egg production system. Therefore, it is essential to test and validate the suitability of a non feed removal method by examining the most appropriate levels of feed restriction, photoperiod and feed additives for inducing moulting and improving subsequent hen welfare, egg production and economics.
Induced moulting in layers: M. Yousaf and A.S. Chaudhry

References

Induced moulting in layers: M. Yousaf and A.S. Chaudhry

FURR, B.J.A., BONEY, R.C., ENGLAND, F.J. and CUNNINGHAM, F.J. (1973) Luteinizing hormone and progesterone in peripheral blood during the ovulatory cycle of the hen (Gallus domesticus). Endocrinology 57: 159-169.

Induced moulting in layers: M. Yousaf and A.S. Chaudhry

Induced molting in layers: M. Yousaf and A.S. Chaudhry

