Toggle Main Menu Toggle Search

Open Access padlockePrints

Population balance modelling for a flow induced phase inversion based granulation in a two-dimensional rotating agglomerator

Lookup NU author(s): Professor Galip Akay

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

A novel two-dimensional rotating agglomerator was developed to carry out the flow induced phase inversion (FIPI) based granulation. The process in this agglomerator shows that a continuous paste flow (mixed with liquid binder and primary particles) is extruded into the interstice of two relatively rotating disks, as the paste becomes solidified due to the loss of heat to the disks, it is then broken into granules by the shearing force imposed by the rotating disk. Experimental measurements have shown that the size of these granules is enlarged along the positive radial direction of the disks. It is also found that these granules contain approximately the same quantity of binder in terms of its volume fraction. The paper thus proposes a population balance (PB) model to describe the growth of the granules by considering a size independent agglomeration kernel. The PB simulated results are found to be well capable of describing the change of the particle size distribution (PSD) of the granules in the radial direction. This study also proposes a velocity profile for the paste flow and attempts to establish a quantitative relationship between the granulation rate and the deformation rate as this would help us understand the mechanism of the agglomeration. It is hoped that this study would be used to improve the design of the agglomerator and to assure the control of the process and the granular product quality. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.


Publication metadata

Author(s): Liu L, Akay G, Tong L

Publication type: Article

Publication status: Published

Journal: Chemical Engineering Research & Design

Year: 2011

Volume: 89

Issue: 1A

Pages: 39-47

Print publication date: 29/04/2010

ISSN (print): 0263-8762

ISSN (electronic): 1744-3563

Publisher: Elsevier Ltd

URL: http://dx.doi.org/10.1016/j.cherd.2010.04.018

DOI: 10.1016/j.cherd.2010.04.018


Altmetrics

Altmetrics provided by Altmetric


Share