A Simplified Adaptive Cartesian Grid System for Solving the 2D Shallow Water Equations

  1. Lookup NU author(s)
  2. Professor Qiuhua Liang
Author(s)Liang Q
Publication type Article
JournalInternational Journal for Numerical Methods in Fluids
ISSN (print)0271-2091
ISSN (electronic)1097-0363
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
This paper presents a new simplified grid system that provides local refinement and dynamic adaptation for solving the 2D shallow water equations (SWEs). Local refinement is realized by simply specifying different subdivision levels to the cells on a background uniform coarse grid that covers the computational domain. On such a non-uniform grid, the structured property of a regular Cartesian mesh is maintained and neighbor information is determined by simple algebraic relationships, i.e. data structure becomes unnecessary. Dynamic grid adaptation is achieved by changing the subdivision level of a background cell. Therefore, grid generation and adaptation is greatly simplified and straightforward to implement. The new adaptive grid-based SWE solver is tested by applying it to simulate three idealized test cases and promising results are obtained. The new grid system offers a simplified alternative to the existing approaches for providing adaptive mesh refinement in computational fluid dynamics.
PublisherJohn Wiley & Sons Ltd.
Actions    Link to this publication

Altmetrics provided by Altmetric