MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63

  1. Lookup NU author(s)
  2. Professor Deborah Tweddle
  3. Professor John Lunec
Author(s)Gamble LD, Kees UR, Tweddle DA, Lunec J
Publication type Article
JournalOncogene
Year2012
Volume31
Issue6
Pages752-763
ISSN (print)0950-9232
ISSN (electronic)1476-5594
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
MYCN amplification is a major biomarker of poor prognosis, occurring in 25-30% of neuroblastomas. MYCN has contradictory roles in promoting cell growth and sensitizing cells to apoptosis. We have recently shown that p53 is a direct transcriptional target of MYCN in neuroblastoma and that p53-mediated apoptosis may be an important mechanism of MYCN-induced apoptosis. Although p53 mutations are rare in neuroblastoma at diagnosis, the p53/MDM2/p14(ARF) pathway is often inactivated through MDM2 amplification or p14(ARF) inactivation. We hypothesized that reactivation of p53 by inhibition of its negative regulator MDM2, using the MDM2-p53 antagonists Nutlin-3 and MI-63, will result in p53-mediated growth arrest and apoptosis especially in MYCN-amplified cells. Using the SHEP Tet21N MYCN-regulatable system, MYCN(-) cells were more resistant to both Nutlin-3 and MI-63 mediated growth inhibition and apoptosis compared with MYCN(+) cells and siRNA-mediated knockdown of MYCN in four MYCN-amplified cell lines resulted in decreased p53 expression and activation, as well as decreased levels of apoptosis following treatment with MDM2-p53 antagonists. In a panel of 18 neuroblastoma cell lines treated with Nutlin-3 and MI-63, the subset amplified for MYCN had a significantly lower mean GI(50) value (50% growth inhibition) and increased caspase 3/7 activity compared with the non-MYCN-amplified group of cell lines, but p53 mutant cell lines were resistant to the antagonists regardless of MYCN status. We conclude that amplification or overexpression of MYCN sensitizes neuroblastoma cell lines with wild-type p53 to MDM2-p53 antagonists and that these compounds may therefore be particularly effective in treating high-risk MYCN-amplified disease.
PublisherNature Publishing Group
URLhttp://dx.doi.org/10.1038/onc.2011.270
DOI10.1038/onc.2011.270
PubMed id21725357
Actions    Link to this publication