Toggle Main Menu Toggle Search

Open Access padlockePrints

Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH)

Lookup NU author(s): Dr Richard Quinton

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino add substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned. (C) 2012 Elsevier B.V. All rights reserved.


Publication metadata

Author(s): Koika V, Varnavas P, Valavani H, Sidis Y, Plummer L, Dwyer A, Quinton R, Kanaka-Gantenbein C, Pitteloud N, Sertedaki A, Dacou-Voutetakis C, Georgopoulos NA

Publication type: Article

Publication status: Published

Journal: Gene

Year: 2013

Volume: 516

Issue: 1

Pages: 146-151

Print publication date: 01/03/2013

Date deposited: 17/04/2013

ISSN (print): 0378-1119

ISSN (electronic):

Publisher: Elsevier BV

URL: http://dx.doi.org/10.1016/j.gene.2012.12.041

DOI: 10.1016/j.gene.2012.12.041


Altmetrics

Altmetrics provided by Altmetric


Share