Telomerase- and recombination-independent immortalization of budding yeast

  1. Lookup NU author(s)
  2. Dr Laura Maringele
  3. Professor David Lydall
Author(s)Maringele L, Lydall D
Publication type Article
JournalGenes and Development
ISSN (print)0890-9369
ISSN (electronic)1549-5477
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
It is generally assumed that there are only two ways to maintain the ends of chromosomes in yeast and mammalian nuclei: telomerase and recombination. Without telomerase and recombination, cells enter senescence, a state of permanent growth arrest. We found that the decisive role in preventing senescent budding yeast cells from dividing is played by the Exo1 nuclease. In the absence of Exo1, telomerase- and recombination-defective yeast can resume cell cycle progression, despite degradation of telomeric regions from many chromosomes. As degradation progresses toward internal chromosomal regions, a progressive decrease in viability would be expected, caused by loss of essential genes. However, this was not the case. We demonstrate that extensive degradation and loss of essential genes can be efficiently prevented through a little-studied mechanism of DNA double-strand-break repair, in which short DNA palindromes induce formation of large DNA palindromes. For the first time, we show that large palindromes form as a natural consequence of postsenescence growth and that they become essential for immortalization in the absence of telomerase activity.
PublisherCold Spring Harbor Laboratory Press
Notes0890-9369 Journal Article
Actions    Link to this publication