Structure of a Family 15 Carbohydrate-binding Module in Complex with Xylopentaose

  1. Lookup NU author(s)
  2. Lorand Szabo
  3. He Fang Xie
  4. Dr David Bolam
  5. Professor Harry Gilbert
Author(s)Bolam DN; Gilbert HJ; Szabó L; Xie H; Jamal S; Charnock SJ; Davies GJ
Publication type Article
JournalJournal of Biological Chemistry
ISSN (print)0021-9258
ISSN (electronic)1083-351X
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The recycling of photosynthetically fixed carbon by the action of microbial glycoside hydrolases is a key biological process. The consortium of degradative enzymes involved in this process frequently display catalytic modules appended to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs play a central role in the optimization of the catalytic activity of plant cell wall hydrolases through their binding to specific plant structural polysaccharides. Despite their pivotal role in the biodegradation of plant biomass, the mechanism by which these proteins recognize their target ligands is unclear. This report describes the structure of a xylan-binding CBM (CBM15) in complex with its ligand. This module, derived from Pseudomonas cellulosa xylanase Xyn10C, binds to both soluble xylan and xylooligosaccharides. The three-dimensional crystal structure of CBM15 bound to xylopentaose has been solved by x-ray crystallography to a resolution of 1.6 A. The protein displays a similar beta-jelly roll fold to that observed in many other families of binding-modules. A groove, 20-25 A in length, on the concave surface of one of the beta-sheets presents two tryptophan residues, the faces of which are orientated at approximately 240 degrees to one another. These form-stacking interactions with the n and n+2 sugars of xylopentaose complementing the approximate 3-fold helical structure of this ligand in the binding cleft of CBM15. In four of the five observed binding subsites, the 2' and 3' hydroxyls of the bound ligand are solvent-exposed, providing an explanation for the capacity of this xylan-binding CBM to accommodate the highly decorated xylans found in the plant cell wall
PublisherAmerican Society for Biochemistry and Molecular Biology, Inc.
Actions    Link to this publication

Altmetrics provided by Altmetric