Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide

  1. Lookup NU author(s)
  2. Dr Will Mayes
  3. Dr Hugh Potter
  4. Dr Adam Jarvis
Author(s)Mayes WM, Potter HAB, Jarvis AP
Publication type Article
JournalJournal of Hazardous Materials
ISSN (print)0304-3894
ISSN (electronic)1873-3336
Full text is available for this publication:
Data are presented which evaluate the performance of a pilot-scale treatment system using pelletised hydrous ferric oxide (HFO; a waste stream from coal mine water treatment) as a high surface area sorbent for removing zinc (Zn) from a metal mine water discharge in the North Pennines Orefield, UK. Over a 10 month period the system removed Zn at mean area- and volume-adjusted removal rates of 3.7 g m-2 d-1 and 8.1 g m-3 d-1 respectively with a mean treatment efficiency of 32% at a low mean residence time of 49 minutes. There were seasonal effects in Zn removal owing to establishment and dieback of algae in the treatment tank. This led to increased Zn uptake in early summer months followed by slight Zn release upon algae senescence. In addition to these biosorptive processes, the principal sinks for Zn appear to be (1) sorption onto the HFO surface, and (2) precipitation with calcite-dominated secondary minerals. The latter were formed as a product of dissolution of portlandite in the cement binder and calcium recarbonation. Further optimisation of the HFO pelletisation process holds the possibility for providing a low-cost, low footprint treatment option for metal rich mine waters, in addition to a valuable after-use for recovered HFO from coal mine water treatment facilities.
Actions    Link to this publication

Altmetrics provided by Altmetric