Toggle Main Menu Toggle Search

Open Access padlockePrints

The crystal structure of p13suc1, a p34cdc2-interacting cell cycle control protein

Lookup NU author(s): Professor Jane Endicott, Professor Martin Noble

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

p13(suc1) binds to p34(cdc2) kinase and is essential for cell cycle progression in eukaryotic cells. The crystal structure of S.pombe p13(suc1) has been solved to 2.7 Angstrom resolution using data collected at the ESRF source, Grenoble, from both native crystals and crystals of a seleno-methionine derivative. The starting point for structure solution was the determination of the six selenium sites by direct methods. The structure is dominated by a four-stranded beta-sheet, with four further alpha-helical regions. p13(suc1) crystallizes as a dimer in the asymmetric unit stabilized by the binding of two zinc ions. A third zinc site stabilizes the higher-order crystal packing. The sites are consistent with a requirement for zinc during crystal growth. A likely site for p13(suc1)-protein interaction is immediately evident on one face of the p13(suc1) surface. This region comprises a group of conserved, exposed aromatic and hydrophobic residues below a flexible negatively charged loop. A conserved positively charged area would also present a notable surface feature in the monomer, but is buried at the dimer interface. p13(suc1) is larger than its recently solved human homologue p9(CKS2), With the extra polypeptide forming a helical N-terminal extension and a surface loop between alpha-helices 3 and 4. Notably, p13(suc1) does not show the unusual beta-strand exchange that creates an intimate p9(CKS2) dimer. p13(suc1) cannot oligomerize to form a stable hexamer as has been proposed for p9(CKS2).


Publication metadata

Author(s): Endicott JA, Noble ME, Garman EF, Brown N, Rasmussen B, Nurse P, Johnson LN

Publication type: Article

Publication status: Published

Journal: EMBO Journal

Year: 1995

Volume: 14

Issue: 5

Pages: 1004-1014

Print publication date: 01/03/1995

ISSN (print): 0261-4189

ISSN (electronic): 1460-2075

Publisher: Oxford University Press

URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC398172/


Actions

Find at Newcastle University icon    Link to this publication


Share