Toggle Main Menu Toggle Search

ePrints

Bioactive glass/polymer composite scaffolds mimicking bone tissue

Lookup NU author(s): Dr Piergiorgio Gentile

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

The aim of this work was the preparation and characterization of scaffolds with mechanical and functional properties able to regenerate bone. Porous scaffolds made of chitosan/gelatin (POL) blends containing different amounts of a bioactive glass (CEL2), as inorganic material stimulating biomineralization, were fabricated by freeze-drying. Foams with different compositions (CEL2/POL 0/100; 40/60; 70/30 wt %/wt) were prepared. Samples were crosslinked using genipin (GP) to improve mechanical strength and thermal stability. The scaffolds were characterized in terms of their stability in water, chemical structure, morphology, bioactivity, and mechanical behavior. Moreover, MG63 osteoblast-like cells and periosteal-derived stem cells were used to assess their biocompatibility. CEL2/POL samples showed interconnected pores having an average diameter ranging from 179 ± 5 μm for CEL2/POL 0/100 to 136 ± 5 μm for CEL2/POL 70/30. GP-crosslinking and the increase of CEL2 amount stabilized the composites to water solution (shown by swelling tests). In addition, the SBF soaking experiment showed a good bioactivity of the scaffold with 30 and 70 wt % CEL2. The compressive modulus increased by increasing CEL2 amount up to 2.1 ± 0.1 MPa for CEL2/POL 70/30. Dynamical mechanical analysis has evidenced that composite scaffolds at low frequencies showed an increase of storage and loss modulus with increasing frequency; furthermore, a drop of E′ and E″ at 1 Hz was observed, and for higher frequencies both moduli increased again. Cells displayed a good ability to interact with the different tested scaffolds which did not modify cell metabolic activity at the analyzed points. MTT test proved only a slight difference between the two cytotypes analyzed.


Publication metadata

Author(s): Gentile P, Mattioli-Belmonte M, Chiono V, Ferretti C, Baino F, Tonda-Turo C, Vitale-Brovarone C, Pashkuleva I, Reis RL, Ciardelli G

Publication type: Article

Publication status: Published

Journal: Journal of Biomedical Materials Research Part A

Year: 2012

Volume: 100A

Issue: 10

Pages: 2654-2667

Print publication date: 01/10/2012

Online publication date: 21/05/2012

Acceptance date: 30/03/2012

ISSN (print): 1549-3296

ISSN (electronic): 1552-4965

Publisher: John Wiley & Sons, Inc.

URL: https://doi.org/10.1002/jbm.a.34205

DOI: 10.1002/jbm.a.34205


Altmetrics

Altmetrics provided by Altmetric


Actions

    Link to this publication


Share