Toggle Main Menu Toggle Search

Open Access padlockePrints

Machine learning models for predicting timely virtual machine live migration

Lookup NU author(s): Osama Alrajeh, Dr Matthew Forshaw, Dr Nigel Thomas

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Virtual machine (VM) consolidation is among the key strategic approaches that can be employed to reduce energy consumption in large computing infrastructure. However, live migration of VMs is not a trivial operation and consequently not all VMs can be easily consolidated in all circumstances. In this paper we present experiments attempting to live migrate the Kernel-based VM (KVM) executing workload form the SPECjvm2008 benchmark. In order to understand what factors in- fluence live migration we investigate three machine learning models to predict successful live migration using different training and evaluation sets drawn from our experimental data.


Publication metadata

Author(s): Alrajeh O, Forshaw M, Thomas N

Editor(s): Philipp Reinecke and Antinisca Di Marco

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: Computer Performance Engineering: 14th European Workshop (EPEW 2017)

Year of Conference: 2017

Pages: 169-183

Online publication date: 13/08/2017

Acceptance date: 02/04/2016

ISSN: 0302-9743

Publisher: Springer

URL: https://doi.org/10.1007/978-3-319-66583-2_11

DOI: 10.1007/978-3-319-66583-2_11

Library holdings: Search Newcastle University Library for this item

Series Title: Lecture Notes in Computer Science

ISBN: 9783319665825


Actions

Link to this publication


Share