Toggle Main Menu Toggle Search

ePrints

Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis

Lookup NU author(s): Dr Jad Sassine, Karzan Sidiq, Dr Robyn Emmins, Professor Jeff Errington, Dr Richard Daniel

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of ß-lactams.


Publication metadata

Author(s): Sassine J, Xu M, Sidiq KR, Emmins R, Errington J, Daniel RA

Publication type: Article

Publication status: Published

Journal: Molecular Microbiology

Year: 2017

Volume: 106

Issue: 2

Pages: 304-318

Print publication date: 01/10/2017

Online publication date: 29/08/2017

Acceptance date: 04/08/2017

ISSN (print): 0950-382X

ISSN (electronic): 1365-2958

Publisher: Wiley

URL: https://doi.org/10.1111/mmi.13765

DOI: 10.1111/mmi.13765


Altmetrics

Altmetrics provided by Altmetric


Actions

    Link to this publication


Share