Toggle Main Menu Toggle Search

Open Access padlockePrints

Tuneable photoconductivity and mobility enhancement in printed MoS2/graphene composites

Lookup NU author(s): Dr Toby Hallam


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


With the aim of increasing carrier mobility in nanosheet-network devices, we have investigated MoS2–graphene composites as active regions in printed photodetectors. Combining liquid exfoliation and inkjet-printing, we fabricated all-printed photodetectors with graphene electrodes and MoS2–graphene composite channels with various graphene mass fractions (0 ≤ M f ≤ 16 wt%). The increase in channel dark conductivity with M f was consistent with percolation theory for composites below the percolation threshold. While the photoconductivity increased with graphene content, it did so more slowly than the dark conductivity, such that the fractional photoconductivity decayed rapidly with increasing M f. We propose that both mobility and dark carrier density increase with graphene content according to percolation-like scaling laws, while photo-induced carrier density is essentially independent of graphene loading. This leads to percolation-like scaling laws for both photoconductivity and fractional photoconductivity—in excellent agreement with the data. These results imply that channel mobility and carrier density increase up to 100-fold with the addition of 16 wt% graphene.

Publication metadata

Author(s): Kelly AG, Murphy C, Vega-Mayoral V, Harvey A, Esmaeily AS, Hallam T, McCloskey D, Coleman JN

Publication type: Article

Publication status: Published

Journal: 2D Materials

Year: 2017

Volume: 4

Issue: 4

Pages: 041006

Print publication date: 06/09/2017

Online publication date: 04/08/2017

Acceptance date: 04/08/2017

ISSN (print): 2053-1583

Publisher: IOP Publishing


DOI: 10.1088/2053-1583/aa8442


Altmetrics provided by Altmetric


Find at Newcastle University icon    Link to this publication