Toggle Main Menu Toggle Search

Open Access padlockePrints

Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree stress associated with red band needle blight severity.

Lookup NU author(s): Magdalena Smigaj, Dr Rachel Gaulton, Professor Stuart Barr

Downloads


Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).


Abstract

Monoculture plantation woodlands are particularly vulnerable to disturbance events as species uniformity makes such stands highly susceptible to pests and diseases. Red band needle blight (caused by the fungus Dothistroma septosporum) is a disease which has a particularly significant economic impact on pine plantation forests worldwide, affecting diameter and height growth. However, monitoring its spread and intensity is complicated by the fact that the diseased trees are often only visible from aircraft in the advanced stages of the epidemic. Remote sensing could potentially aid in the detection of infected stands and in monitoring disease development and spread. Thermography is one of the techniques that can be used for monitoring changes in the physiological state of plants following infection. However, the use of thermography in forestry has so far been restricted by poor spatial resolution (satellite-based sensors) or high data acquirement costs (airborne sensors). This paper investigates the use of Unmanned Aerial Vehicle (UAV)-borne thermal systems for detecting disease‑induced canopy temperature increase and explores the influence of the imaging time and weather conditions on the detected relationship. Furthermore, the potential of a number of airborne LiDAR-derived structural metrics for detection of changes in the canopy structure following the infection are investigated. The study was located in a diseased Scots pine (Pinus sylvestris) stand in Queen Elizabeth II Forest Park (central Scotland, UK), where 60 sample trees were surveyed. The thermal imagery was acquired at six different times of a day from an altitude of 60 m. Statistically significant correlation between canopy temperature depression (CTD) and disease levels was found for most of the flights (R2 between 0.27 and 0.41), which may be related to the needle damage symptoms caused by the disease, i.e. loss of cellular integrity, necrosis and eventual desiccation. Furthermore, the standard deviation of the crown temperature exhibited weak but statistically significant correlation (R2 between 0.11 and 0.13). The combination of CTD and standard deviation of crown temperature in a partial least squares regression (PLSR) further improved the observed relationship with the estimated disease level. Inclusion of LiDAR structural metrics was also investigated but only provided a slight improvement. A change in environmental conditions altered the magnitude of differences between canopy temperatures; no significant correlation with disease level was found in the morning flight, whilst the strongest relationship was obtained at the time of highest solar radiation, which coincides with the time of maximum photosynthetic activity.


Publication metadata

Author(s): Smigaj M, Gaulton R, Suarez JC, Barr SL

Publication type: Article

Publication status: Published

Journal: Forest Ecology and Management

Year: 2019

Volume: 433

Pages: 699-708

Print publication date: 15/02/2019

Online publication date: 05/12/2018

Acceptance date: 19/11/2018

Date deposited: 17/12/2018

ISSN (print): 0378-1127

ISSN (electronic): 1872-7042

Publisher: Elsevier

URL: https://doi.org/10.1016/j.foreco.2018.11.032

DOI: 10.1016/j.foreco.2018.11.032


Altmetrics

Altmetrics provided by Altmetric


Actions

Find at Newcastle University icon    Link to this publication


Share