Toggle Main Menu Toggle Search

Open Access padlockePrints

ITPase deficiency causes a Martsolf-like syndrome with a lethal infantile dilated cardiomyopathy

Lookup NU author(s): Gavin Falkous, Professor Robert Taylor

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

Typical Martsolf syndrome is characterized by congenital cataracts, postnatal microcephaly, developmental delay, hypotonia, short stature and biallelic hypomorphic mutations in either RAB3GAP1 or RAB3GAP2. Genetic analysis of 85 unrelated "mutation negative" probands with Martsolf or Martsolf-like syndromes identified two individuals with different homozygous null mutations in ITPA, the gene encoding inosine triphosphate pyrophosphatase (ITPase). Both probands were from multiplex families with a consistent, lethal and highly distinctive disorder; a Martsolf-like syndrome with infantile-onset dilated cardiomyopathy. Severe ITPase-deficiency has been previously reported with infantile epileptic encephalopathy (MIM 616647). ITPase acts to prevent incorporation of inosine bases (rI/dI) into RNA and DNA. In Itpa-null cells dI was undetectable in genomic DNA. dI could be identified at a low level in mtDNA without detectable mitochondrial genome instability, mtDNA depletion or biochemical dysfunction of the mitochondria. rI accumulation was detectable in proband-derived lymphoblastoid RNA. In Itpa-null mouse embryos rI was detectable in the brain and kidney with the highest level seen in the embryonic heart (rI at 1 in 385 bases). Transcriptome and proteome analysis in mutant cells revealed no major differences with controls. The rate of transcription and the total amount of cellular RNA also appeared normal. rI accumulation in RNA-and by implication rI production-correlates with the severity of organ dysfunction in ITPase deficiency but the basis of the cellulopathy remains cryptic. While we cannot exclude cumulative minor effects, there are no major anomalies in the production, processing, stability and/or translation of mRNA.


Publication metadata

Author(s): Handley MT, Reddy K, Wills J, Rosser E, Kamath A, Halachev M, Falkous G, Williams D, Cox P, Meynert A, Raymond ES, Morrison H, Brown S, Allan E, Aligianis I, Jackson AP, Ramsahoye BH, von Kriegsheim A, Taylor RW, Finch AJ, FitzPatrick DR

Publication type: Article

Publication status: Published

Journal: PLoS Genetics

Year: 2019

Volume: 15

Issue: 3

Online publication date: 11/03/2019

Acceptance date: 27/12/2018

ISSN (print): 1553-7390

ISSN (electronic): 1553-7404

Publisher: Public Library of Science

URL: https://doi.org/10.1371/journal.pgen.1007605

DOI: 10.1371/journal.pgen.1007605

PubMed id: 30856165


Altmetrics

Altmetrics provided by Altmetric


Actions

Find at Newcastle University icon    Link to this publication


Share