Toggle Main Menu Toggle Search

Open Access padlockePrints

Numerical study of an impulse wave generated by a sliding mass

Lookup NU author(s): Dr Néstor Balcázar ArciniegaORCiD

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

In this work, a numerical framework for the direct numerical simulation of tsunami waves generated by landslide events is proposed. The method, implemented on the TermoFluids numerical platform, adopts a free surface model for the simulation of momentum equations; thus, considering the effect of air on the flow physics negligible. The effect of the solid motion on the flow is taken into account by means of a direct forcing immersed boundary method (IBM). The method is available for 3-D unstructured meshes; however, it can be integrated with an adaptive mesh refinement (AMR) tool to dynamically increase the local definition of the mesh in the vicinity of the interfaces, which separate the phases or in the presence of vortical structures. The method is firstly validated by simulating the entrance of objects into still water surfaces for 2-D and 3-D configurations. Next, the case of tsunami generation from a subaerial landslide is studied and the results are validated by comparison to experimental and numerical measurements. Overall, the model demonstrates its efficiency in the simulation of this type of physics, and a wide versatility in the choice of the domain discretization.


Publication metadata

Author(s): Schillaci E, Favre F, Antepara O, Balcazar N, Oliva A

Publication type: Conference Proceedings (inc. Abstract)

Publication status: Published

Conference Name: 9th International Conference on Computational and Experimental Methods in Multiphase and Complex Flow (Multiphase Flow 2017)

Year of Conference: 2017

Pages: 98-109

Online publication date: 01/01/2018

Acceptance date: 01/01/2017

Date deposited: 22/01/2020

ISSN: 2046-0546

Publisher: WIT Press

URL: https://doi.org/10.2495/CMEM-V6-N1-98-109

DOI: 10.2495/CMEM-V6-N1-98-109

Series Title: International Journal of Computational Methods and Experimental Measurements


Share