Toggle Main Menu Toggle Search

Open Access padlockePrints

Automated detection and classification of birdsong: An ensemble approach

Lookup NU author(s): Professor Mark Whittingham

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

© 2020 The AuthorsThe avian dawn chorus presents a challenging opportunity to test autonomous recording units (ARUs) and associated recogniser software in the types of complex acoustic environments frequently encountered in the natural world. To date, extracting information from acoustic surveys using readily-available signal recognition tools (‘recognisers’) for use in biodiversity surveys has met with limited success. Combining signal detection methods used by different recognisers could improve performance, but this approach remains untested. Here, we evaluate the ability of four commonly used and commercially- or freely-available individual recognisers to detect species, focusing on five woodland birds with widely-differing song-types. We combined the likelihood scores (of a vocalisation originating from a target species) assigned to detections made by the four recognisers to devise an ensemble approach to detecting and classifying birdsong. We then assessed the relative performance of individual recognisers and that of the ensemble models. The ensemble models out-performed the individual recognisers across all five song-types, whilst also minimising false positive error rates for all species tested. Moreover, during acoustically complex dawn choruses, with many species singing in parallel, our ensemble approach resulted in detection of 74% of singing events, on average, across the five song-types, compared to 59% when averaged across the recognisers in isolation; a marked improvement. We suggest that this ensemble approach, used with suitably trained individual recognisers, has the potential to finally open up the use of ARUs as a means of automatically detecting the occurrence of target species and identifying patterns in singing activity over time in challenging acoustic environments.


Publication metadata

Author(s): Brooker SA, Stephens PA, Whittingham MJ, Willis SG

Publication type: Article

Publication status: Published

Journal: Ecological Indicators

Year: 2020

Volume: 117

Print publication date: 01/10/2020

Online publication date: 17/06/2020

Acceptance date: 03/06/2020

Date deposited: 02/07/2020

ISSN (print): 1470-160X

ISSN (electronic): 1872-7034

Publisher: Elsevier B.V.

URL: https://doi.org/10.1016/j.ecolind.2020.106609

DOI: 10.1016/j.ecolind.2020.106609


Altmetrics

Altmetrics provided by Altmetric


Actions

Find at Newcastle University icon    Link to this publication


Share