Toggle Main Menu Toggle Search

ePrints

The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities

Lookup NU author(s): Joanna Henshaw, Dr David Bolam, Professor Harry Gilbert

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

The microbial degradation of the plant cell wall is an important biological process, representing a major component of the carbon cycle. Enzymes that mediate the hydrolysis of this composite structure are modular proteins that contain non-catalytic carbohydrate binding modules (CBMs) that enhance catalytic activity. CBMs are grouped into sequence-based families, and in a previous study we showed that a family 6 CBM (CBM6) that interacts with xylan contains two potential ligand binding clefts, designated cleft A and cleft B. Mutagenesis and NMR studies showed that only cleft A in this protein binds to xylan. Family 6 CBMs bind to a range of polysaccharides, and it was proposed that the variation in ligand specificity observed in these proteins reflects the specific cleft that interacts with the target carbohydrate. Here the biochemical properties of the C-terminal cellulose binding CBM6 (CmCBM6-2) from Cellvibrio mixtus endoglucanase 5A were investigated. The CBM binds to the β1,4-β1,3-mixed linked glucans lichenan and barley β-glucan, cello-oligosaccharides, insoluble forms of cellulose, the β1,3-glucan laminarin, and xylooligosaccharides. Mutagenesis studies, informed by the crystal structure of the protein (presented in the accompanying paper, Pires, V. M. R., Henshaw, J. L., Prates, J. A. M., Bolam, D., Ferreira, L. M. A. Fontes, C. M. G. A., Henrissat, B., Planas, A., Gilbert, H. J., Czjzek, M. (2004) J. Biol. Chem. 279, 21560-21568), show that both cleft A and B can accommodate cello-oligosaccharides and laminarin displays a preference for cleft A, whereas xylooligosaccharides exhibit absolute specificity for this site, and the β1,4,-β1,3-mixed linked glucans interact only with cleft B. The binding of CmCBM6-2 to insoluble cellulose involves synergistic interactions between cleft A and cleft B. These data show that CmCBM6-2 contains two binding sites that display differences in ligand specificity, supporting the view that distinct binding clefts with different specificities can contribute to the variation in ligand recognition displayed by family 6 CBMs. This is in sharp contrast to other CBM families, where variation in ligand binding is a result of changes in the topology of a single carbohydrate-binding site.


Publication metadata

Author(s): Henshaw J, Bolam DN, Pires V, Czjzek M, Henrissat B, Ferreira L, Fontes C, Gilbert HJ

Publication type: Article

Publication status: Published

Journal: Journal of Biological Chemistry

Year: 2004

Volume: 279

Issue: 20

Pages: 21552-21559

ISSN (print): 0021-9258

ISSN (electronic): 1083-351X

Publisher: American Society for Biochemistry and Molecular Biology

URL: http://dx.doi.org/10.1074/jbc.M401620200

DOI: 10.1074/jbc.M401620200

PubMed id: 15004011


Altmetrics

Altmetrics provided by Altmetric


Actions

    Link to this publication


Share