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Synthesis of Elementary Net Systems with

Context Arcs and Localities

Maciej Koutny and Marta Pietkiewicz-Koutny

School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7RU, United Kingdom
{maciej.koutny,marta.koutny}@newcastle.ac.uk

Abstract. We investigate the synthesis problem for encl-systems, de-
fined as Elementary Net Systems extended with context (inhibitor and
activator) arcs and explicit event localities. Since co-located events are
meant to be executed synchronously, the behaviour of such systems is
captured by step transition systems, where arcs are labelled by sets of
events rather than by single events. We completely characterise transi-
tion systems generated by encl-systems after extending the standard
notion of a region — defined as a certain set of states — with explicit in-
formation about events which, in particular, are responsible for crossing
its border. As a result, we are able to construct, for each such transition
system, a suitable encl-system generating it.

Keywords: theory of concurrency, Petri nets, elementary net systems,
localities, net synthesis, step sequence semantics, structure and behaviour
of nets, theory of regions, transition systems, inhibitor arcs, activator
arcs, context arcs.

1 Introduction

We are concerned with a class of concurrent computational systems whose dy-
namic behaviours exhibit a particular mix of asynchronous and synchronous
executions, and are often described as adhering to the ‘globally asynchronous
locally synchronous’ (or gals) paradigm. Intuitively, actions which are ‘close’ to
each other are executed synchronously and as many as possible actions are always
selected for execution. In all other cases, actions are executed asynchronously.
Two important applications of the gals approach can be found in hardware
design, where a vlsi chip may contain multiple clocks responsible for synchro-
nising different subsets of gates [1], and in biologically motivated computing,
where a membrane system models a cell with compartments, inside which reac-
tions are carried out in co-ordinated pulses [2]. In both cases, the activities in
different localities can proceed independently, subject to communication and/or
synchronisation constraints.

To formally model gals systems, [3] introduced Place/Transition-nets with
localities (ptl-nets), defined as pt-nets where transitions are assigned to ex-
plicit localities. Each locality identifies transitions which may only be executed
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synchronously and in a maximally concurrent manner. The idea of adding local-
ities to an existing Petri net model was taken further in [4], where Elementary
Net Systems (en-systems) replaced pt-nets as an underlying system model. In
this paper, we build on the work reported in [4], by considering en-systems ex-
tended with two non-standard kinds of arcs, namely inhibitor arcs and activator
(or read) arcs, collectively referred to as context arcs following the terminology
of [5]. The resulting model will be referred to as Elementary Net Systems with
Context Arcs and Localities (or encl-systems).

It is worth pointing out that both inhibitor arcs (capturing the idea the en-
abling of a transition depends on a place being unmarked) and activator arcs
(capturing the idea the enabling of a transition depends on a place being marked
by more tokens than those consumed when the transition is fired) are presumably
the most prominent extensions of the basic Petri net model considered in the
literature. Such context arcs can be used to test for a specific condition, rather
than producing and consuming resources, and proved to be useful in areas such
as communication protocols [6], performance analysis [7], and concurrent pro-
gramming [8]. More recently, [9] applied context arcs to deal with several salient
behavioural features of membrane systems, such as promoters, inhibitors and
dissolving as well as thickening of membranes.

b2
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b4

b3

b6

b5

b
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p3

p2 p1
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c1 c4

Fig. 1. A producer/consumer system with a business conscious producer.

Consider the encl-system in Figure 1 modelling a producer/consumer system
consisting of one producer (who can execute events p1, p2 and p3), and two
consumers (who can execute events c1, c2, c3 and c4). The buffer-like condition
b in the middle holds items produced by the event p1 and consumed by c1. The
activator arc between p1 and b3 (represented by an edge ending with a small
black circle) means that the producer adds a new item to the buffer only if there
is a consumer waiting for it, and the inhibitor arc between p3 and b3 (represented
by an edge ending with a small circle) means that the producer can leave the
production cycle only when no customer is eager to get the produced items. It
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is assumed that all the events executed by the producer belong to one locality,
while all the events executed by the consumers belong to another locality. To
indicate this in the diagram, we use different shading for the boxes representing
events assigned to different localities.

In terms of possible behaviours, adding localities can have a significant impact
on both the executability of events and reachability of global states. For example,
under the standard net semantics the model in Figure 1 would be able to execute
the step sequence {p1}{c1}, but the execution model of encl-systems rejects
this. The reason is that after {p1}, it is possible to execute the step {c1, c4}
consisting of two co-located events, and so executing c1 alone would violate the
maximal concurrency execution rule within the locality assigned to the events
used by the consumers. A possible way of ‘repairing’ this step sequence would
be to add the ‘missing’ event, resulting in the legal step sequence {p1}{c1, c4}.
Another legal step sequence is {p1}{p2, c1, c4}, where the second step is maxi-
mally concurrent in a global sense, as it cannot be extended any further. Note
also that the event p3 is not enabled at the beginning since b3 contains a token
and there is an inhibitor arc linking p3 and b3, and after {p1}{p2, c1, c4} the
event p1 is not enabled since b3 is now empty and there is an activator arc linking
p1 and b3.

The Petri net problem we are going to investigate in this paper, commonly
referred to as the Synthesis Problem, is in essence concerned with model transfor-
mation, from a class of transition systems (sometimes called reachability graphs)
to a class of Petri nets. The key requirement is that the Petri net obtained from a
given transition system should capture the same behaviour, i.e., its reachability
graph should be isomorphic to the original transition system. This problem was
solved for the class of en-systems in [10], using the notion of a region which links
nodes of transition systems (global states) with conditions in the corresponding
nets (local states). The solution was later extended to the pure bounded pt-
nets [11], general Petri nets [12], safe nets [13] and en-systems with inhibitor
arcs [14, 15], by adopting the original definition of a region or using some ex-
tended notion of a generalised region [16].

In a previous paper [4], we have solved the synthesis problem for the class
of Elementary Net Systems with Localities (enl-systems). In doing so, we in-
troduced io-regions, a generalisation of the standard notion of a region of a
transition system, as the latter proved to be insufficient to deal with the class
of enl-systems (and hence also for encl-systems considered in this paper). To
explain the idea behind io-regions, consider the transition system shown in Fig-
ure 2(a), which is isomorphic to the reachability graph of the enl-system shown
in Figure 2(b). (Note that the two events there, e and f, are assumed to be
co-located.) The standard region-based synthesis procedure would attempt to
construct the conditions of the net in Figure 2(b), by identifying each of these
with the set of the nodes of the transition system where it ‘holds’. For example,
the region corresponding to b1 comprises just one state, r = {sinit}. Similarly,
r′ = {s} is a region where b2 holds. (Note that there are two more ‘trivial’ re-
gions, {sinit , s} and ∅, which are ignored by the synthesis procedure.) However,
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this is not enough to construct the enl-system in Figure 2(b) since there are
only two non-trivial regions and we need four, one for each of the conditions.

(a)

sinit

s

{e, f}

b1

b2

b3

b4

e f

(b)

Fig. 2. A transition system with co-located transitions e and f (a), and a corresponding
enl-system (b).

An intuitive reason why the standard construction does not work for the
transition system in Figure 2(a) is that the ‘set-of-states’ notion of region is
not rich enough for the purposes of synthesising enl-systems. The modification
to the original notion proposed in [4] is based on having also explicit input and
output events of a set of states, which point at those events which are ‘responsible’
for entering the region and for leaving it. More precisely, an io-regions is a triple:
r = (in , r, out), where r is a set of states, in is a set of events which are responsible
for entering r, and out is a set of events which are responsible for leaving r. In the
case of the example in Figure 2(a), one can find four non-trivial io-regions: r1 =
(∅, {sinit}, {e}) r2 = ({e}, {s},∅}), r3 = (∅, {sinit}, {f}) and r4 = ({f}, {s},∅).
Now one has enough regions to construct the conditions of the enl-system in
Figure 2(b), namely each ri corresponds to bi.

In this paper, we will extend the idea of an io-region to also cope with context
arcs. Briefly, we will base our synthesis solution on context regions (or c-regions),
each such region being a tuple (r, in , out , inh, act) where the two additional
components, inh and act , carry information about events which are related with
r due to the presence of a context arc.

The paper is organised as follows. In the next section, we introduce formally
encl-systems. After that we define encl-transition systems and later show that
the reachability graphs of encl-systems are indeed encl-transition systems. We
finally demonstrate how to construct an encl-system corresponding to a given
encl-transition system.

2 ENCL-systems

Throughout the paper we assume that E is a fixed non-empty set of events.
Each event e is assigned a locality L(e), and it is co-located with another event f
whenever L(e) = L(f).

Definition 1 (net with context arcs). A net with context arcs is a tuple

net
df

= (B,E, F, I, A) such that B and E ⊆ E are finite disjoint sets, F ⊆ (B ×
E) ∪ (E ×B) and I, A ⊆ B × E.
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The meaning and graphical representation of B (conditions), E (events) and
F (flow relation) is as in the standard net theory. An inhibitor arc (b, e) ∈ I
means that e can be enabled only if b is not marked (in the diagrams, it is
represented by an edge ending with a small circle), and an activator arc (b, e) ∈ A
means that e can be enabled only if b is marked (in the diagrams, it is represented
by an edge ending with a small black circle). In diagrams, boxes representing
events are shaded, with different shading being used for different localities (see
Figure 1). We denote, for every x ∈ B ∪ E,

•x
df

= {y | (y, x) ∈ F} x•
df

= {y | (x, y) ∈ F}

�x
df

= {y | (x, y) ∈ I ∪ I−1} ◭x
df

= {y | (x, y) ∈ A ∪A−1}

and we call the above sets the pre-elements, •x, post-elements, x•, inh-elements,
�x, and act-elements, ◭x. Moreover, we denote

•x•
df

= •x ∪ x• •x◭ df

= •x ∪ ◭x �x•
df

= x• ∪ �x .

All these notations extend in the usual way (i.e., through the set union) to sets of
conditions and/or events. It is assumed that for every event e ∈ E, e• and •e are
non-empty sets, and •e, e•, �e and ◭e are mutually disjoint sets. For the encl-
system in Figure 1, we have •b3 = {c2}, b•1 = {p1, p3} and �p3 = ◭p1 = {b3}.

Definition 2 (ENCL-system). An elementary net system with context arcs

and localities (encl-system) is a tuple encl
df

= (B,E, F, I, A, cinit ) such that

netencl

df

= (B,E, F, I, A) is the underlying net with context arcs, and cinit ⊆ B is
the initial case. In general, any subset of B is a case.

The execution semantics of encl is based on steps of simultaneously executed
events. We first define the set of valid steps :

Uencl

df

= {u ⊆ E | u 6= ∅ ∧ ∀e, f ∈ u : e 6= f ⇒ •e• ∩ •f• = ∅} .

For the encl-system in Figure 1, we have {p1, c2, c3} ∈ Uencl, but {p1, c1, c4} /∈
Uencl since p1• ∩ •c1 6= ∅.

A step u ∈ Uencl is enabled at a case c ⊆ B if •u◭ ⊆ c and �u• ∩ c = ∅, and
there is no step u⊎{e} ∈ Uencl satisfying L(e) ∈ L(u), •e◭ ⊆ c and �e• ∩ c = ∅.

For the encl-system in Figure 1, we have that {p1, c4} is a step enabled
at the initial case, but {p3, c4} is not since b3 belongs to cinit and there is an
inhibitor arc between p3 and b3. We also note that u = {p2, c1} is not enabled
at the case c = {b2, b, b3, b6} because it can be extended by an event e = c4

according to the definition of enabledness.
The above definition of enabledness is based on an a priori condition: the

activator and inhibitor conditions of events occurring in a step obey their respec-
tive constraints before the step is executed. In an a posteriori approach (see [5]),
the respective properties must also be true after executing the step. Yet another
definition for enabling when activator arcs (or rather read arcs) are involved is
given in [17].
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The transition relation of netencl, denoted by →netencl
, is then given as the

set of all triples (c, u, c′) ∈ 2B × Uencl × 2B such that u is enabled at c and
c′ = (c \ •u) ∪ u•.

The state space of encl, denoted by Cencl, is the least subset of 2B containing
cinit such that if c ∈ Cencl and (c, u, c′) ∈ →netencl

then c′ ∈ Cencl. The transition
relation of encl, denoted by →encl, is then defined as →netencl

restricted to Cencl×

Uencl × Cencl. We will use c
u

−→encl c
′ to denote that (c, u, c′) ∈ →encl. Also,

c
u

−→encl if (c, u, c′) ∈ →encl, for some c′. For the encl-system in Figure 1:

cinit

{p1}
−→encl {b2, b, b3, b6}

{p2,c1,c4}
−−−−−→encl {b1, b4, b5} .

Proposition 1 ([4]). If c
u

−→encl c
′ then c \ c′ = •u and c′ \ c = u•.

3 Step transition systems and context regions

In this section, we first recall the notion of a general step transition systems
which, after further restrictions, will be used to provide a behavioural model for
encl-systems, and introduce the notion of a context region.

Definition 3 (transition system, [18, 19]). A step transition system is a

triple ts
df

= (S, T, sinit ) where:

TSys1 S is a non-empty finite set of states.
TSys2 T ⊆ S × (2E \ {∅}) × S is a finite set of transitions.
TSys3 sinit ∈ S is the initial state.

Throughout this section, the step transition system ts will be fixed. We will
denote by Ets the set of all the events appearing in its transitions, i.e.,

Ets

df

=
⋃

(s,u,s′)∈T

u .

We will denote s
u

−→ s′ whenever (s, u, s′) is a transition in T , and respectively
call s the source and s′ the target of this transition. We will also say that the
step u is enabled at s, and denote this by s

u
−→.

For every event e ∈ Ets, we will denote by Te the set of all the transitions

labelled by steps containing e, Te
df

= {(s, u, s′) ∈ T | e ∈ u}, and by Ue the set of

all the steps labelling these transitions, Ue
df

= {u | (s, u, s′) ∈ Te}.
We now introduce a central notion of this paper which is meant to link the

nodes of a transition system (global states) with the conditions in the hypothet-
ical corresponding net (local states).

Definition 4 (context region). A context region (or c-region) is a tuple

r
df

= (r, in , out , inh, act) ∈ 2S × 2Ets × 2Ets × 2Ets × 2Ets

such that the following are satisfied, for every transition s
u

−→ s′ of ts:
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1. s ∈ r and s′ /∈ r imply |u ∩ in | = 0 and |u ∩ out | = 1.

2. s /∈ r and s′ ∈ r imply |u ∩ in| = 1 and |u ∩ out | = 0.

3. u ∩ inh 6= ∅ implies s /∈ r.

4. u ∩ act 6= ∅ implies s ∈ r.

5. u ∩ out 6= ∅ implies s ∈ r and s′ /∈ r.

6. u ∩ in 6= ∅ implies s /∈ r and s′ ∈ r.

7. in ∩ inh = ∅ and out ∩ act = ∅.

We denote ||r||
df

= r, •
r

df

= in, r
• df

= out, �
r

df

= inh and ◭
r

df

= act.

The step transition system shown in Figure 2(a) has the following c-regions:

r1 = (∅,∅,∅,∅,∅) r2 = (∅,∅,∅, {e},∅)

r3 = (∅,∅,∅, {f},∅) r4 = (∅,∅,∅, {e, f},∅)

r5 = ({sinit , s},∅,∅,∅,∅) r6 = ({sinit , s},∅,∅,∅, {e})

r7 = ({sinit , s},∅,∅,∅, {f}) r8 = ({sinit , s},∅,∅,∅, {e, f})

r9 = ({sinit},∅, {f},∅,∅}) r10 = ({sinit},∅, {f},∅, {e})

r11 = ({sinit},∅, {e},∅,∅}) r12 = ({sinit},∅, {e},∅, {f})

r13 = ({s}, {f},∅,∅,∅}) r14 = ({s}, {f},∅, {e},∅})

r15 = ({s}, {e},∅,∅,∅}) r16 = ({s}, {e},∅, {f},∅) .

In the rest of this section, we discuss and prove properties of c-regions which
will subsequently be needed to solve the synthesis problem for encl-systems.

Trivial c-regions. A c-region r is trivial if ||r|| = ∅ or ||r|| = S; otherwise
it is non-trivial. For example, the step transition system shown in Figure 2(a)
has eight trivial c-regions (r1, . . . , r8) and eight non-trivial c-regions (r9, . . . , r16).
Note that only non-trivial c-regions will be used in the synthesis procedure.

Proposition 2. If r is a trivial c-region then •
r = r

• = ∅.

Proof. Follows from Definition 4(5,6) and TSys2. ⊓⊔

Proposition 3. If r is a c-region then the complement of r, defined as r
df

=
(S \ ||r||, r•, •r,◭r, �r), is also a c-region.

Proof. Follows directly from Definition 4. ⊓⊔

The set of all non-trivial c-regions will be denoted by Regts and, for every
state s ∈ S, we will denote by Regs the set of all the non-trivial c-regions

containing s, Regs
df

= {r ∈ Regts | s ∈ ||r||}. For the example in Figure 2(a), we
have Regsinit

= {r9, r10, r11, r12} and r12 = r16.
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Lattices of c-regions. We call two c-regions, r and r
′, compatible if it is the

case that ||r|| = ||r′||, •
r = •

r
′ and r

• = r
′•. We denote this by r ≈ r

′. For two
compatible c-regions, r and r

′, we define their union and intersection, in the
following way:

r ∪ r
′ df

= (||r||, •r, r•, �r ∪ �
r
′,◭r∪ ◭

r
′) and r ∩ r

′ df

= (||r||, •r, r•, �r ∩ �
r
′,◭r∩ ◭

r
′) .

Moreover, we denote r � r
′ whenever �

r ⊆ �
r
′ and ◭

r ⊆ ◭
r
′. For the example in

Figure 2(a), we have r1 ≈ r2 ≈ r3 ≈ r4, r2 ∪ r3 = r4 and r15 � r16.

Proposition 4. If r is a c-region, and inh ⊆ �
r and act ⊆ ◭

r are two sets of
events, then (||r||, •r, r•, inh, act) is also a c-region.

Proof. Follows directly from Definition 4. ⊓⊔

Proposition 5. If r and r
′ are compatible c-regions, then r ∪ r

′ and r ∩ r
′ are

also c-regions.

Proof. The first part follows directly from Definition 4, and the second from
Proposition 4. ⊓⊔

Given a c-region r, the equivalence class of c-regions compatible with r, de-
noted by [r]≈, forms a complete lattice w.r.t. the partial order � and the op-
erations ∪ (join) and ∩ (meet). The �-minimal and �-maximal c-regions it
contains are given respectively by:

(||r||, •r, r•,∅,∅) and (||r||, •r, r•,
⋃

r′∈[r]≈

�
r
′,

⋃

r′∈[r]≈

◭
r
′) .

The step transition system in Figure 2(a) has six �-minimal c-regions (r1, r5,
r9, r11, r13 and r15) and six �-maximal c-regions (r4, r8, r10, r12, r14 and r16).

We feel that the algebraic properties enjoyed by sets of compatible c-regions
will be useful in the synthesis procedure aimed at constructing optimal encl-
systems. We will come back to this issue later on.

Relating regions and events. Given an event e ∈ Ets, its sets of pre-c-regions,
◦e, post-c-regions, e◦, inh-c-regions, ♦e, and act-c-regions, ⊳e, are respectively
defined as:

◦e
df

= {r ∈ Regts | e ∈ r
•} e◦

df

= {r ∈ Regts | e ∈ •
r}

♦e
df

= {r ∈ Regts | e ∈ �
r} ⊳e

df

= {r ∈ Regts | e ∈ ◭
r} .

Moreover, ◦e◦
df

= ◦e ∪ e◦, ◦e⊳ df

= ◦e ∪ ⊳e and ♦e◦
df

= e◦ ∪ ♦e. All these notations
can be applied to sets of events by taking the union of sets of regions defined
for the individual events. For the step transition system in Figure 2(a), we have
◦e = {r11, r12} and ♦f = {r16}.

Proposition 6. If s
u

−→ s′ is a transition of ts, then:
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1. r ∈ ◦u implies s ∈ ||r|| and s′ /∈ ||r||.
2. r ∈ u◦ implies s /∈ ||r|| and s′ ∈ ||r||.
3. r ∈ ♦u implies s /∈ ||r||.
4. r ∈ ⊳u implies s ∈ ||r||.

Proof. Follows directly from the definitions of ◦u, u◦, ♦u and ⊳u as well as
Definition 4(3,4,5,6). ⊓⊔

The sets of pre-c-regions and post-c-regions of events in an executed step
are mutually disjoint. Moreover, they can be ‘calculated’ using the c-regions
associated with the source and target states.

Proposition 7. If s
u

−→ s′ is a transition of ts, then:

1. ◦e ∩ ◦f = ∅ and e◦ ∩ f◦ = ∅, for all distinct e, f ∈ u.
2. ◦u ∩ u◦ = ∅.
3. ◦u = Regs \ Regs′ and u◦ = Regs′ \ Regs.

Proof. (1) Suppose that r ∈ ◦e ∩ ◦f , i.e., e, f ∈ r
•. This means, by Defini-

tion 4(5), that s ∈ ||r|| and s′ /∈ ||r||. Thus, by Definition 4(1), |u ∩ r
•| = 1, a

contradiction with e, f ∈ u∩ r
•. The second part can be shown in a similar way.

(2) Suppose that r ∈ ◦u∩u◦. Then, by Proposition 6(1,2), s ∈ ||r|| and s /∈ ||r||,
a contradiction.

(3) We only show that Regs \Regs′ = ◦u, as the second part can be shown
in a similar way. By Proposition 6, ◦u ⊆ Regs and ◦u ∩ Regs′ = ∅. Hence
◦u ⊆ Regs \ Regs′ . Suppose that r ∈ Regs \ Regs′ , which implies that s ∈ ||r||

and s′ /∈ ||r||. Hence, by Definition 4(1) and s
u

−→ s′, u ∩ r
• 6= ∅. Thus r ∈ ◦u

and so Regs \ Regs′ ⊆ ◦u. Consequently, Regs \ Regs′ = ◦u. ⊓⊔

The next two propositions provide a useful characterisation of inh-c-regions
and act-c-regions of an event in terms of transitions involving this event. For
example, if r is an inh-c-region of event e, then no transition involving e lies
completely within r. In what follows, for an event e and a c-region r, we denote

Be
r

df

= {(s, u, s′) ∈ Te | s, s′ ∈ ||r||} to be the set of all transitions involving e which
are buried in r, i.e., their source and target states belong to ||r||.

Proposition 8. If e ∈ Ets and r ∈ ♦e, then one of the following holds:

1. Be
r = ∅, Be

r
6= ∅ and r /∈ ◦u, for all u ∈ Ue.

2. Be
r = ∅, e /∈ •

r and r ∈ u◦ \ ◦u, for all u ∈ Ue.

Proof. Suppose that (s, u, s′) ∈ Te. From r ∈ ♦e ⊆ ♦u and Proposition 6(3), we
have that s /∈ ||r||. Hence Be

r = ∅ and r /∈ ◦u, for all u ∈ Ue. We will now show
that Be

r
6= ∅, or that e /∈ •

r and r ∈ u◦, for all u ∈ Ue.
Suppose that Be

r
= ∅. We first observe that e 6∈ •

r since it follows directly
from e ∈ �

r (as r ∈ ♦e) and Definition 4(7). What remains to be shown is that
if (s, u, s′) ∈ Te then r ∈ u◦. We already know that s /∈ ||r||. Moreover, since
Be

r
= ∅, we have s′ ∈ ||r||. This means, by Definition 4(2), that |u ∩ •

r| = 1.
Hence there is f ∈ u such that f ∈ •

r, and so r ∈ f◦ ⊆ u◦. ⊓⊔
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Proposition 9. If e ∈ Ets and r ∈ ⊳e, then one of the following holds:

1. Be
r

= ∅, Be
r
6= ∅ and r /∈ u◦, for all u ∈ Ue.

2. Be
r

= ∅, e /∈ r
• and r ∈ ◦u \ u◦, for all u ∈ Ue.

Proof. Similar to that of Proposition 8. ⊓⊔

It is easy to show that a step can be executed at a state only if the inh-c-
regions of the former do not comprise the latter, and the act-c-regions do.

Proposition 10. If s
u

−→ s′ is a transition of ts, then ♦u ∩ Regs = ∅ and
⊳u ⊆ Regs.

Proof. Suppose that r ∈ ♦u∩Regs 6= ∅. Then from r ∈ ♦u and Proposition 6(3)
we have that s /∈ ||r|| which contradicts r ∈ Regs. Suppose now that r ∈ ⊳u. From
Proposition 6(4) we have that s ∈ ||r||, and so r ∈ Regs. ⊓⊔

Proposition 11. If e ∈ Ets, then ◦e◦ ∩ (♦e ∪ ⊳e) = ∅.

Proof. Suppose that r ∈ e◦ ∩ ♦e 6= ∅. Then e ∈ •
r ∩ �

r 6= ∅, contradicting
Definition 4(7).

Suppose now that r ∈ ◦e ∩ ♦e 6= ∅. By Proposition 8, one of the following
two cases holds:
Case 1: There is (s, u, s′) ∈ Te such that s, s′ /∈ ||r||. By r ∈ ◦e, we have that r ∈
◦u, and so from Proposition 6 it follows that s ∈ ||r|| and s′ /∈ ||r||, a contradiction.
Case 2: e /∈ •

r and r ∈ u◦ for some u ∈ Ue 6= ∅. Then r /∈ e◦ and there is
(s, u, s′) ∈ Te such that s /∈ ||r|| and s′ ∈ ||r||. On the other hand, by r ∈ ◦e ⊆ ◦u
and Proposition 6, we have s ∈ ||r|| and s′ /∈ ||r||, a contradiction.

Hence ◦e◦ ∩ ♦e = ∅, and ◦e◦ ∩ ⊳e = ∅ can be shown in a similar way. ⊓⊔

To characterise transition systems generated by encl-systems, we will need
the set of all potential steps Uts of ts, given by:

Uts

df

= {u ⊆ Ets | u 6= ∅ ∧ ∀e, f ∈ u : e 6= f ⇒ ◦e◦ ∩ ◦f◦ = ∅} .

Proposition 12. If s
u

−→ s′ is a transition of ts, then u ∈ Uts.

Proof. Follows from TSys2 and Proposition 7(1,2). ⊓⊔

Thin transition systems. In general, a c-region r cannot be identified only
by its set of states ||r||; in other words, •

r, r
•, �

r and ◭
r may not be recoverable

from ||r||. However, if the transition system is thin, i.e., for every event e ∈ Ets

we have that {e} ∈ Ue, then different c-regions with the same sets inh and act
are based on different sets of states.

Proposition 13 ([4]). If ts is thin and r 6= r
′ are c-regions such that �

r = �
r
′

and ◭
r = ◭

r
′, then ||r|| 6= ||r′||.
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4 Transition systems of ENCL-systems

We now can present a complete characterisation of the transition systems gen-
erated by encl-systems.

Definition 5 (ENCL-transition system). A step transition system ts =
(S, T, sinit ) is an encl-transition system if it satisfies the following axioms:

Axiom1 For every s ∈ S \{sinit}, there are (s0, u0, s1), . . . , (sn−1, un−1, sn) ∈
T such that s0 = sinit and sn = s.

Axiom2 For every event e ∈ Ets, both ◦e and e◦ are non-empty.

Axiom3 For all states s, s′ ∈ S, if Regs = Regs′ then s = s′.

Axiom4 If s ∈ S and u ∈ Uts are such that

– ◦u⊳ ⊆ Regs and ♦u◦ ∩Regs = ∅ and

– there is no step u ⊎ {e} ∈ Uts with the event e satisfying L(e) ∈
L(u), ◦e⊳ ⊆ Regs and ♦e◦ ∩ Regs = ∅,

then we have s
u

−→.

Axiom5 If s
u

−→ then there is no step u⊎{e} ∈ Uts with the event e satisfying
L(e) ∈ L(u), ◦e⊳ ⊆ Regs and ♦e◦ ∩ Regs = ∅.

In the above, Axiom1 implies that all the states in ts are reachable from
the initial state. Axiom2 will ensure that every event in a synthesised encl-
system will have at least one input condition and at least one output condition.
Axiom3 was used for other transition systems as well, and is usually called
the state separation property [16, 20], and it guarantees that ts is deterministic.
Axiom4 is a variation of the forward closure property [20] or the event/state
separation property [16]. Axiom5 ensures that every step in a transition system
is indeed a maximal step w.r.t. localities of the events it comprises.

Proposition 14. If s
u

−→ s′ and s
u

−→ s′′, then s′ = s′′.

Proof. Follows from Proposition 7(3) and Axiom3. ⊓⊔

The construction of a step transition system for a given encl-system is
straightforward.

Definition 6 (from net system to transition system). The transition sys-

tem generated by an encl-system encl is tsencl

df

= (Cencl,→encl, cinit ), where cinit

is the initial case of encl.

Theorem 1. tsencl is an encl-transition system.

Proof. See the Appendix. ⊓⊔
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5 Solving the synthesis problem

The translation from encl-transition systems to encl-systems is based on the
pre-, post-, inh- and act-c-regions of the events appearing in a transition system.

Definition 7 (from transition system to net system). The net system
associated with an encl-transition system ts = (S, T, sinit ) is:

enclts
df

= (Regts, Ets, Fts, Its, Ats,Regsinit
) ,

where Fts, Its and Ats are defined thus:

Fts

df

= {(r, e) ∈ Regts × Ets | r ∈ ◦e} ∪ {(e, r) ∈ Ets × Regts | r ∈ e◦}

Its
df

= {(r, e) ∈ Regts × Ets | r ∈ ♦e}

Ats

df

= {(r, e) ∈ Regts × Ets | r ∈ ⊳e} .















(1)

Proposition 15. For every e ∈ Ets, we have ◦e = •e, e◦ = e•, ♦e = �e and
⊳e = ◭e.

Proof. Follows directly from the definition of enclts. ⊓⊔

Figure 3 shows the encl-system associated with the step transition system
shown in Figure 2(a). It is, clearly, not the net system shown in Figure 2(b), as
it contains twice as many conditions as well as four context arcs which were not
present there. This is not unusual as the above construction produces nets which
are saturated with conditions as well as context arcs. In fact, the whole construc-
tion would still work if we restricted ourselves to the �-maximal non-trivial c-
regions, similarly as it has been done in [21] for en-systems with inhibitor arcs.
But the resulting encl-system would still not be as that shown in Figure 2(b). In
fact, the latter would be re-constructed if we took all the �-minimal non-trivial
c-regions of the step transition system shown in Figure 2(a). However, taking
only the �-minimal c-regions would not work in the general case (the encl-
transition system shown in Figure 4(c) provides a suitable counterexample), and
that it is possible to use them in this case is due to the maximally concurrent
execution rule which underpins encl-systems. What this example implies is that
in order to synthesise an optimal net (for example, from the point of view of the
number of conditions and/or context arcs), it is a good idea to look at the whole
spectrum of c-regions arranged in the lattices of compatible c-regions (and, in
any case, never use two different c-regions, r and r

′, such that r � r
′).

Theorem 2. enclts is an encl-system.

Proof. All one needs to observe is that, for every e ∈ Ets, it is the case that:
•e 6= ∅ 6= e•, which follows from Axiom2 and Proposition 15; •e ∩ e• = ∅,
which follows from Propositions 7(2) and 15; and •e• ∩ (�e ∪ ◭e) = ∅, which
follows from Propositions 11 and 15. ⊓⊔
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r11

r15

r9

r13

r12

r16

r10

r14

e f

Fig. 3. encl-system synthesised from the encl-transition system in Figure 2(a).

We finally show that the encl-system associated with an encl-transition
system ts generates a transition system which is isomorphic to ts.

Proposition 16. Let ts = (S, T, sinit ) be an encl-transition system and

encl = enclts = (Regts, Ets, Fts, Its, Ats,Regsinit
) = (B,E, F, I, A, cinit )

be the encl-system associated with it.

1. Cencl = {Regs | s ∈ S}.
2. →encl= {(Regs, u,Regs′) | (s, u, s′) ∈ T }.

Proof. Note that from the definition of Cencl, every c ∈ Cencl is reachable from
cinit in encl; and that from Axiom1, every s ∈ S is reachable from sinit in ts.

We first show that if c
u

−→encl c
′ and c = Regs, for some s ∈ S, then there is

s′ ∈ S such that s
u

−→ s′ and c′ = Regs′ . By c
u

−→encl c
′, u ∈ Uencl is a step such

that •u◭ ⊆ c and �u• ∩ c = ∅, and there is no step u ⊎ {e} ∈ Uencl satisfying
L(e) ∈ L(u) and •e◭ ⊆ c and �e• ∩ c = ∅. Moreover, c′ = (c \ •u) ∪ u•.

Hence, by Proposition 15 and Axiom4, u ∈ Uts and s
u

−→ s′, for some s′ ∈ S.
Then, by Proposition 7(3), Regs′ = (Regs \ ◦u) ∪ u◦. At the same time, we
have c′ = (c \ •u) ∪ u•. Hence, by Proposition 15 and c = Regs, we have that
c′ = Regs′ .
As a result, we have shown (note that cinit = Regsinit

∈ {Regs | s ∈ S}) that

Cencl ⊆ {Regs | s ∈ S}
→encl ⊆ {(Regs, u,Regs′) | (s, u, s′) ∈ T } .

We now prove the reverse inclusions. By definition, Regsinit
∈ Cencl. It is

enough to show that if s
u

−→ s′ and Regs ∈ Cencl, then Regs′ ∈ Cencl and
Regs

u
−→encl Regs′ . By Axiom5 and Propositions 7(3), 12, 10 and 15, u is a

valid step in encl which is enabled at the case Regs. So, there is a case c′ such
that Regs

u
−→encl c

′ and c′ = (Regs \
•u) ∪ u•. From Propositions 7(3) and 15

we have that c′ = Regs′ . Hence we obtain that Regs
u

−→encl Regs′ and so also
Regs′ ∈ Cencl. ⊓⊔
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Theorem 3. Let ts = (S, T, sinit ) be an encl-transition system and encl =
enclts be the encl-system associated with it. Then tsencl is isomorphic to ts.

Proof. Let ψ : S → Cencl be a mapping given by ψ(s) = Regs, for all s ∈ S
(note that, by Proposition 16(1), ψ is well-defined). We will show that ψ is an
isomorphism for ts and tsencl.
Note that ψ(sinit ) = Regsinit

. By Proposition 16(1), ψ is onto. Moreover, by
Axiom3, it is injective. Hence ψ is a bijection. We then observe that, by Propo-
sition 16(2), we have (s, u, s′) ∈ T if and only if (ψ(s), u, ψ(s′)) ∈→encl. Hence
ψ is an isomorphism for ts and tsencl. ⊓⊔

Figure 4 shows two further examples of the synthesis of encl-systems. The
first one, in Figure 4(a,b), illustrates a conflict between two events, and the syn-
thesised encl-system utilises two �-minimal c-regions, r = ({sinit},∅, {e, f},∅,∅)
for the upper condition, and its complement r for the lower one. The second ex-
ample, in Figure 4(c,d), exemplifies a situation when a correct solution has been
obtained without using only �-maximal c-regions. However, an attempt to use
only �-minimal c-regions would fail, as the resulting encl-system (shown in
Figure 5(a)) allows one to execute the step sequence {e}{f} which is impossible
in the original transition system. Moreover, Figure 5(b) shows a correct synthesis
solution based solely on �-maximal c-regions. When compared with that in Fig-
ure 4(d) it looks less attractive since the latter uses fewer context arcs. It should
already be clear that to synthesise ‘optimal’ encl-systems it will, in general,
be necessary to use a mix of various kinds of c-regions, and the development of
suitable algorithms is an interesting and important topic for further research.

(a)

sinit

{e} {f}

e f

(b)

(c)

sinit

{e} {f}

{e, f} e f

(d)

Fig. 4. A transition system with co-located events e and f (a), and a corresponding
encl-system (b); and a transition system with differently located events e and f (c),
and a corresponding encl-system (d).
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(a)

e f e f

(b)

Fig. 5. encl-system synthesised from the transition system in Figure 4(c) using only
�-minimal non-trivial c-regions (a), and only �-maximal non-trivial c-regions (b).

6 Concluding Remarks

In this paper, we solved the synthesis problem for en-systems with context arcs
and localities, by following the standard approach in which key relationships
between a Petri net and its transition system are established via the notion of a
region. Moreover, in order to obtain a satisfactory solution, we augmented the
standard notion of a region with some additional information, leading to the
notion of a c-region. We then defined, and showed consistency of, two behaviour
preserving translations between encl-systems and their transition systems.

Throughout this paper it has always been assumed that events’ localities are
known in advance. In particular, this information was present in the input to the
synthesis problem. However, one might prefer to work only with step transition
systems, and determine the localities of events during the synthesis procedure
(perhaps choosing an ‘optimal’ option). This could, of course, be done by con-
sidering in turn all possibilities for the locality mapping L. Unfortunately, such
an approach would be hardly satisfactory as there are B|Ets| different candidate
mappings, where Bn is the n-th number in the fast-growing sequence of Bell
numbers. But it is not necessary to follow this ‘brute-force’ approach, and two
simple observations should in practice be of great help. More precisely, consider

a step transition system ts
df

= (S, T, sinit ). If it is generated by an encl-system
with the locality mapping L, then the following hold, for every state s ∈ S:

– If s
u⊎w
−→ and s

u
−→ then L(e) 6= L(f), for all e ∈ u and f ∈ w.

– If s
u

−→ and there is no w ⊂ u such that s
w

−→ then L(e) = L(f), for all
e, f ∈ u.

Thus, for the example transition systems in Figures 2(a) and 4(c), we have
respectively L(e) = L(f) and L(e) 6= L(f), and so the choice of localities we made
was actually the only one which would work in these cases. On the other hand,
for the step transition systems in Figures 4(a) and 6(a), the above rules do not
provide any useful information. Indeed, in both cases we may take L(e) = L(f)
or L(e) 6= L(f), and in each case synthesise a suitable encl-system, as shown
in Figure 6(b) for the example in Figure 6(a). Note that these rules can be used
for a quick decision that a step transition system is not a valid encl-transition
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system; for example, if we have s1
{e,f}
−→ and s1

{e}
−→ and s2

{e,f}
−→ and ¬s2

{e}
−→, for

two distinct states, s1 and s2, of the same step transition system.

(a)

sinit

{e}

{f}

e

f

e

f

(b)

Fig. 6. A step transition system where no assumption about co-locating the events
has been made (a), and two corresponding encl-systems with different locality map-
pings (b).

Previous work which appears to be closest to what has been proposed in
this paper is due to Badouel and Darondeau [16]. It discusses the notion of a
step transition system (generalising that introduced by Mukund [12]), which
provides much more general a framewo rk than the basic en-transition systems;
in particular, by dropping the assumption that a transition system should exhibit
the so-called intermediate state property:

s
α+β
−→ s′ =⇒ ∃s′′ : s

α
−→ s′′

β
−→ s′ .

But the step transition systems of [16] still exhibit a subset property:

s
α+β
−→ =⇒ s

α
−→ .

Neither of the these properties holds for enl-transition systems (and hence also
for encl-transition systems). Instead, transition systems with localities enjoy
their weaker version. More precisely, for enl-transition systems we have:

s
α+β
−→ s′ =⇒ (s

α
−→ s′′ =⇒ s′′

β
−→ s′ ∧ s

β
−→) ,

and for encl-transition systems, we have:

s
α+β
−→ =⇒ (s

α
−→ =⇒ s

β
−→) .

For example, the first of these properties implies that the transition system in
Figure 4(c) cannot be generated by an enl-system, and so the use of some
context arcs is unavoidable as shown, e.g., in Figure 4(d). We feel that both
properties might be useful in finding out whether (or to what extent) the theory
of [16] could be adopted to work for the encl-transition systems as well.



Synthesis of Elementary Net Systems with Context Arcs and Localities 17

Acknowledgment This research was supported by the Epsrc project Casino.

References

1. Dasgupta, S., Potop-Butucaru, D., Caillaud, B., Yakovlev, A.: Moving from weakly
endochronous systems to delay-insensitive circuits. Electr. Notes Theor. Comput.
Sci. 146(2) (2006) 81–103

2. Paun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput. Sci.
287(1) (2002) 73–100

3. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a petri net semantics for membrane
systems. In Freund, R., Paun, G., Rozenberg, G., Salomaa, A., eds.: Workshop
on Membrane Computing. Volume 3850 of Lecture Notes in Computer Science.,
Springer (2005) 292–309

4. Koutny, M., Pietkiewicz-Koutny, M.: Transition systems of elementary net systems
with localities. In Baier, C., Hermanns, H., eds.: CONCUR. Volume 4137 of Lecture
Notes in Computer Science., Springer (2006) 173–187

5. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6) (1995) 545–596
6. Billington, J.: Protocol specification using p-graphs, a technique based on coloured

petri nets. [22] 293–330
7. Donatelli, S., Franceschinis, G.: Modelling and analysis of distributed software

using gspns. [22] 438–476
8. Esparza, J., Bruns, G.: Trapping mutual exclusion in the box calculus. Theor.

Comput. Sci. 153(1&2) (1996) 95–128
9. Kleijn, J., Koutny, M.: Synchrony and asynchrony in membrane systems. In:

Workshop on Membrane Computing. (2006) 20–39
10. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part i: Clans, basic sub-

classes, and morphisms. Theor. Comput. Sci. 70(3) (1990) 277–303
11. Bernardinello, L., Michelis, G.D., Petruni, K., Vigna, S.: On the synchronic struc-

ture of transition systems. In Desel, J., ed.: Structures in Concurrency Theory,
Springer (1995) 69–84

12. Mukund, M.: Petri nets and step transition systems. Int. J. Found. Comput. Sci.
3(4) (1992) 443–478

13. Nielsen, M., Winskel, G.: Models for concurrency. In Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science 4. (1995) 1–148

14. Busi, N., Pinna, G.M.: Synthesis of nets with inhibitor arcs. In Mazurkiewicz,
A.W., Winkowski, J., eds.: CONCUR. Volume 1243 of Lecture Notes in Computer
Science., Springer (1997) 151–165

15. Pietkiewicz-Koutny, M.: The synthesis problem for elementary net systems with
inhibitor arcs. Fundam. Inform. 40(2-3) (1999) 251–283

16. Badouel, E., Darondeau, P.: Theory of regions. In Reisig, W., Rozenberg, G., eds.:
Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer (1996)
529–586

17. Vogler, W.: Partial order semantics and read arcs. In Pŕıvara, I., Ruzicka, P.,
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Appendix: Proof of Theorem 1

Clearly, tsencl is a step transition system. We need to prove that it satisfies the
five axioms in Definition 5. Before doing this, we will show that, for every b ∈ B,

rb
df

= ({c ∈ Cencl | b ∈ c}, •b, b•, �b,◭b)

is a (possibly trivial) c-region of tsencl. Moreover, if ∅ 6= ||rb|| 6= Cencl then rb is
non-trivial.

To show that Definition 4 holds for rb, we assume that c
u

−→encl c
′ in tsencl,

and proceed as follows:

Proof of Definition 4(1) for rb. We need to show that c ∈ ||rb|| and c′ /∈ ||rb||
implies |u ∩ •b| = 0 and |u ∩ b•| = 1.
From c ∈ ||rb|| (c′ /∈ ||rb||) it follows that b ∈ c (resp. b /∈ c′). Hence b ∈ c \ c′.
From Proposition 1 we have c \ c′ = •u and c′ \ c = u•. Hence b ∈ •u and, as
a consequence, there exists e ∈ u such that b ∈ •e, and so e ∈ b•. We therefore
have e ∈ u ∩ b•. Hence |u ∩ b•| ≥ 1. Suppose that there is f 6= e such that
f ∈ u∩ b•. Then we have f ∈ u and b ∈ •f which implies b ∈ •f ∩ •e, producing
a contradiction with e, f ∈ u ∈ Uencl. Hence |u ∩ b•| = 1.
From b /∈ c′ and c′ \ c = u•, we have b /∈ u•. Let g ∈ u (u 6= ∅ by definition).
Then b /∈ g•, and so g /∈ •b. Hence |u ∩ •b| = 0.

Proof of Definition 4(2) for rb. Can be proved similarly as Definition 4(1).

Proof of Definition 4(3) for rb. We need to show that u∩�b 6= ∅ implies c /∈ ||rb||.
From u ∩ �b 6= ∅ we have that there is e ∈ u such that e ∈ �b and so b ∈ �e.
Thus, since u is enabled at c in encl, b 6∈ c. Hence c /∈ ||rb||.

Proof of Definition 4(4) for rb. Can be proved similarly as Definition 4(3).

Proof of Definition 4(5) for rb. We need to show that u∩b• 6= ∅ implies c ∈ ||rb||
and c′ /∈ ||rb||.
From Proposition 1 we have c \ c′ = •u and c′ \ c = u•. From u∩ b• 6= ∅ we have
that there is e ∈ u such that e ∈ b•, and so b ∈ •e. Consequently, b ∈ •u = c \ c′,
and so b ∈ c and b /∈ c′. Hence c ∈ ||rb|| and c′ /∈ ||rb||.

Proof of Definition 4(6) for rb. Can be proved similarly as Definition 4(5).
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Proof of Definition 4(7) for rb. We need to show that •b ∩ �b = b• ∩ ◭b = ∅.
This follows directly from the fact that encl is an encl-system, where for every
event e, the sets •e, e•, �e and ◭e are mutually disjoint.

Clearly, if ∅ 6= ||rb|| 6= Cencl then rb is a non-trivial c-region, and we may now
proceed with the proof proper.

Proof of Axiom1. Follows directly from the definition of Cencl.

Proof of Axiom2. We observe that if e ∈ Etsencl
then {rb | b ∈ •e} ⊆ ◦e and

{rb | b ∈ e•} ⊆ e◦ (follows from •e 6= ∅ 6= e•, Proposition 2 and the definitions
of ◦e, e◦ and rb). This and •e 6= ∅ 6= e• yields ◦e 6= ∅ 6= e◦.

Proof of Axiom3. Suppose that c 6= c′ are two cases in Cencl. Without loss of
generality, we may assume that there is b ∈ c \ c′. Hence c ∈ ||rb|| and c′ /∈ ||rb||.
Thus, by the fact that rb is not trivial (∅ 6= ||rb|| 6= Cencl) and rb ∈ Regc \Regc′ ,
Axiom3 holds.

Proof of Axiom4. Suppose that c ∈ Cencl and u ∈ Utsencl
are such that ◦u⊳ ⊆

Regc and ♦u◦ ∩ Regc = ∅ and and there is no u ⊎ {e} ∈ Utsencl
satisfying:

L(e) ∈ L(u) and ◦e⊳ ⊆ Regc and ♦e◦ ∩ Regc = ∅. We need to show that

c
u

−→encl.
We have already shown that for e ∈ Etsencl

, b ∈ •e implies rb ∈ ◦e, and b ∈ e•

implies rb ∈ e◦. From this and u ∈ Utsencl
we have that u ∈ Uencl.

First we show •u ⊆ c. Let e ∈ u. Consider b ∈ •e. We have already shown that
this implies rb ∈ ◦e. From ◦u ⊆ Regc, we have that rb ∈ Regc, and so c ∈ ||rb||.
Consequently, b ∈ c. Hence, for all e ∈ u we have •e ⊆ c, and so •u ⊆ c.
Now we show that u• ∩ c = ∅. Let e ∈ u. Consider b ∈ e•. We have already
shown that this implies rb ∈ e◦. From u◦ ∩ Regc = ∅, we have that rb /∈ Regc,
and so c /∈ ||rb||. Consequently, b /∈ c. Hence, for all e ∈ u we have e• ∩ c = ∅,
and so u• ∩ c = ∅.
Now we show that �u ∩ c = ∅. Suppose to the contrary that �u ∩ c 6= ∅. Then
there is e ∈ u such that �e∩c 6= ∅, and as a consequence there is b ∈ �e such that
b ∈ c. Hence, c ∈ ||rb|| and so ||rb|| 6= ∅. We now prove that ||rb|| 6= Cencl. Suppose
||rb|| = {c ∈ Cencl | b ∈ c} = Cencl. Then b is a condition present in every case c of
encl making it impossible for any step containing e to be enabled (b ∈ �e). This,
in turn, contradicts the fact that e ∈ Etsencl

(as an event in u ∈ Utsencl
) and

must appear in some step labelling a transition from tsencl. Hence ||rb|| 6= Cencl,
and so rb is a non-trivial c-region. From b ∈ �e we have e ∈ �b = �

rb, which
means that rb ∈ ♦e. Consequently, rb ∈ ♦u. From this and ♦u ∩ Regc = ∅ we
have rb /∈ Regc, and so c /∈ ||rb||. Consequently b /∈ c, and so we obtained a
contradiction. Hence �u ∩ c = ∅.
Now we show that ◭u ⊆ c. Suppose to the contrary that there is b ∈ ◭u\c. From
b ∈ ◭u we have that there is e ∈ u such that b ∈ ◭e. From b /∈ c we have that
c /∈ ||rb||, and so ||rb|| 6= Cencl. We now prove that ||rb|| 6= ∅. Assume that ||rb|| = ∅.
This implies that, for all c ∈ Cencl, b /∈ c. But this would make it impossible to
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execute any step containing e in encl. This, in turn, contradicts the fact that
e ∈ Etsencl

and so it must appear in some step labelling a transition in tsencl.
Hence ||rb|| 6= ∅, and so the c-region rb is non-trivial. From b ∈ ◭e we have that
e ∈ ◭b = ◭

rb. Consequently, we have that rb ∈ ⊳e, and so rb ∈
⊳u. From this and

⊳u ⊆ Regc we have that rb ∈ Regc, and so c ∈ ||rb||. Consequently b ∈ c, and so
we obtained a contradiction. Hence ◭u ⊆ c.
All what remains to be shown is that there is no step u⊎ {e} ∈ Uencl satisfying:
L(e) ∈ L(u), •e◭ ⊆ c and �e• ∩ c = ∅. Suppose that this is not the case, and
u ⊎ {e1} ∈ Uencl is a step satisfying these conditions. We consider two cases.
Case 1: There is no u⊎{e1}⊎{f} ∈ Uencl such that L(f) ∈ L(u⊎{e1}),

•f◭ ⊆ c

and �f• ∩ c = ∅. This implies c
u⊎{e1}
−→ encl. By Proposition 12, we have that

u⊎{e1} ∈ Utsencl
. Moreover, L(e1) ∈ L(u) and, by Propositions 7(3) and 10, we

have ◦(u ⊎ {e1})
⊳
⊆ Regc and ♦(u ⊎ {e1})

◦
∩Regc = ∅. We therefore obtained

a contradiction with our assumptions.
Case 2: We can find u ⊎ {e1} ⊎ {e2} ∈ Uencl such that L(e2) ∈ L(u ⊎ {e1}),
•e2

◭ ⊆ c and �e2
• ∩ c = ∅. Then we consider Cases 1 and 2 again, taking

u⊎ {e1} ⊎ {e2} instead of u⊎ {e1}. Since the number of events in E is finite, we
will eventually end up in Case 1. This means that, eventually, we will obtain a
contradiction.

Proof of Axiom5. We need to show that if c
u

−→encl then there is no u ⊎ {e} ∈
Utsencl

satisfying L(e) ∈ L(u), ◦e⊳ ⊆ Regc and ♦e◦ ∩ Regc = ∅.
Suppose to the contrary that there is u ⊎ {e} ∈ Utsencl

as above (†).
We have already shown that for e ∈ Etsencl

, b ∈ •e implies rb ∈ ◦e, and b ∈ e•

implies rb ∈ e◦. From this and u ⊎ {e} ∈ Utsencl
we have u ⊎ {e} ∈ Uencl.

We will show that •e ⊆ c. Consider b ∈ •e. We have that b ∈ •e implies rb ∈ ◦e.
But ◦e ⊆ Regc, and so rb ∈ Regc. This means that c ∈ ||rb||, and consequently
b ∈ c. Hence •e ⊆ c.
We now show that e• ∩ c = ∅. Consider b ∈ e•. We have that b ∈ e• implies
rb ∈ e◦. But e◦ ∩ Regc = ∅, and so rb /∈ Regc. This means that c /∈ ||rb||, and
consequently, b /∈ c. Hence e• ∩ c = ∅.
Now we show that �e ∩ c = ∅. Suppose to the contrary that b ∈ �e ∩ c 6= ∅.
We have already shown in the proof of Axiom4 that for e ∈ Etsencl

, b ∈ �e ∩ c
implies rb ∈ ♦e. But ♦e ∩ Regc = ∅, so rb /∈ Regc. This means c /∈ ||rb||, and so
b /∈ c, a contradiction.
Finally, we show that ◭e ⊆ c. Suppose to the contrary that there is b ∈ ◭e \ c.
We have already shown in the proof of Axiom4 that for e ∈ Etsencl

, b ∈ ◭e \ c
implies rb ∈ ⊳e. But ⊳e ⊆ Regc, so rb ∈ Regc. This means that c ∈ ||rb|| and,
consequently b ∈ c, a contradiction.
As a result, assuming that (†) holds leads to a contradiction with c

u
−→encl.


