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Thomas-Fermi versus one- and two-dimensional regimes of a trapped dipolar

Bose-Einstein condensate

N.G. Parker and D.H.J. O’Dell
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

We derive the criteria for the Thomas-Fermi regime of a dipolar Bose-Einstein condensate in
cigar, pancake and spherical geometries. This also naturally gives the criteria for the mean-field
one- and two-dimensional regimes. Our predictions, including the Thomas-Fermi density profiles,
are shown to be in excellent agreement with numerical solutions. Importantly, the anisotropy of the
interactions has a profound effect on the Thomas-Fermi/low-dimensional criteria.

PACS numbers: 03.75.Hh, 75.80.+q

Introduction. A Bose-Einstein condensate (BEC) is
said to be in the Thomas-Fermi (TF) regime when the
interaction energy dominates the zero-point energy [1, 2].
Despite being a dilute gas, in this regime the BEC is
strongly affected by interactions and behaves in a highly
non-ideal manner. Furthermore, the TF description is
relatively simple compared to full Gross-Pitaevskii the-
ory and facilitates exact results [1]. Consider a BEC con-
taining N atoms of mass m confined to a spherical har-
monic trap V (r) = mω2r2/2, with harmonic oscillator

(HO) length lho =
√

~/(mω), and repulsive s-wave inter-
actions with positive scattering length a. The TF regime
occurs for large values of the parameter Na/lho, and thus
typically arises for dense strongly repulsive BECs.

Recently, a dipolar BEC was created with atomic
dipoles polarized in a common direction by an external
field [3]. Far from any scattering resonances the inter-
action can be represented by a pseudo-potential which
includes the bare dipole-dipole interaction [4, 5],

U(r) = gδ(r) +
Cdd

4π
êiêj

(δij − 3r̂ir̂j)

r3
. (1)

The first term describes s-wave scattering arising primar-
ily from van der Waals interactions, where g = 4π~

2a/m.
The second term describes the long-range part of the in-
teraction between dipoles aligned along the unit vector
ê, where Cdd is the dipolar coupling strength. An impor-
tant quantity is the ratio between the dipolar and s-wave
interactions εdd = Cdd/3g [6]. For magnetic dipoles with
moment d, Cdd = µ0d

2, where µ0 is the permeability of
free space. The signs and magnitudes of Cdd and g can
be controlled by rotation of the polarization axis [6], and
by a Feshbach resonance [7], respectively. A large range
of εdd is therefore accessible and has already begun to be
probed experimentally [7, 8, 9].

In contrast to the van der Waals interaction, the dipo-
lar interaction is long-range and anisotropic. This has
dramatic consequences upon the behavior of a BEC and
can even lead to collapse when N and/or Cdd exceed crit-
ical values [4, 9, 10, 11, 12]. Many properties of a dipo-
lar BEC in the TF regime have already been discussed,
e.g., its density profile [12], expansion dynamics [13], ex-
citation frequencies [12, 14], rotation [15] and vortices
[16]. However, a systematic discussion of the criteria for

the Thomas-Fermi regime of a dipolar BEC is currently
lacking. In this paper we derive these criteria for the im-
portant cases of cigar-, pancake-, and spherically-shaped
ground states. Our approach also reveals the criteria for
the mean-field 1D and 2D regimes.

Theory. At zero temperature the mean-field conden-
sate wave function ψ ≡ ψ(r, t) obeys the Gross-Pitaevskii
equation (GPE) [1]. Stationary solutions, for which ψ is
real, satisfy the time-independent GPE,
[

−(~2/2m)∇2 + V (r) + gψ2 + Φdd(r, t)
]

ψ = µψ, (2)

where µ is the chemical potential and the atomic density
n(r) = ψ(r)2 is normalised via

∫

n(r)d3
r = N .

We assume that confinement of the gas is provided
by a cylindrically-symmetric harmonic trap V (r) =
1
2
m(ω2

xρ
2 + ω2

zz
2), where ωx and ωz are the radial and

axial trap frequencies, and ρ =
√

x2 + y2. The s-wave
interactions introduce a local mean-field potential gψ2

while the dipolar interactions introduce a non-local po-
tential Φdd given by [4],

Φdd(r) =

∫

d3
r
′Udd(r − r

′)ψ(r′)2, (3)

where Udd(r) is the second term in Eq. (1).
In a time-dependent situation, where ψ is complex, ki-

netic energy arises from both zero-point motion (density
gradients) and velocities (phase gradients). However, in
Eq. (2), only zero-point energy contributes. When this is
negligible we enter the TF regime and Eq. (2) becomes,

gn(r) +m(ω2
xρ

2 + ω2
zz

2)/2 + Φdd(r) = µ. (4)

Equation (4) is satisfied by the well-known inverted
parabola solution even in the presence of dipolar interac-
tions [12]. This has the form,

n(r) = n0

[

1 − (ρ/Rx)2 − (z/Rz)
2
]

, (5)

where n0 = 15N/(8πRzR
2
x) is the peak density. The

density is zero beyond the BEC boundary which is spec-
ified by the TF radii, Rx and Rz . Expressions for Rx

and Rz are presented in [12]. For purely s-wave interac-
tions, stable TF solutions only exist for repulsive inter-
actions (g > 0); under attractive interactions (g < 0),
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the zero-point kinetic energy is crucial to stabilise the
BEC against collapse. Additionally, the aspect ratio
κ = Rx/Rz equals the trap ratio γ = ωz/ωx, while for
dipolar interactions this is not generally true.

It is useful to introduce a fictitious electrostatic poten-
tial φ(r) =

∫

dr′n(r)/(4π|r−r
′|). This satisfies Poisson’s

equation ∇2φ = −n(r). For dipoles aligned in the z-
direction, Φdd can then be expressed as [12],

Φdd(r) = −gεdd

[

3∂2
zφ(r) + n(r)

]

. (6)

Here the first term is anisotropic and long-range, while
the second is short-range and contact-like. Note that the
dipolar potential inside the inverted parabola (5) is [12],

Φdd =
n0gεdd

R2
z

[

ρ2

κ2
− 2z2 − f(κ)

(

R2
z −

3

2

ρ2 − 2z2

κ2 − 1

)]

,

(7)

where f(κ) = (1+2κ2)/(1−κ2)−3κ2atanh
√

1 − κ2/(1−
κ2)3/2 lies in the range 1 ≥ f(κ) ≥ −2 and κ is deter-
mined by a transcendental equation [4, 12],

3κ2εdd

[(

γ2

2
+ 1

)

f(κ)

1 − κ2
− 1

]

= (1−εdd)(κ
2−γ2). (8)

Cigar: 3D TF vs 1D mean-field. Menotti and
Stringari [17] analysed the crossover between the 3D TF
and 1D mean-field regimes of a cigar-shaped s-wave BEC.
We now extend their approach to include dipolar interac-
tions. We begin by neglecting the axial trapping (ωz = 0)
and consider the BEC to be uniform along z with 1D den-
sity (number of atoms per unit length) n1. Then Eq. (6)
reduces to the contact-like form,

Φdd(r) = −gεddn(ρ). (9)

We can thus define an effective s-wave scattering length
for the cigar ac = a(1− εdd). The dipoles in the cigar lie
predominantly end-to-end such that for Cdd > 0 (Cdd <
0) the net dipolar interaction is attractive (repulsive).

Introducing the dimensionless quantities ρ′ = ρ/lx and

ψρ(ρ
′) = lxψ(ρ)/

√
n1, where lx =

√

~/mωx is the radial
HO length, Eq. (2) becomes,
(

−
∂2

ρ′

2
− ∂ρ′

2ρ′
+
ρ′2

2
+ 4πacn1ψρ

2

)

ψρ =
µ1[acn1]

~ωx
ψρ.

(10)
The chemical potential µ1[acn1] is a function of n1: one
can numerically tabulate this equation of state by solv-
ing (10) for different values of n1. The kinetic terms in
Eq. (10) become negligible in comparison to the interac-
tion terms when acn1 ≫ 1, in which case the TF radial
density profile has the form,

ψρ
2 =

1

4πacn1

(

µ1[acn1]

~ωx
− 1

2
ρ′2
)

, (11)

with TF radiusRx =
√

2µ1[acn1]/~ω. Use of the normal-

isation condition
∫

ψρ
22πρ′dρ′ = 1 leads to the relation,

µ1[acn1]/~ωx = 2
√
acn1. (12)

In the opposite regime of acn1 ≪ 1, termed the
1D mean-field regime [1], the solution of Eq. (10) ap-
proximates the non-interacting radial HO state ψρ =

π−1/2e−ρ′2/2. Inserting this form into Eq. (2), we obtain
the chemical potential perturbatively to be,

µ1[acn1]/~ωx = 1 + 2acn1. (13)

We now wish to find the effect of finite axial trapping
ωz 6= 0, for which n1(z) becomes inhomogeneous. We
can easily estimate the correction to Eq. (9) using the
TF result. Expansion of Eq. (7) as κ → 0 [19] reveals
that the leading correction is of order κ2 and becomes
negligible for κ ≪ 1. Thus if the variation is sufficiently
weak along z, Eq. (10) still defines the local chemical
potential along z, µ1[acn1(z)], and we can also employ
the local density approximation,

µ1[acn1(z)] +mω2
zz

2/2 = µ, (14)

where µ is the global chemical potential of Eq (2). At the
axial boundary Rz , this gives µ1[acn1 = 0] + 1

2
mω2

zR
2
z =

µ. Then, by defining the function µ̃1 = (µ1[acn1(z)] −
µ1[acn1 = 0])/~ωx, we can rewrite Eq. (14) as [17],

µ̃1[acn1(z)] = (α2/2)
[

1 − (z/Rz)
2
]

(15)

where α = lxRz/l
2
z . We can determine n1(z) by using the

equation of state µ1[acn1] to invert Eq. (15), i.e., n1(z) =
µ̃−1

1 [µ̃1[acn1(z)]]/ac. For each choice of α we still need
to know Rz, and this is obtained from the normalization
condition

∫

n1(z)dz = N which can be written as,

α

∫ 1

−1

µ̃−1
1

[

1

2
α2(1 − ζ2)

]

dζ = Na(1 − εdd)
lx
l2z
, (16)

where ζ = z/Rz. On the right hand side we identify a
natural dimensionless parameter. We enter the radial TF
regime (and therefore the full 3D TF regime) when,

Na(1 − εdd)lx/l
2
z ≫ 1. 3D TF cigar (17)

In this case we can use Eq. (12) to give the density profile,

n1(z) =
1

a(1 − εdd)

(

lxRz

2l2z

)4(

1 − z2

R2
z

)2

, (18)

where Rz = [15Na(1 − εdd)l
8
z/l

4
x]1/5. When Na(1 −

εdd)lx/l
2
z ≪ 1 we enter the 1D mean-field regime. Then,

Eq. (13) leads to the density profile,

n1(z) =
1

a(1 − εdd)

(

lxRz

2l2z

)2(

1 − z2

R2
z

)

, (19)

whereRz = [3Na(1−εdd)l
2
z/l

2
x]1/3. Importantly, at εdd =

1 the overall contact interactions vanish and the TF cigar
criterion (17) cannot be satisfied. When εdd = 0 we
retrieve the results of [17].

We now illustrate the key dependence on εdd. We have
obtained numerically the ground states of the 3D dipo-
lar GPE, following the procedure outlined in [18]. The
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FIG. 1: Axial density n1(z) of a cigar BEC for various values
of εdd according to the GPE (solid lines), 3D TF cigar pre-
diction of Eq. (18) (dashed line) and 1D mean field prediction
of Eq. (19) (dotted line). We employ Nalx/l2

z
= 100, γ = 0.1,

ωx = 2π × 50Hz and 52Cr atoms.

axial density profiles for a cigar BEC are compared in
Fig. (1) for various values of εdd, according to the GPE
(solid line), TF prediction (dashed line) and 1D mean-
field prediction (dotted line). For weak dipolar interac-
tions εdd = 0.1, giving Na(1 − εdd)lx/l

2
z ≫ 1, the GPE

profile is in excellent agreement with the 3D TF cigar
prediction. For strong dipolar interactions εdd = 0.8,
the 1D mean-field regime becomes an excellent descrip-
tion of the profile. For intermediate dipolar interactions
εdd = 0.5 neither analytic form agrees well with the GPE
results. In [13] observations of the density and expansion
of a cigar dipolar BEC were compared with TF predic-
tions. For their parameters, including εdd ≈ 0.16 and
N ≈ 5 × 105, we obtain Na(1 − εdd)lx/l

2
z ≈ 50 ≫ 1 thus

satisfying the cigar TF criteria.
Pancake: 3D TF vs 2D mean-field. We now consider

a highly flattened pancake BEC and follow a similar
methodology to the cigar BEC. We initially assume that
the BEC has infinite radial extent and uniform 2D den-
sity n2. Then, Poisson’s equation ∇2φ = −n(r) reduces
to ∂2

zφ = −n(z), such that,

Φdd(r) = 2gεddn(z), (20)

This is, again, contact-like, giving an effective scattering
length ap = (1 + 2εdd)a. In the pancake the dipoles are
predominantly side-by-side and so the net interaction is
repulsive (attractive) for Cdd > 0 (Cdd < 0). Introducing
the dimensionless parameters z′ = z/lz and ψz(z

′) =
√

lz/n2ψ(r), where lz =
√

~/mωz is the axial HO length,
the GPE becomes,

(

−∂
2
z′

2
+
z′2

2
+ 4πaplzn2ψ

2
z

)

ψz =
µ2[aplzn2]

~ωz
ψz. (21)

The axial TF regime exists when aplzn2 ≫ 1. By
normalising the corresponding TF density profile via
∫

ψ2
zdz

′ = 1, we obtain the TF chemical potential,

µ2[aplzn2]/~ωz = (6πaplzn2)
2/3

/2. (22)

In the opposite regime of aplzn2 ≪ 1, we enter the 2D
mean-field regime. Here ψz approximates the ground HO
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FIG. 2: 2D density n2(ρ) of a pancake BEC for various values
of εdd according to the GPE (solid lines), TF pancake predic-
tion of Eq. (26) (dashed line) and 2D mean field prediction
of Eq. (27) (dotted line). We employ Nal3

z
/l4

x
= 10, γ = 10,

ωx = 2π × 5Hz and 52Cr atoms.

state ψz = π−1/4e−z′2/2 and the chemical potential is
found perturbatively to be,

µ2[aplzn2]/~ωz = 1 + 2
√

2πaplzn2. (23)

We now consider introduce finite radial trapping ωr 6=
0. Expanding Eq. (7) for κ → ∞ [20] shows that the
leading correction to Eq. (20) is of the order κ−1 and
negligible when κ ≫ 1. Defining the function µ̃2 =
(µ2[aplzn2(z)] − µ2[aplzn2 = 0])/~ωz and employing the
normalisation condition

∫

n2(ρ)2πρdρ = N we obtain,

2πβ2

∫ 1

0

µ̃−1

[

β2

2
(1 − s2)

]

s ds =
Na(1 + 2εdd)l

3
z

l4x
,

(24)
where s = ρ/Rx and β = lzRx/l

2
x. We therefore enter the

axial TF regime, and hence the 3D TF regime, when,

Na(1 + 2εdd)l
3
z/l

4
x ≫ 1. 3D TF pancake (25)

For εdd = 0 we obtain the same result as in [21]. The
corresponding 2D TF density profile is,

n2(r) =
1

3πlza(1 + 2εdd)

(

lzRx

l2x

)3(

1 − ρ2

R2
x

)3/2

, (26)

where Rx = [15Na(1 + 2εdd)l
6
x/l

2
z]

1/5.
In the 2D mean-field regime of Na(1 + 2εdd)l

3
z/l

4
x ≪ 1

we obtain,

n2(r) =
1√

2πlza(1 + 2εdd)

(

lzRx

2l2x

)2(

1 − ρ2

R2
x

)

, (27)

where Rx = [16Na(1 + 2εdd)l
4
x/

√
2πlz]

1/4.
The experiment [9] featured a pancake BEC with γ =

10. For their parameters (ωx = 2π × 330, N = 25, 000
and εdd ≈ 0.16) we findNa(1+2εdd)l

3
z/l

4
x = 7, suggesting

that the initial BEC was not in the TF regime.
In a very flat pancake, the net contact interactions

become zero for εdd = −0.5 and the TF regime can-
not be supported. We demonstrate the role of εdd in
Fig. 2 which presents the 2D density profile of a pancake
BEC. For εdd = −0.3, the net interactions are very weak
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and the 2D mean-field prediction (dotted line) agrees well
with the GPE profile (solid line). Conversely, for εdd = 1
the combined interactions are relatively strong giving ex-
cellent agreement with the 3D TF prediction (dashed
line). For an intermediate value of εdd = 0.1, the ex-
act solution lies in between the two analytic predictions.

Approximately spherical BEC. Away from the cigar
and pancake limits Φdd no longer reduces to a local in-
teraction and we must consider its full form. In order to
proceed we shall assume the validity of the 3D TF so-
lution (5) and use energetic arguments to check its self-
consistency. The combined s-wave and dipolar interac-
tion energy for the TF solution is [12],

Ei =

∫

(g

2
ψ4 + Φddψ

2
)

d3
r =

15N2gκ

28πR3
x

[1 − f(κ)εdd](28)

We observe that when εdd = 1/f(κ) the net interac-
tions vanish and the TF regime cannot be achieved.
The kinetic energy of a spherical TF distribution is
Ek ≈ 5N~

2/2mR2
x, up to a logarithmic correction [1].

The TF approximation is valid when Ei/Ek ≫ 1 which,
using the above expressions and dropping the numerical
prefactors (≈ 1), becomes (Naκ/Rx) [1 − f(κ)εdd] ≫ 1.
From Eq. (8) we find that a spherical (κ = 1) BEC oc-
curs when εdd = ε0dd where ε0dd = (5/2)(γ2 − 1)(γ2 + 2).
Introducing the parameter δ = εdd − ε0dd and expanding
Eq. (8) to first order in δ and (κ − 1), we obtain the
relation κ = 1− (7δ/15)(γ2 + 2)2/(12γ2 − 2γ4 − 3). Fur-
thermore, we expand the expression for Rx in [12] and
f(κ) [22]. To first order in δ, the TF criterion for an
approximately spherical dipolar BEC is then,

(

Na

ax

)4/5(
2 + γ2

45

)1/5 [

1 − 14γ2(2 + γ2)δ

15(12γ2 − 3 − 2γ4)

]

≫ 1.

(29)
Since we employ Rx as the length scale rather than ax,
this criteria has a different form from the usually-quoted
Na/ax. We have confirmed that this gives a very good
approximation for small deviations, typically up to 10%,
from κ = 1. It is important to note that Eq. (8) has
both stable and unstable static solutions [12]. Stable
solutions of the full transcendental equation (8) for κ = 1
exist only when (12γ2 − 3 − 2γ4) > 0 or equivalently
0.5<∼γ <∼ 2.4. Hence the factor multiplying δ in Eq. (29)
is always positive and finite for the cases of interest.

Equation (29) reveals the sensitivity of the interactions
to deviations from a perfectly spherical shape, as charac-
terised by δ. For a perfectly spherical BEC (δ = 0), the
dipolar energy is zero and the TF criterion (29) reduces
to its s-wave form. Φdd itself does not vanish but takes
on the saddle-shaped form Φdd = 2n0gεdd(ρ

2−2z2)/5R2
z

as obtained by taking the limit κ→ 1 of Eq. (7) [22]. For
δ > 0 (δ < 0), the BEC is slightly elongated (flattened)
and the net dipolar interactions are attractive (repulsive).
In [8], an approximately spherical dipolar BEC was cre-
ated (ωx ≈ 2π×480Hz,N = 30, 000, κ ≈ 1 and a ≈ 5nm)
for which the left side of Eq. (29) equals 45, confirming
that it was in the TF regime.

The TF criteria given in this paper do not specify
whether the putative ground state actually exists. For
a pancake dipolar BEC, radial density wave structures
have been predicted for εdd → ∞ [23], and so the assump-
tion of homogeneous radial density leading to Eq. (20)
would not hold. Furthermore, a stable ground state may
not exist; the Bogoliubov spectrum for a uniform dipolar
BEC [10] predicts an instability to density fluctuations
when εdd is outside of the range −1/2 < εdd < 1 for
a > 0. Although trapping can significantly extend this
range of stability, it must be mapped out by solving the
Bogoliubov de Gennes equations numerically [23]. How-
ever, within this range of stability and away from density
wave structures, the TF regime is both stable and has the
inverted parabola profile, and so the criteria should hold.

Conclusions. For cigar-shaped and pancake-shaped
condensates, the non-trivial dipolar interactions reduce
to a simple contact-like form. We identify their TF cri-
teria, Eqns (17) and (25), which also determine the 1D
and 2D mean-field regimes. For the cigar (pancake) the
net interactions are proportional to 1 − εdd (1 + 2εdd)
such that that it becomes increasingly difficult to remain
in the TF regime as εdd → 1 (εdd → −1/2). This high-
lights the profound effect of the anisotropic dipolar in-
teractions. Our predictions are in excellent agreement
with full numerical solutions. Furthermore, for the more
complicated case of a spherical condensate we determine
the self-consistency criterion (29) for Thomas-Fermi be-
haviour. These criteria are of relevance to current theo-
retical and experimental studies of dipolar condensates.

We thank the Canadian Commonwealth Scholarship
Program (NGP) and NSERC (DHJOD) for funding and
R. M. W. van Bijnen for stimulating discussions.
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