COMPUTING
SCIENCE

Cloud Computing for Chemical Activity Prediction

Paul Watson, David Leahy, Jacek Cala, Vladimir Sykora, Hugo Hiden, Simon Woodman, Martyn Taylor and Dominic Searson

TECHNICAL REPORT SERIES

No. CS-TR-1242 March 2011
Cloud Computing for Chemical Activity Prediction

Abstract

This paper describes how cloud computing has been used to reduce the time taken to generate chemical activity models from years to weeks. Chemists use Quantitative Structure-Activity Relationship (QSAR) models to predict the activity of molecules. Existing Discovery Bus software builds these models automatically from datasets containing known molecular activities, using a “panel of experts” algorithm. Newly available datasets offer the prospect of generating a large number of significantly better models, but the Discovery Bus would have taken over 5 years to compute them. Fortunately, we show that the “panel of experts” algorithm is well-matched to clouds. In the paper we describe the design of a scalable, Windows Azure based infrastructure for the panel of experts pattern. We present the results of a run in which up to 100 Azure nodes were used to generate results from the new datasets in 3 weeks.
Bibliographical details

Cloud Computing for Chemical Activity Prediction

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1242)

Abstract

This paper describes how cloud computing has been used to reduce the time taken to generate chemical activity models from years to weeks. Chemists use Quantitative Structure-Activity Relationship (QSAR) models to predict the activity of molecules. Existing Discovery Bus software builds these models automatically from datasets containing known molecular activities, using a “panel of experts” algorithm. Newly available datasets offer the prospect of generating a large number of significantly better models, but the Discovery Bus would have taken over 5 years to compute them.

Fortunately, we show that the “panel of experts” algorithm is well-matched to clouds. In the paper we describe the design of a scalable, Windows Azure based infrastructure for the panel of experts pattern. We present the results of a run in which up to 100 Azure nodes were used to generate results from the new datasets in 3 weeks.

About the authors

Paul Watson is Professor of Computer Science, Director of the Informatics Research Institute, and Director of the North East Regional e-Science Centre. He also directs the UKRC Digital Economy Hub on “Inclusion through the Digital Economy”. He graduated in 1983 with a BSc (I) in Computer Engineering from Manchester University, followed by a PhD in 1986. In the 80s, as a Lecturer at Manchester University, he was a designer of the Alvey Flagship and Esprit EDS systems. From 1990-5 he worked for ICL as a system designer of the Goldrush MegaServer parallel database server, which was released as a product in 1994. In August 1995 he moved to Newcastle University, where he has been an investigator on research projects worth over 20M. His research interests are in scalable information management. Paul Watson teaches information management on the System Design for Internet Applications Msc and the e-business MSc. In total, Paul Watson has over forty refereed publications, and three patents. Professor Watson is a Chartered Engineer, a Fellow of the British Computer Society, and a member of the UK Computing Research Committee.

Prof. David Leahy was a Senior Executive with what is now AstraZeneca Pharmaceuticals before leaving to found Cyprotec, an information company supporting research by 150 Pharmaceutical companies world-wide. Having led Cyprotec through start-up, MBO and IPO on the London Stock Exchange he left the company to work on new business ventures and academic research at Newcastle University, UK as part of the Newcastle Science City initiative. He held a "Professor of Practice" position in the Business School and had a research group in Computer-Aided Molecular Design funded by Cancer Research UK. He has been active in scientific software development applied to drug discovery as a developer, manager and entrepreneur for over 25 years.

Jacek Cala joined the School of Computing Science in 2009 and is involved in e-Science Centre project under Professor Paul Watson. His main role is to investigate possible applications of Microsoft cloud computing technologies in the ESC. Jacek received his MSc in Computing Science from the AGH-University of Science and Technology (Cracow, Poland) in 2001. Between 2001-2009 he worked at the AGH-UST as a Teaching and Research Assistant in Distributed System Research Group. He was involved in many interesting research projects related to telemedicine, adaptive distributed systems, distributed management, virtual laboratories. Jacek’s main present and past research interests are related to the areas of distributed systems, component-based systems, compositional adaptation, mobile systems and more recently cloud computing.

Vladimir Sykora has extensive experience in the development of software technologies for personalised drug discovery, covering the whole design-synthesis-screening cycle of pharmaceutical research. Vladimir obtained a degree in Chemical Engineering from the Central University of Venezuela, and a PhD in computational chemistry from the University of Newcastle, UK.

Hugo Hiden is the software development lead on the SIDE project. His main interests are the development of the e-Science Central system, cloud based data analysis systems and workflows. Before this, he was the Technical Director of the UK North Eastern Regional e-Science Centre (NEReSC) at Newcastle University where his primary responsibility was the technical co-ordination of the various research projects within the centre. Prior to this, he spent 6 years in industry developing advanced data integration, analysis and modeling tools at Avantium.
Technologies and GSE Systems Inc. He holds a PhD in the application of Genetic Programming to chemical process data analysis and has published numerous papers on the subjects of process monitoring, computer security and collaborative R&D.

Simon Woodman is a Research Associate in the Scalable Information Management group. His interests include workflow enactment, especially those systems that allow distributed coordination; service description languages, data provenance, social networking and collective intelligence. He is currently developing an e-Science system to allow secure data sharing and workflow enactment for the neuroscience domain. Simon was awarded his PhD in 2008 for his thesis on "A Programming System for Process Coordination in Virtual Organisations", supervised by Prof. Santosh Shrivastava. During his undergraduate studies, Simon worked at IBM Hursley for a year as part of a team developing the CICS Information Centre. Simon received his BSc (hons) from Newcastle in 2002.

Martyn Taylor is a Software Engineer currently working at RedHat Ltd. Martyn graduated with a BSc in Computing Science in 2006, at Newcastle University, where he subsequently went on to win a scholarship to study MSc Distributed Systems, graduating with a Distinction in 2008. After attaining an MSc, Martyn went on to work for Arjuna Technologies, developing solutions to provider integration of Cloud Computing with the Arjuna Agility platform. Further to this work, he gained a position as RA for Newcastle University in 2009, working on the integration of e-science, Cloud Computing and chemical prediction analysis software. Now, a Software Engineer at RedHat, Martyn works on a number of state of the art, open source Cloud Computing applications.

Dominic Searson holds a M.Eng. (Hons) degree and a Ph.D. in Chemical Engineering, both from Newcastle University, UK. His research interests include: evolutionary computation, multi-variate statistical modelling, quantitative structure activity relationships (QSAR), chemical informatics, complex systems, process modelling and process control.

Suggested keywords

CLOUD COMPUTING
QSAR
WINDOWS AZURE
Cloud Computing for Chemical Activity Prediction

Paul Watson, David Leahy, Jacek Cala, Vladimir Sykora, Hugo Hiden, Simon Woodman, Martyn Taylor, Dominic Searson
Newcastle University
Newcastle upon Tyne, UK
{firstname.lastname}@ncl.ac.uk except for {s.j.woodman | h.g.hiden | d.p.searson}@ncl.ac.uk

Abstract—This paper describes how cloud computing has been used to reduce the time taken to generate chemical activity models from years to weeks. Chemists use Quantitative Structure-Activity Relationship (QSAR) models to predict the activity of molecules. Existing Discovery Bus software builds these models automatically from datasets containing known molecular activities, using a “panel of experts” algorithm. Newly available datasets offer the prospect of generating a large number of significantly better models, but the Discovery Bus would have taken over 5 years to compute them.

Fortunately, we show that the “panel of experts” algorithm is well-matched to clouds. In the paper we describe the design of a scalable, Windows Azure based infrastructure for the panel of experts pattern. We present the results of a run in which up to 100 Azure nodes were used to generate results from the new datasets in 3 weeks.

Keywords: cloud computing; chemistry; workflow

I. INTRODUCTION

In the search for new anti-cancer therapies, the family of kinase enzymes are important biological targets since many are intimately connected to cell division and other important maintenance functions. New drugs that block the action of certain kinase enzymes are being sought by researchers at Newcastle University in collaborations with chemists, who make the new potential drugs, and biologists, who test them against the kinases. The scientists use a method known as QSAR (Quantitative Structure-Activity Relationships) [1] to mine experimental data for patterns that relate the chemical structure of a drug to its kinase activity. If a successful QSAR model can be derived from the experimental data then that model can be used to focus new chemical synthesis, and by creating QSAR models for more than one set of results, for different kinases, the new drugs can be designed to be selective.

We have an existing infrastructure - The Discovery Bus [2] - which implements an auto-QSAR (Quantitative Structure Activity Relationship) best practice modeling workflow for chemical structure property data. It can automatically generate hundreds of models for each property type and select the best and most valid. The Discovery Bus creates a library of predictive models for use in the design of better, safer drugs, as well more environmentally benign products, while at the same time reducing animal experimentation.

New databases of chemical structure properties have recently become available, covering many different types of biological action that are important in drug action, including side effects as well as environmental and human hazards. Unfortunately, building each new model is computationally intensive and so the Chemists were faced with an unacceptable five year wait to process all newly available data on their single-server Discovery Bus implementation.

However, a preliminary investigation suggested that Cloud Computing had the potential to revolutionize the use of the Discovery Bus to process new data as:

- There was the potential to generate new models in parallel, so reducing the time to process the new data.
- Compute resources were only needed irregularly, when new data was published.
- The Chemists did not have access to any other large-scale computational resources.

The “Junior” project has therefore used Cloud Computing to provide the chemists with an implementation of the Discovery Bus that allows them to quickly build new models, at an affordable cost when new data becomes available. We believe that the system is interesting for several reasons:

- Its scalable, QSAR model-building, capacity significantly exceeds that found in any other implementation: it was able to process the new data in three weeks (by exploiting 100 cloud nodes), rather than the five years the Chemists faced with their existing single-server implementation. QSAR is a common technique in chemistry and so the Cloud approach described here could have wide application. For example, QSAR is widely used for risk assessment, toxicity prediction, drug discovery and lead optimization.
- The new architecture federates resources from two clouds (Windows Azure and Amazon AWS). It also includes components written in a variety of languages. This resulted in our designing a flexible deployment system.
- The Discovery Bus has a novel, agent-based approach which is well matched to Cloud Computing; we believe that this is a generic cloud pattern could be exploited by other systems that need to generate new
models when either new data or model-building methods becomes available; we are already applying this to proving properties about software.

The paper is structured as follows. Firstly it gives a brief overview of QSAR modeling, and then describes how the Discovery Bus automates the generation of new models (Section II). It then describes and justifies the architecture of the cloud-based solution that was designed and implemented (Section III). Experimental results are then analysed for the large-scale run which consumed one hundred nodes for three weeks (Section IV). After a comparison with related work (Section V), we conclude by explaining what was learnt from the research, including how the results could be applied to other problems (Section VI).

II. THE APPLICATION: QSAR AND THE DISCOVERY BUS

QSAR (Quantitative Structure-Activity Relationships) quantitatively correlates chemical structure with activity such as reactivity or biological response. For example, as the number of carbons in alkanes increases, so does their boiling point: this rule can be used to predict the boiling points of higher alkanes.

If a successful QSAR model can be derived from the experimental data, then that model can be used to focus new chemical synthesis, and by creating QSAR models for different biological responses, the new drugs can be designed to be selective.

Because of the importance of QSAR, the Chemists behind our collaboration had developed a novel infrastructure - the Discovery Bus - to automatically generate new QSAR models as new data or modeling techniques became available. It could automatically generate hundreds of models for each property type, and select the best and most valid. This creates a library of predictive models used to design better, safer, more environmentally benign drugs, while at the same time reducing the need for animal experimentation.

At the highest level, the Discovery Bus can be viewed as shown in Fig. 1, where new data or model-building algorithms are inserted, triggering the generation of new quantitative models using these new data/algorithms.

Fig. 2 shows the approach taken by the Discovery Bus to generating predictive models of the activity of chemicals. The input is new data giving the activities of each of a set of chemical structures (for example the solubility in water of each chemical). The data is split into two: a training set that will be used to build models, and a test set used to validate the models (typically, 10% of the data will form the test set). A set of over 2000 molecular descriptors are then calculated for each chemical structure (an example is molecular weight). These are then merged and combined into sets of descriptors, before the CFS algorithm [3] is used to select only a subset of the descriptors: the subset is chosen to remove redundant or irrelevant features so as to speed up learning and increase the generalisability of the results. The results are then used as input by a set of model-building algorithms. Currently, the Discovery Bus implements 4 different algorithms for building mathematical models: neural networks, partial least squares, multiple linear regression and classification trees. The best models from each model-building algorithm are then compared, based on their performance on the test data. The best are then placed in the model database for use by users wishing to predict properties of chemicals. This is an example of a “panel of experts” pattern in which multiple “experts” compete to produce the best result.

III. CLOUD IMPLEMENTATION OF THE DISCOVERY BUS

The Discovery Bus is well suited to taking advantage of the opportunity offered by Clouds as:
• Processing is only needed when a new data set or model building algorithm is introduced. However when this does occur, the computational resources required can be considerable. Our interest in providing a cloud implementation was sparked when a large quantity of new data (such as ChemBL) became available, which could be used to generate higher quality models, but estimates showed that this would take over five years with the existing single-server based implementation.

• There are opportunities for parallelism; in particular, each model-building algorithm can run independently. However, there are also opportunities for parallelism in the calculation of different descriptors, and the selection of sub-sets of descriptors.

A. Initial non-Cloud Solution

The Discovery Bus was designed with a concurrent, agent-based architecture that simplified the exploitation of these opportunities on Clouds.

![Diagram of Discovery Bus Architecture](image)

Fig. 3 shows the high-level architecture. Users access a website to ask questions of the models that have already been produced. These can be:

• “What are the predicted properties of compound C?” or
• “What compound is predicted to have property P?” (for example, P might be a maximum toxicity)

These questions are answered by the system extracting data from the models that it has created. The models are generated as follows. When new data arrives at the Discovery Bus, the Planner creates a workflow to control its analysis. The workflow captures the process illustrated in Fig. 2 (Section II). The workflow is passed to the scheduler which uses a set of worker agents to carry generate descriptors, filter the descriptors, and generate & test models. If the models are new (e.g. because this is the first time that a model has been generated for a particular type of activity), or outperform an existing model, then they are published into the model database for access by users.

From the start, the Discovery Bus was designed so that multiple agents could operate concurrently:

- to generate new models, using different algorithms (e.g. neural networks, linear regression …)
- to filter different combinations of descriptors
- to process datasets for different activities

However, because of the limited engineering effort available and limited access to resources, the system was running only on a single server before work to move it to the cloud began.

B. Cloud-based Architecture

Whilst Clouds offer the potential to revolutionize science by making large computer resources available on-demand, moving to the cloud does not make it any easier to build the complex, scalable distributed systems needed to support science. The Discovery Bus was ported over to run on the Amazon AWS cloud. When new data arrives, the Discovery Bus planner delegates the computationally expensive aspects to the Azure, for instance, descriptor calculation and model building. These parts are shown in grey in Fig. 5.

![Diagram of Computationally Expensive stages of model generation](image)

We exploited the scalability of Windows Azure to accelerate the computationally intensive parts of data processing by the Discovery Bus. The Windows Azure platform is a combination of processing and storage services. The compute service is divided on two types of nodes – Web and Worker Role nodes. The Web Role is for creating applications based on ASP.NET and WCF and is the entry point for external clients to any Azure-based application. In contrast, the Worker Role runs applications as independent background processes. To communicate, web and worker roles can use the Azure storage services, which offer queue, table and blob storage. The recommended means of communication for Azure-based systems are queues. This approach facilitates scalability as many Web Role nodes can insert tasks to a queue, while others can acquire tasks from the queue. By simply increasing the number of workers, the tasks remaining in the queue can be processed faster.

This anycast processing model [1] fits well to problems that do not require communication apart from a single request-response with no state preserved in the workers. Much of the Discovery Bus processing has this kind of communication style and so it was adopted for our use case scenario.
As with many Cloud applications, we already had an existing implementation of the application – the Discovery Bus, and so we wanted to explore the best way to map this onto the Azure Cloud. There are many individual components to the application – for example all the model-generators, which are written in a variety of languages - and so rather than port each component in a time-consuming and bespoke manner we wished to find a more systematic way of deploying software onto Azure. None of the components was created in the .Net framework, but Azure makes it possible to run separate (‘native’) processes in an Azure-based service. We exploited this feature when designing our automatic deployment platform [7]. As components often have specific prerequisites, such as availability of Java runtime environment, the tool had to allow the expression of more sophisticated dependencies.

1) Architecture of the Automatic Deployment Solution

In order to make most of the scalability offered by the Azure cloud, our deployment platform is a queue-based system that allows a web role to request deployment of jobs on worker nodes. Every job in our approach is described by a deployment plan that defines what to install and execute. Plans are submitted by a web role Controller to a queue and can be read by workers. A submitted plan is acquired by a single worker DeployerEngine that tries to install and execute the job. Once the execution is finished, the worker returns results to the Azure blob storage where they can be found by Controller. This communication scenario is illustrated in Fig. 6.

In the presented work Controller is only a façade interface for clients and uses a predefined set of deployment plan templates to describe specific Discovery Bus jobs. It provides operations that correspond to the computationally expensive stages of model generation. Conversely, DeployerEngine is a generic facility that allows the deployment of arbitrary, user-defined jobs. Currently, we support standalone executables, Java applications, Python, R and Windows batch scripts, but this list could be easily extended.

![Figure 5. Communication between web role Controller and worker role Deployers.](image)

2) Expressiveness of the Deployment Solution

One of the crucial aspects for the software deployment is expressiveness of the models used to define deployment plans. We based our solution on the D&C specification [6] that defines one of the most complete deployment standards and extended it with some additional features such as ability to express temporal constraints and support for different software technologies. As a result, a deployment plan can describe multiple tasks to be deployed, each of which may be of different type such as Java-based applications and Perl scripts. The tasks can be deployed independently or can be bound with spatial and temporal dependencies to allow the creation of sophisticated deployment scenarios. Moreover, a deployment plan may refer to other plans that need to be deployed before, which is the case for e.g. Java-based applications that require a Java runtime to be available first.

The adopted approach has proved a flexible and efficient way to move components to Azure as it avoids the need to modify existing code before deployment. To illustrate some of its most relevant features we give the following example (more details can be found in [7]).

Fig. 7 shows a simple two-task plan that executes sequentially the original Discovery Bus R script and an additional post processing program which sends results to a specific location; this plan is used in the “Filter Features” stage of Discovery Bus processing.

![Figure 6. One of the predefined deployment plans used in processing a Discover Bus task.](image)

The tasks are bound with the spatial constraint SameDirectory that requires both tasks are executed in the same working directory. The need for this constraint stems from the fact that there are implicit dependencies between them i.e. the PostFF task reads files produced by FilterFeatures. This is also the reason why we imposed the temporal constraint FinishToStart on these two tasks. PostFF cannot run until FilterFeatures completes otherwise some files could miss post-processing. The presented plan also shows a dependency on the R runtime environment which is not shipped with Azure and, therefore, needs to be deployed prior execution of this plan.

IV. EVALUATION

The ChemBL database Error! Reference source not found. is a database of bioactive drug-like molecules, containing the structure of a large number of small molecules and associated biological activity. Each small molecule contains information of its activity against one or more biological targets.

In this work, the ChemBL database has been used to generate QSAR models for a number of structure-activity datasets. Initially, the ChemBL database has been curated by
calculating a canonical representation of each chemical structure (canonicalised SMILES strings), and producing a consistent physical unit of biological activity. Following this, in order to produce QSAR models with the capacity to be highly predictive, only datasets that contained more than 20 structure-activity values were selected, producing the number of datasets shown in Table I.

<table>
<thead>
<tr>
<th>Database name</th>
<th>Number of datasets</th>
<th>Number of protein targets</th>
<th>Number of small molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChemBL</td>
<td>8861</td>
<td>1138</td>
<td>285301</td>
</tr>
</tbody>
</table>

The Discovery Bus QSAR workflow has been called for each curated structure-property dataset. The Discovery Bus explores all possible combinations of workflow components, leading to an exhaustive evaluation of potential solutions [2]. Each potential solution is explored by a workflow branch. A workflow branch results when: 1) a workflow block can be computed by multiple implementations, and 2) a block produces multiple sets of results. Table II show the number of implementations and output sets given by each block in the Discovery Bus QSAR workflow.

<table>
<thead>
<tr>
<th>Workflow Block</th>
<th>Number of Implementations</th>
<th>Number of output sets produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate Training a Test data</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calculate Descriptors from Structures</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Combine Descriptors</td>
<td>1 (MERGE)</td>
<td>3</td>
</tr>
<tr>
<td>Filter Descriptors</td>
<td>1</td>
<td>6 (AVERAGE)</td>
</tr>
<tr>
<td>Build And Test Model</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

The Discovery Bus QSAR workflow then produces 72 workflow branches (3 Combine Descriptors x 6 Filter Descriptors x 4 Build And Test Model) for each dataset input given (note that Combine Descriptors merges 2 previous outputs from the Calculate Descriptors block).

Table III shows a summary of the average data size required in the QSAR workflow per dataset.

<table>
<thead>
<tr>
<th>Input Files Size</th>
<th>Intermediate Files Size</th>
<th>Output Files Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 kB</td>
<td>7.5 MB</td>
<td>1.89 MB</td>
</tr>
</tbody>
</table>

Using an automated process, each curated ChemBL dataset has been submitted to the Discovery Bus QSAR workflow. The workflow comprised the model building part of a QSAR, while the test (cross validation) of the generated models has been performed locally. In total, 757,563 QSAR models were generated, with 3,011 datasets having QSAR models that passed validation statistics (stable and valid). The process took a total time of 537 hrs and 18 mins to complete. Table IV shows the overall results of the computation.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total computation time</td>
<td>537 hr 18 mins</td>
<td></td>
</tr>
<tr>
<td>Total number of model generated</td>
<td>757,563</td>
<td></td>
</tr>
<tr>
<td>Number of biological targets with stable and valid models</td>
<td>3,011</td>
<td></td>
</tr>
<tr>
<td>Total data transferred (in/out)</td>
<td>16.74 GB</td>
<td></td>
</tr>
</tbody>
</table>

In order to study the effect that moving to Azure resources has on the computation time of QSAR workflows, a set of 200 averaged-sized datasets were submitted as a batch to the Discovery Bus QSAR workflow. The number of Azure nodes was different for each batch submission (2, 5, 10, 20, 40, 60 and 80). For each batch the total time taken to compute the fully-branched workflow was recorded. Following the same configuration as with the overall computation, descriptor calculation, filter features and model building blocks were computed in Azure, each called directly from EC2. Fig. 8 shows the results of the benchmarks.

Figure 7. Job throughput vs Azure resources

Fig. 8 shows job throughput (number of jobs completed per minute) of the QSAR workflow results measured against increasing Azure resources. The figure shows the job throughput increasing with Azure resources until 40 nodes, beyond which the throughput decreases slightly with continued increases in the number of Azure nodes. We discovered that this was due to two bottlenecks: 1) the saturation of the Discovery Bus database that handles requests from working nodes, and 2) the Discovery Bus follows a centralised job planner and dispatcher, and increasing job requests from working nodes saturates the planning process.

Table V shows the exact benchmark results.

<table>
<thead>
<tr>
<th>Number of Azure Nodes</th>
<th>Jobs/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.77</td>
</tr>
</tbody>
</table>
take 5 years to process the vast amounts of newly-available chemical activity data that had become available. This is an ideal cloud application as large computing resources are needed, but only when new data becomes available.

Whilst the focus of the project was on accelerating the chemistry application, a series of more general lessons were learnt. For instance, the need to deploy and run existing codes written in a variety of languages on the cloud encouraged us to design a general cloud deployment system that will simplify the porting of other applications to the cloud.

In the European Union funded VENUS-C project we are further developing the system to allow greater scalability and flexibility. To increase scalability we are replacing the Discovery Bus planner which was limiting both efficiency and scalability. This is being replaced with the workflow engine from e-Science Central [11], a generic science cloud platform that we have developed at Newcastle University. We anticipate that this will bring increased performance as the engine has been designed to run in a scalable, cloud-based environment. This will allow us to extend the current work by building models from the newly available data that has been added to the ChemBL database.

The scalable, “panel of experts” algorithm implemented on Windows Azure for the Discovery Bus is an interesting pattern, well matched to cloud computing, that has the potential to be applied to other application areas. We are therefore collaborating with other scientists to apply it more widely, including for automated software checking and machine learning.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Microsoft External Research for their financial and intellectual support to the project. We would particularly like to thank Christophe Poulain for the assistance he has provided, and to Savas Parastatidis for his initial efforts to champion the project.

REFERENCES

