Davie CT, Zhang HL, Gibson A. *Investigation of a continuum damage model as an indicator for the prediction of spalling in fire exposed concrete.*

*Computers & Structures* 2012, 94-95, 54-69.

**Copyright:**

Copyright © 2011 Elsevier Ltd. This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivatives licence (CC-BY-NC-ND).

**DOI link to article:**


**Date deposited:** 16th September 2014
Investigation of a continuum damage model as an indicator for the prediction of spalling in fire exposed concrete

C.T. Davie*, H.L. Zhang, A. Gibson

School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Abstract

Continuum damage theory has been widely adopted to model fracturing of concrete under mechanical loading and has been applied in capturing degradation of concrete under elevated temperatures. Here, the application of damage theory to prediction of concrete spalling in fire is investigated in the context of a fully coupled hygro-thermo-mechanical formulation. The ability of the model to capture spalling is assessed as is its sensitivity to choice of parametric relationships. The model, calibrated against experimental results, is shown to be a useful indicator for spalling. However, selection of model parameters must be carefully considered as a whole, not in isolation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Spalling is a common phenomenon observed when concrete elements are exposed to rapidly applied, elevated temperatures. It is, however, very difficult to accurately predict the development of spalling even using advanced numerical techniques. This is due to the complexity of the coupled hygro-thermo-mechanical-fracture behaviour involved in concrete exposed to elevated temperatures. Firstly, concrete is a multi-phase material, consisting of a porous solid skeleton, filled with liquid (and adsorbed) water and a mixture of gases, typically consisting of water vapour, and dry air. Most of its characteristic properties, such as intrinsic permeability, porosity, thermal conductivity, elasticity and strength, are temperature dependent and their initial values are often difficult to identify for a specific concrete. Secondly, when concrete elements are exposed to elevated temperatures, numerous complex phenomena will occur inside the concrete element, including heat conduction and convection, transport of liquid water and gases, evaporation of liquid water, dehydration of the cement paste and thermal expansion of the solid skeleton, some of which are strongly coupled with each other. These bring considerable challenges firstly in mathematically modelling these phenomena and secondly in developing a numerical solution for the problem due to its strong coupling and non-linearity. As a result of these difficulties, there are currently no models that can accurately predict the instant of the occurrence, the location and the extent of spalling.

In recent years, a number of mathematical formulations together with their numerical solutions have been developed for modelling of the coupled hygro-thermo-mechanical-fracturing behaviour of the concrete exposed to elevated temperatures, e.g. [1–4]. In these models, the continuum damage theory, firstly proposed by Mazars and Pijaudiercabot [5], has been widely adopted to model the fracturing or cracking of the concrete material. In continuum damage theory, a scalar between 0 and 1 is used to represent the severity of damage to the material, with 0 indicating intact material and 1 indicating complete damage. In this work it is considered that the development of damage, predicted by a model appropriately modified for thermal effects, can be used as an indicator for the development of thermal spalling.

In continuum damage theory, the fracture process is considered as a gradual, diffuse degradation of the material integrity. The concrete material is modelled as a continuum, but the stresses that can be transferred are assumed to decrease under the influence of mechanical, and in this case thermal, loading. Final fracture is represented by a zone in which the load-bearing capacity is completely lost. The development of the damage is determined by the equivalent strain measure and the damage evolution law. The equivalent strain measure determines the threshold for increment of the damage quantity, while the evolution law, which is characterised by a softening/hardening parameter, represents the global shape of the softening curve and the degree of brittleness of the response. Determination of these parameters in the damage model is therefore critical for prediction of the occurrence and evolution of damage. However, in relation to the existing models, there is a lack of detailed discussion on the selection of these parameters and their potential influences on the accuracy and reliability of numerical results and particularly with respect to the prediction of spalling.
1.1. Scope of the work

For this work an existing numerical model for concrete exposed to elevated temperatures has been used [4]. The model employs a fully coupled hygro-thermo-mechanical description as detailed in the following section. As part of the formulation a thermo-mechanical continuum damage model is included to capture the degradation of concrete resulting from both mechanical and thermal loading of the concrete. This is necessary to capture both the degradation of the mechanical properties and the coupled effects that are seen in the transport properties, such as permeability, porosity and conductivity.

The primary aim of this work was then to determine whether or not the damage predicted by this model under certain appropriate conditions can also be used as an indicator for the prediction of thermal spalling in concrete.

On consideration of the formulation of the damage criterion it can be seen that there are various components for which a choice can be made as to the constitutive or parametric behaviour of the concrete. These are primarily associated with the equivalent strain measure, the damage initiation threshold and the ductility of the concrete.

The second aim of this work was to determine the effects that the choice of these relationships has on the predicted development of damage, particularly with respect to thermal spalling behaviour as it has been observed in experimental and real cases.

2. Model formulation

In the mathematical formulation, concrete is treated at the macroscopic level as a multiphase system consisting of solid, liquid and gas phases. The solid skeleton is assumed to develop isotropic elastic-damage deformations under mechanical and thermal loadings. The liquid phase consists of free liquid water in pores and adsorbed water physically bound to the surface of solid skeleton. The dehydrated water is considered as a part of free liquid water since chemically bound water is assumed to be initially released as liquid water. The gas phase is a mixture of dry air and water vapour, both of which are assumed to behave as ideal gases. Most of the material properties are variable (typically, either directly or indirectly, as a function of temperature). The complete description of the governing equations and material properties may be found in [4]. Herein, only a brief description is given of the governing equations and the transport equations. More detail is given of the mechanical constitutive equations and the damage model, which are the essential parts of the mathematical model in relation to this work.

2.1. Governing equations

The model consists of four governing equations (Eqs. (1)–(4)) defining the conservations of mass of dry air, mass of moisture (i.e., vapour and liquid), energy [6] and linear momentum [1], respectively.

\[
\frac{\partial (\rho_c \phi_h)}{\partial t} = -\nabla \cdot \mathbf{J}_h, \tag{1}
\]

\[
\frac{\partial (\rho_c \phi_v)}{\partial t} + \frac{\partial (\rho_a \phi_p)}{\partial t} = -\nabla \cdot (\mathbf{J}_v + \mathbf{J}_p), \tag{2}
\]

\[
(\rho \phi \frac{\partial T}{\partial t} + \phi \frac{\partial (\rho_c \phi_h)}{\partial t} + \rho_a \frac{\partial (\rho_a \phi_p)}{\partial t}) = \nabla \cdot (k \nabla T) + \phi \frac{\partial (\rho_c \phi_h)}{\partial t} = \nabla \cdot (\sigma - \eta P_{\text{pore}}) + \mathbf{b} = 0, \tag{3}
\]

where, \(\phi_h\) is the volume fraction of a phase \(\theta = L, V, A, G, D\) refer to liquid water, water vapour, dry air, gas mixture and dehydrated water phases, respectively, \(\rho_c\) is the density of a phase \(\theta, \rho_v\) the mass of a phase \(\theta\) per unit volume of gaseous material, \(\mathbf{J}_h\) the mass flux of a phase \(\theta, \rho_c\) the heat capacity of concrete, \(k\) the effective thermal conductivity of concrete, \(\lambda_c\) and \(\lambda_p\) are the specific heats of evaporation and dehydration, \(\sigma\) is the Bishop’s stress (also known as the effective stress in geomechanics), \(\mathbf{I}\) the identity matrix, \(\eta\) is the Biot coefficient, \(P_{\text{pore}}\) the pore pressure and \(\mathbf{b}\) the body force.

2.2. Fluid transport equations

In the concrete, the liquid water flow is assumed to be driven by the pressure gradient under Darcy’s law, while the gas flow is assumed to be driven by both the pressure gradient under Darcy’s law and the concentration gradient under Fick’s law. Therefore, the mass fluxes of dry air (\(\mathbf{J}_A\)) water vapour (\(\mathbf{J}_V\)) and liquid water (\(\mathbf{J}_L\)) per unit area of concrete are given by Eqs. (5)–(7).

\[
\mathbf{J}_A = \frac{\rho_c \phi_h}{\mu_c} \nabla P_c - \frac{\rho_c \phi_h D_{AV} \nabla \rho_h}{P_c}, \tag{5}
\]

\[
\mathbf{J}_V = \frac{\rho_c \phi_h}{\mu_c} \nabla P_c - \frac{\rho_c \phi_h D_{AV} \nabla \rho_h}{P_c}, \tag{6}
\]

\[
\mathbf{J}_L = \frac{\rho_c \phi_h}{\mu_c} \nabla P_c, \tag{7}
\]

where \(K\) is the intrinsic permeability of the dry concrete, \(K_V, \mu_V\) and \(P_o\) are the relative permeability, dynamic viscosity and pressure of the phase \(\theta, k_t\) is the gas-slip modification factor and \(D_{AV}\) is the coefficient of diffusion for the dry air/water vapour mixture within the porous concrete.

2.3. Mechanical constitutive equations

The total strain (\(\varepsilon\)) of the solid skeleton is considered to consist of elastic strain (\(\varepsilon^e\)), free thermal strain (\(\varepsilon^d\)) and load induced thermal strain (\(\varepsilon^{\text{th}}\)), i.e.,

\[
\varepsilon = \varepsilon^e + \varepsilon^d + \varepsilon^{\text{th}}. \tag{8}
\]

The free thermal strain rate is calculated by way of Eq. (9):

\[
\dot{\varepsilon}^d = \alpha T \dot{\delta}_h. \tag{9}
\]

where, \(\alpha\) is a non-linear, temperature dependent coefficient of thermal expansion [4,7], \(T\) is the rate of temperature change and \(\delta_h\) is the Kronecker delta.

The load induced thermal strain rate is calculated as shown in Eq. (10):

\[
\dot{\varepsilon}^{\text{th}} = \mathbf{b} \frac{\beta}{V^c} \left( 1 - v_c \right) \sigma_{\text{eq}}^v - v_c \sigma_{\text{eq}}^c \delta_h \mathbf{T} \quad \text{for } \mathbf{T} > 0, \tag{10}
\]

where, \(\beta\) is the coefficient of load induced thermal strain, \(\sigma^v\) is the initial compressive stress, \(v_c\) is the lateral component of the load induced thermal strain (similar to Poisson’s effect) and \(\sigma_{\text{eq}}^c\) is the negative (compressive) projection of the Bishop’s stress tensor, \(\sigma^c\) [4,7].

2.4. Continuum scalar damage formulation

The fracture and the reduction of stiffness of the concrete are accounted for by an isotropic scalar damage model as described in the following, where a scalar damage parameter, \(A\), is used to represent the failure state of the concrete, i.e. \(A = 1\) indicating complete failure, while \(A = 0\) indicates intact material. Assuming that the solid skeleton undergoes elastic-damage deformation and adopting the Bishop’s stress concept, the stress–strain relationship can be written as:

\[
\sigma' = (1 - A) \mathbf{D}_0 : \varepsilon', \tag{11}
\]
where $\mathbf{A}$ is the Bishop's stress, $\mathbf{D}$ is the initial elasticity tensor, and $A$ is the scalar damage parameter, which can be further expressed as:

$$A = 1 - (1 - \omega)(1 - \chi).$$

where $\omega$ is the mechanical damage parameter, accounting for the loss of the elastic stiffness caused by the micro-fracturing of concrete that develops under loading and $\chi$ the thermal damage parameter, accounting for the reduction of the elastic stiffness due to thermally induced degradation of the cement paste.

The thermal damage parameter, $\chi$, is defined as:

$$\chi = 1 - \frac{E(T)}{E_0},$$

where $E_0$ is the elastic modulus at a reference temperature (normally 20 °C) [1].

The mechanical damage parameter, $\omega$, is defined by a version of the Mazars type damage evolution law modified to account for thermo-mechanical behaviour [7]:

$$\omega = 1 - \frac{\kappa^\text{md} (T)}{\kappa^\text{md}} \left( (1 - \chi) + 2 \varepsilon \gamma(T) (\kappa^\text{md} - \kappa^\text{md} (T)) \right).$$

where $\kappa^\text{md}$, which defines the threshold for the onset of damage, is a strain measure defined as the ratio of the tensile strength, $f_c(T)$, to the elastic modulus, $E(T)$, i.e.,

$$\kappa^\text{md} = \frac{f_c(T)}{E(T)},$$

where $f_c(T)$ and $E(T)$ are both temperature dependent [7], $\kappa^\text{md}$ is the mechanical damage history parameter that records the maximum strain experienced to date and can be written as:

$$\kappa^\text{md} = \max \{ \kappa^\text{md}, \max(\tilde{\varepsilon}) \}$$

where $\tilde{\varepsilon}$ is a scalar mapping of the tensorial strain state known as the equivalent strain measure [8].

$\gamma(T)$ is the ductility parameter which controls the slope of the softening curve, representing the brittleness of the concrete, and is defined as:

$$\gamma(T) = \frac{1}{l_c} \frac{(1 - \chi)f_c(T)}{G_c(T)},$$

where $G_c$ is the fracture Energy Release Rate and $l_c$ is a proportionality factor that depends on the size of the localization zone and has units of length.

The term $(1 - \chi)$ represents the residual stress as $\omega \to 1$, expressed as a proportion of the original strength. For $\varepsilon \to \infty$ the stress approaches $(1 - \chi)E_0$ [8]. For simplicity in this work a value of $\chi = 1$ has been adopted, i.e. the material is considered to have no residual strength.

2.6. Model validation

The model described here has been applied extensively to numerous problems ranging from isothermal drying, through problems related to the relatively slow heating of nuclear power plant structures, to problems related to rapid fire loading, such as those detailed in this work.

The validity of the model and its ability to accurately represent the multi-phase, macroscopic behaviour of concrete exposed to elevated temperatures has been specifically demonstrated in [4] where it was applied to the analysis of two sets of experimental data produced by different authors.

3. Numerical investigations

3.1. Model problem and set up

As discussed above the scalar damage model employed in this work consists of a combination of two damage parameters, $\omega$ and $\chi$, which respectively represent mechanical damage, due to stress, and thermal damage, representative of the material degradation observed on heating. The parameters are combined multiplicatively to compute the total damage [9,10]. However, where the thermal damage is in practice a diffuse phenomenon, occurring in correlation with the increased temperature field, the mechanical damage can be a more localised phenomenon and hence is considered here to be the most appropriate indicator for the development of cracking associated with spalling behaviour.

As also discussed previously, the mechanical damage formulation obeys a modified Mazars type criterion [7,8] as shown in Eq. (14). Taking into account the assumption of zero residual strength the formulation is simplified as shown below:

$$\omega = 1 - \kappa^\text{md} (T) e^{-\gamma(T) (\kappa^\text{md} - \kappa^\text{md} (T))}.$$ (18)

Within this formulation there are several components that are based on constitutive relationships describing in particular the temperature dependencies of the various parameters involved and for which a choice of relationship must be made. In the following sections the significance of the choices made are considered in relation to their effect on the results of analyses of two typical structural concrete problems in which spalling behaviour is often observed. These are namely a large concrete slab or wall and a square concrete column, both exposed to fire on all sides.

The wall exposed to fire on both sides was modelled as a one-dimensional problem in central-plane symmetry, as illustrated in Fig. 1 and the column exposed to fire on all sides was modelled as a two-dimensional problem in quarter-plane symmetry, as shown in Fig. 2.

Unless otherwise stated the basic material parameters for both problems were set as shown in Table 1.

These parameters are representative of typical concrete specimens and have been shown not to significantly affect the development of damage in these problems [11,12].
In all cases the heating due to fire is described by the standard ISO834 fire curve, as defined by Eq. (19).

\[ T_1 = 20 + 345 \log_{10}(8t + 1) + 273.15, \]

where \( t \) is time in minutes.

For completeness results of temperature and pore pressure profiles for the two problems analysed in this work are shown below (Figs. 3 and 4).

These profiles are typical of such problems (e.g.\([13,14]\)) and their validity is further supported by the work reported in [4]. It may be noted that they change very little throughout the analyses presented in this work since they are controlled by the thermal and mass transfer material properties as presented in Table 1. Minor changes may have occurred between analyses as a result of the coupling between the thermo-mechanical and hygro-thermal components of the model (i.e. for example changes in model parameters leading to changes in the development of damage, leading to changes in permeability, leading to changes in moisture transport, leading to changes in heat transport) however these have not been seen to be significant.

Furthermore, extensive parametric investigation has shown that although, as would be expected, variation of the thermo-mechanical properties (thermal conductivity, free thermal expansion, tensile strength, residual strength) does affect the specific results of these analyses, it does not affect the conclusions drawn from the studies carried out in this work. Further yet, the effects of pore pressure (as affected by the variation of porosity, permeability and moisture content) are specifically addressed in other work by the authors [11,12] and are not considered again here in detail. However, it may be noted that pore pressures do not influence the damage patterns seen in these analyses and as with the thermo-mechanical properties they do not affect the conclusions

---

### Table 1

Initial parametric values used in all simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal temperature</td>
<td>( T_0 )</td>
<td>293 K</td>
</tr>
<tr>
<td>Internal gas pressure</td>
<td>( P_{\text{g}} )</td>
<td>0.1 MPa</td>
</tr>
<tr>
<td>Porosity</td>
<td>( \phi )</td>
<td>12%</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>( E_0 )</td>
<td>30 GPa</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>( v )</td>
<td>0.2</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>( f_t )</td>
<td>3 MPa</td>
</tr>
<tr>
<td>Intrinsic permeability</td>
<td>( K )</td>
<td>( 1 \times 10^{-19} ) m²</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>R.H.</td>
<td>65%</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>( k )</td>
<td>1.95 W/m K</td>
</tr>
</tbody>
</table>

---

Fig. 2. Schematic diagram of model representing a concrete column exposed to fire on all sides.

---

Fig. 3. Profiles of (a) temperature and (b) gas pressure in wall problem after 600 s, 1800 s and 3600 s.

---

Fig. 4. Distributions of (a) temperature and (b) gas pressure in column problem after 210 s.
of this work. The analyses presented in this work can therefore be considered representative of the general behaviour.  

3.2. Equivalent strain measure

As described above and detailed in [7,8] mechanical damage is defined as occurring when the equivalent strain, which is a scalar mapping of the tensorial strain state, exceeds the mechanical damage history parameter \( \kappa^{md} \), as described by Eq. (20)

\[
\dot{\omega} \geq 0 \quad \text{if} \quad \langle \varepsilon - \kappa^{md} \rangle = 0.
\]

The equivalent strain mapping can be defined in numerous ways, as the formulations are shown below (21)–(23):

**Energy Release Rate definition**

\[
\bar{\varepsilon} = \sqrt{\frac{1}{E} \varepsilon : D : \varepsilon}.
\]

**Mazars definition**

\[
\bar{\varepsilon} = \sqrt{\frac{1}{\nu} \sum_{i=1}^{3} (\varepsilon_{i})^2},
\]

where \( \langle \varepsilon_{i} \rangle \) are the positive components of the principal strains.

**Modified von Mises definition**

\[
\bar{\varepsilon} = \frac{g - 1}{2g(1 - 2\nu)} I_1 + \frac{1}{2g} \sqrt{(g - 1)^2 I_1^2 + 2g(1 + \nu) J_2},
\]

where, \( I_1 \) is the first invariant of the strain tensor, \( J_2 \) is the second invariant of the deviatoric strain tensor, \( \nu \) is the Poisson's ratio and \( g \) is the ratio of the compressive and tensile strengths.

**Fig. 5.** Distributions of mechanical damage in wall problem after 600 s, 1800 s and 3600 s, with (a) Energy Release Rate, (b) Mazars type and (c) Modified von Mises equivalent strain definitions.
ability of the formulations to distinguish between tensile and compressive behaviours and the relative roles that these appear to play in the development of thermally induced spalling. The Energy Release Rate definition treats tensile and compressive strains equally in terms of their capacity to cause damage; implying that the tensile and compressive strengths are the same. Large compressive stresses develop rapidly along the sides of the heated column resulting in large equivalent strains which, in the case of the Energy Release Rate definition, subsequently lead to the prediction of damage in these areas.

The Mazars definition does distinguish to some extent tensile and compressive behaviour and because of this, compressive effects have less influence and the zones of damage along the sides of the column are reduced from those developed by the Energy Release Rate definition. However, the weighting to the compressive behaviour that is inherent within the formulation is not sufficient to prevent the prediction of damage in the compressive areas of the column and the role of compressive behaviour is again apparently over estimated.

The Modified von Mises definition distinguishes between compressive and tensile behaviours much more than either of the other definitions by directly taking into account the ratio of the compressive and tensile strengths of the concrete \( \gamma \) in Eq. (23). A value of 10, thought to be representative and typical of normal concrete, was employed by Peerlings et al. [8] and in this work. As can be seen in Fig. 6c this weighting meant that no damage was predicted in compressive areas of the column but a narrow band (a fracture) did form in the tensile region that develops due to the free thermal expansion of the corner diagonally outwards from the centre of the column. The similarity between this predicted behaviour and that observed in experimental works further suggests that spalling is primarily a function of tensile stresses (see also [11]).

It may therefore be concluded that the choice of equivalent strain formulation is extremely important in predicting the development of realistic patterns of damage and that, of the three tested formulae, the Modified von Mises definition gives results most closely representative of thermal spalling behaviour, due to its ability to capture the contributions of tensile and compressive behaviours representatively. This finding is in agreement with the findings of Peerlings et al. [8] in relation to tension dominant fracture behaviour in isothermal problems.

3.3. Modified von Mises strength ratio

As discussed in the previous section, the Modified von Mises definition of the equivalent strain measure (23) was shown to give
the best representation of observed spalling behaviour. This was in part due to its ability to distinguish between tensile and compressive behaviour which it does through the direct consideration of the ratio of the compressive to tensile strength of the concrete, $g$.

While a value of 10 was chosen for the work in the previous section (following [8]) and while this may be considered a reasonable assumption, it is clear that other values could be chosen and that in fact, since this is a parameter with physical meaning, values from experimental testing could be employed.

In this work analyses of wall and column problems have been carried in order to assess the influence of this parameter on the predicted results. Analyses were run as before with the value of $g$ varied from 1 to 20. It should be noted that it has been considered reasonable in this work to assume that the compressive and tensile strengths degrade with temperature in the same way and hence the value of $g$ remains constant throughout heating. Illustrative results are shown in Figs. 7 and 8.

As can be seen from Fig. 7 the value of $g$ has a significant effect on the shape of the damage zone predicted in the wall problem. As the value is increased the zone becomes narrower towards the fire exposed face and arguably becomes more representative of observed spalling behaviour [13,23,24] with values of $g \geq 9$ appearing to be most appropriate. The results for $g = 1$ and $g = 4$ (Fig. 7a and 7b, respectively) are very similar to those seen in Fig. 5a and 5b for the Energy Release Rate (21) and Mazars (22) definitions and in fact it can be shown that the apparent weighting between compressive and tensile strengths for the those definitions are $g = 1$ and $g \approx 3.5$ (as reported in [8] for $v = 0.2$).

![Fig. 7. Distributions of mechanical damage in wall problem after 600 s, 1800 s and 3600 s, with strength ratio $g$ set to (a) 1, (b) 4, (c) 8, (d) 12, (e) 15 and (f) 20.](image-url)
Again, similar behaviours are seen when the column problem is considered (Fig. 8). When a value of $g = 1$ is chosen (Fig. 8a), the results approach those predicted by the Energy Release Rate definition (Fig. 6a) and when a value of 4 is employed (Fig. 8b).
the results strongly resemble those of the Mazars definition (Fig. 6b). From Fig. 8c and d it may be noted that the results of the column problem are less sensitive to the magnitude of the strength ratio than those of the wall problem (Fig. 7). For values of $g > 7$ the predicted damage pattern is almost unchanged and tends to be representative of observed corner spalling behaviour, whereas the predicted damage pattern in the wall problem, although reasonably representative of observed behaviour, continued to change until a value of $g > 15$ was reached.

In considering the results above in terms of representative values for the strength ratio it is unlikely that values as low as 4 would occur in reality. This reinforces the findings of Section 3.2 which showed that, of the formulations tested, only the Modified von Mises definition of the equivalent strain was capable of differentiating between compressive and tensile effects sufficiently to accurately represent thermal spalling behaviour. It is also clear that, depending on the nature of the problem and particularly for cases where the ratio may be relatively low, it can be important to use the true value of $g$ rather than an estimated value since this can have a significant effect on the results.

3.4. Damage initiation threshold

The damage initiation threshold, $k_0^{md}$, is the ratio of the tensile strength to the elastic modulus of the concrete (15). When temperature effects are considered, as in this work, it must be noted that both the tensile strength and the elastic modulus are themselves temperature dependent and both tend to decrease with temperature. Numerous constitutive functions may be found in the literature to describe the degradation of these properties with temperature and normalised versions of three typical examples of each are given in Fig. 9a and b below.

It can be seen that these functions have generally similar forms and it might therefore be considered that the choice of constitutive relationships for tensile strength and elastic modulus will have little effect on the overall behaviour predicted. Indeed this may be true when considering these properties in isolation. However, when the ratio $k_0^{md}$ is considered the choice of relationship has a much more significant effect.

Fig. 9c below shows normalised examples of $k_0^{md}$ as functions of temperature calculated using different tensile strength functions and the same the elastic modulus function. Similarly, Fig. 9d shows examples of $k_0^{md}$ calculated using different functions for the elastic modulus and the same tensile strength function. As can be seen, for only subtly differing input functions very different shapes are seen in the damage initiation threshold curves with some constant, some increasing and some decreasing with temperature.

By way of demonstrating the significance of these effects the three combinations of tensile strength and elastic modulus functions leading to the relationships shown in Fig. 9c were applied in the wall and column problems. The results are shown below in Figs. 10 and 11.

As can be seen in Fig. 10, the three different sets of relationships for $f_i(T)/E(T) = k_0^{md}$ lead to the prediction of very different damage development. Fig. 10a are the ‘original’ results as shown in Section 3.2, which are considered to be a reasonable representation of the zone of damage observed in relation to thermal spalling behaviour; i.e. a narrow zone of intense damage near the fire exposed face of the concrete. In this case the ratio $k_0^{md}$ remained constant with increasing temperature as both the tensile strength, $f_i(T)$, and the elastic modulus, $E(T)$, were considered to degrade with temperature in the same way (Fig. 9c).

In contrast, when the second set of relationships was used, no damage was predicted to occur at all during exposure to the fire (Fig. 10b). This clearly does not represent observed spalling behaviour. As can be seen in Fig. 9c, this set of relationships produces a function for $k_0^{md}$ that increases with temperature up to ~650 °C before falling again, implying that it becomes increasingly more difficult to damage the concrete with increasing temperature. Considering the results shown in Fig. 10b, it would seem that functions of this type are not entirely representative of concrete behaviour under elevated temperatures or appropriate for the prediction of thermal spalling behaviour.

Fig. 10c shows the results when the third set of functions was employed. As with the first set, Fig. 10a, a narrow band of intense damage was predicted near to the fire exposed surface and arguably these results are even more representative of observed behaviour than the first set. In this case the function $k_0^{md}$ initially increases slightly before decreasing with increasing temperature, implying that overall it becomes easier to damage the concrete with increasing temperature. This function may well be most
representative of concrete behaviour as it could be considered to capture an initial increase in the concrete's resistance to failure due to continued hydration reactions in the cement paste, followed by a decrease as dehydration takes over at higher temperatures.

---

**Fig. 11.** Distributions of mechanical damage in column problem after 210, with different ratios of $\frac{x^d}{f_T} - \frac{f_T}{E_T}$ from Fig. 7c: (a) Zhang/Nielsen, (b) Nielsen/Nielsen and (c) Eurocode/Nielsen.

**Fig. 12.** Distributions of mechanical damage in wall problem after 600 s, 1800 s and 3600 s, with different ductilities: (a) original value, (b) 3 times original value, (c) 10 times original value and (d) 300 times original value.
However, it may also be noted that the Eurocode function for concrete strength [31] employed in this analysis is anecdotally considered by some researchers in the field to be overly conservative. Nonetheless, a similar form of decreasing function, or at least a constant function for $\gamma_{md}$, may be most appropriate.

Fig. 11 shows the results of the column problem when the same three sets of functions for $f_t(T)/E(T) = \gamma_{md}$ were employed. In this case it can be seen that all three analyses produced results considered to be representative of corner spalling, as discussed in Section 3.2. It can also be seen that there was very little difference between the three sets of results and although there was a slightly larger zone of damage development predicted for the first set of functions (Fig. 11a), the second and third sets produced almost identical results (Fig. 11b and c).

Initially this may seem contrary to the findings of the wall problem. However, upon inspection of the temperature fields it was found that, at the point of damage initiation, the concrete was experiencing relatively low temperatures of approximately 70 °C. Comparing the three ratios of $\gamma_{md}$ as functions of temperature (Fig. 9c), it can be seen that, although the functions diverge significantly at higher temperatures, in the region of 70 °C the functions are very similar, and the second and third functions are overlain. The results produced are thus very similar, with the first (constant) function of $\gamma_{md}$ predicting slightly more damage because it has not increased as the other two functions have.

Thus the findings related to the wall problem, where long exposures to higher temperatures were experienced, may not be so significant for problems where shorter exposures and lower temperatures are experienced.

### 3.5. Ductility

The final parameter for which a choice of value or constitutive relationship is available is the ductility of the concrete, $\gamma$. There are a number of levels of complexity that can be considered with respect to representation of the ductility parameter and its influence on the development of damage. In this section two implementations will be examined in turn and the significance of the choice will be considered in relation to the wall and column problems as before.

The first description is simply as a constant value representative of the ductility or brittleness of the concrete under consideration. The parameter has no real physical meaning on its own and is dimensionless. The higher the value of $\gamma$, the more brittle the concrete is. In the first set of analyses the basic effects of the ductility parameter are demonstrated by increasing its value over three orders of magnitude. Representative results are shown in Figs. 12 and 13 for the wall and column problems.

As can be seen in Fig. 12 the results of the wall problem are relatively insensitive to the ductility. Increasing the ductility parameter up to 10 times the original value (Fig. 12b and c) has very little effect on the predicted zone of damage, with only a very slight increase in the magnitude of damage caused. It is only when the magnitude of the ductility parameter is increased by a relatively
sensitive to the ductility parameter than the wall problem. As the column problem. As can be seen this problem seems to be more
representation of ductility parameter is desirable. However, it is also clear that, if it is possible to relate the duc-
tility parameter to real material parameters then a realistic
behaviour. It may also be noted that similarly to the results for the wall problem seen in Fig. 12d this zone of damage forms almost instan-
taneously after initiation. While this behaviour may be partly an artefact of the numerical formulation it may also go some way to
suggesting an underlying behavioural change to explosive spalling
rather than choosing a fixed value for the ductility parameter, a
way to relate the ductility to the true material properties of the concrete may be found using the temperature dependent formula-
shion shown in Eq. (17). As can be seen, the parameter, which con-
trols the slope of the softening curve, is a function of the tensile strength of the concrete, \( f_j(T) \), and the fracture Energy Release Rate,
\( G_f(T) \), both of which are functions of temperature. As with the dam-
age initiation threshold considered in the previous section, this al-
loows the possibility of selecting parametric relationships from the
literature. By way of example three sets of analyses have been con-
ducted using different functions for the tensile strength, \( f_j(T) \), as in
the previous study (Section 3.4). It should be noted that in order to
isolate the temperature dependent effects of the ductility relation-
ship in these analyses, the damage initiation threshold, \( \kappa_{\text{init}} \), was held constant (see Eq. (15)).

Fig. 14 shows three normalised temperature relationships for
the ductility using different temperature dependent functions for
the tensile strength, \( f_j(T) \). As can be seen, significant differences
in the ductility behaviour are described. Fig. 15 shows the results of the wall problem when these three
relationships are employed. As can be seen very little effect was
noted between these analyses and furthermore very little differ-
ence was seen to the results where a constant ductility was em-
ployed; comparing Fig. 15a with Figs. 5c and 12a. This implies
that, although the initial value of the ductility parameter is extre-
melly important in controlling the development of damage and its
correspondence to observed spalling behaviour, the development
of ductility with temperature is much less important.

Very similar behaviour is seen in the results of the column prob-
lem, where, as can be seen in Fig. 16, the temperature dependence
of the ductility has almost no effect on the predicted pattern of
damage.

It is noted that, in addition to the main fracture like zone of
damage, a very small patch of damage appears close to the corner
of the column in all three of these analyses. This then appears to be
a small difference to the behaviour when ductility is held constant
with temperature; see Fig. 13a. However, upon further examina-
tion it is found that this patch of damage also occurs when the duc-
tility parameter is held constant, but at a slightly later time in the
analysis and is a result of the temperature dependent ductility
changing the stress state slightly from that developed under con-
stant ductility. This is therefore not considered to be a significant
difference in behaviour.

What has not been considered here is the effect of the temper-
ature dependent relationship for the fracture energy, \( G_f(T) \). Clearly,
Fig. 16. Distributions of mechanical damage in column problem after 210, with different ductility functions $\gamma(T)$ from Fig. 12; using $f_b(T)$ of (a) Zhang, (b) Nielsen and (c) Eurocode. $\alpha_{ctf}$ constant for all analyses.

Fig. 17. (a) Comparison of numerical and experimental temperature development in time at depths of 0 mm, 40 mm and 100 mm and (b) numerical predictions of gas pressure profiles after 600 s, 1800 s and 3600 s.

Fig. 18. (a) Distributions of mechanical damage in Ali slab problem after 600 s, 1800 s and 3600 s and (b) development of damage in time.
this offers yet a further opportunity where a choice of relationship may be made and the variance of ductility with temperature will be affected. The relationship for $G_c(T)$ used here follows the work of Pearce et al. [7] and although investigations of the temperature dependence of the fracture energy of concrete are limited some other relationships may be found, e.g. [34,35]. However, given the findings above it seems unlikely that the choice of fracture energy relationship will have a significant effect on the predicted pattern of damage.

What is of more interest is the initial value of ductility calculated from the ratio of tensile strength over fracture energy (Eq. (17)). The first set of ductility analyses above (Figs. 12 and 13) showed that higher values of the ductility parameter (increased brittleness) produced the best representation of observed spalling behaviour and it therefore seems logical to tune a constant value of ductility to produce the desired behaviour in the model. However, taking realistic values of initial tensile strength and fracture energy (which are measurable material properties), a relatively low value of the ductility parameter is produced, similar to the ‘original values’ employed in the analyses above (see Figs. 12 and 11). It is not yet clear how these two slightly contradictory observations can be rationalised although it may be noted that Eq. (17) also contains a proportionality factor, related to the size of the localisation zone, which could be used to tune the behaviour. Nonetheless, the benefits of using realistic functions for tensile strength and fracture energy within the ductility term are not clear for the problems considered in this work and, although more work is required, it may be better to simplify the model and neglect these terms.

3.6. Model calibration

The parametric studies above give insight into the thermo-mechanical behaviour of concrete at high temperatures and into the sensitivities of the damage formulation with respect to temperature and in the context of spalling.

In order to apply the model to real cases it is desirable to calibrate the model parameters. To achieve this the wall model (Fig. 1) was modified to represent the experimental work reported by Ali et al. [25], which considered large slabs exposed to the ISO834 fire curve (Eq. (19)) on one side.

The thermo-mechanical parameters were first tuned to give the best match with the reported temperature results (Fig. 17a). Results of gas pressures were not reported by Ali et al. but numerical results have been included for completeness and demonstrate that the behaviour is typical of such problems (Fig. 17b).

The damage parameters were then tuned to give the best match with the reported spalling behaviour, which was observed to initiate between 15 and 16.5 min after the start of heating and to reach depths between 15 and 25 mm. Fig. 18a and b show the numerical predictions for the development of damage in time.

As can be seen both the distribution of damage and the time of damage initiation match well with the reported results. The calibrated model parameters are shown in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent strain measure</td>
<td>$\tilde{e}$</td>
</tr>
<tr>
<td>Compressive/tensile strength ratio</td>
<td>$g = f_c(T)/f_T(T)$</td>
</tr>
<tr>
<td>Damage initiation threshold</td>
<td>$k$</td>
</tr>
<tr>
<td>Ductility measure</td>
<td>$\gamma(T) = \gamma f(T)$</td>
</tr>
</tbody>
</table>

Table 2: Calibrated damage model parameters.

Compressive to tensile strength ratio – A ratio below 10 decreased the depth to which damage developed. A ratio above 10 made little difference to the results. Without further information reported in the experimental data, a value of 10 was felt to be most appropriate.

Damage initiation threshold – Using the Eurocode function for tensile strength decreased the depth to which damage developed. Using the Nielsen function for tensile strength produced no damage at all. A constant value for the damage initiation threshold, using the Zhang function for tensile strength, was therefore found to be most suitable.

Ductility – Increasing the ductility parameter by up to 10 times its original value made little difference to the results. Continuing to increase the parameter initially tended to reduce the depth of the damage that developed and latterly resulted in the damage initiating too early. The original, temperature dependent function was therefore determined to be most appropriate.

These findings are consistent with those of the parametric studies reported above.

As a further check, the calibrated damage model was then similarly applied to a corner spalling problem representative of the experimental work of Kodur and McGrath [29]. The predicted damage distribution is shown in Fig. 19.

These results are qualitatively a good match for those described by Kodur et al., with a crack developing across the corner of the column at a depth of approximately 40 mm, which could ultimately allow a piece to fall freely from the corner and thus spalling to occur, and hence further confirm the calibration of the model. Unfortunately, continuation of the analysis was prevented by numerical instability resulting from locally high levels of damage. However, in further support of these findings, similar patterns of damage were also reported independently by Fu and Li [36].

4. Conclusion

This work has shown that the damage model employed within the formulation of the hygro-thermo-mechanical model to capture the mechanically and thermally driven degradation of the material, and to subsequently capture the coupled effects on transport behaviour, can also inherently capture thermal spalling behaviour.
if the appropriate constitutive and parametric relationships are employed. The model was shown to predict damage development in areas and patterns, and at times, strongly representative and indicative of observed spalling behaviour.

In considering the selection of constitutive and parametric relationships it was particularly noted that the choice of equivalent strain measure was essential in predicting patterns of damage that occur in the tensile regions of the concrete members and hence capture observed spalling behaviour. Of the formulations examined in this work a Modified von Mises criterion was found to be most appropriate due to its ability to distinguish the behaviour of the concrete relative to the tensile and compressive strengths of the material. The Energy Release Rate and Mazars criteria were not found suitable for the prediction of thermal spalling.

Where the Modified von Mises criterion was employed it was also found that the precise value of the ratio of the tensile to compressive stress was important and it is recommended that the true value rather than a typical value should be employed whenever possible. Further consideration might also be given as to how this ratio changes with temperature but a constant value was considered acceptable here.

The development of the damage initiation threshold with temperature was also found to be critical to the prediction of the damage pattern in the concrete and parametric functions that were constant with temperature or that decreased with temperature were most appropriate. More importantly, since these functions depend on the ratio of the tensile strength to the elastic modulus, the choice of temperature dependent functions for these two parameters was most important. While these functions clearly represent the appropriate effects of material degradation, as is variously recorded in the literature, they should not be considered in isolation. The simplest formulation for these parameters would consider them both to degrade in the same way with temperature and hence the damage initiation threshold to remain constant with temperature. Since this was shown to give reasonable results in relation to observed spalling behaviour this may be recommended practice.

Finally it was found that, although perhaps not as significant as the other parameters, the ductility of the material is important in refining the pattern and rate of damage development and hence its relationship to observed spalling behaviour. Higher values of the ductility parameter (increased brittleness) were found to give best results, and very high values may help to explain explosive spalling behaviour. However, it was also found to be difficult to relate the need for high values of the ductility parameter to the strongly related material properties of tensile strength and fracture energy. It may be possible to tune the ductility parameter using the associated proportionality factor, which is related to the size of the localisation zone, and further work is required in this area. However, since little effect was seen on the results when using temperature dependent functions for ductility, it may be simplest at present, to select an appropriate constant value for ductility.

Acknowledgements

This work was carried out as part of a research project (ep/ e048935/1 – an advanced numerical tool for the prediction and analysis of spalling in concrete structures exposed to combined thermal and mechanical loading) funded by the engineering and physical sciences research council (epsrc), UK.

References


