
Copyright:

© 2013 The Authors. *Journal of Ecology* published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.]

DOI link to article:

http://dx.doi.org/10.1111/1365-2745.12195

Date deposited: 9 January 2015

This work is licensed under a Creative Commons Attribution 3.0 Unported License

ePrints – Newcastle University ePrints

http://eprint.ncl.ac.uk
Looking forward through the past: identification of 50 priority research questions in palaeoecology


1Department of Zoology, Oxford Long-Term Ecology Laboratory, Biodiversity Institute, University of Oxford, Oxford OX1 3PS, UK; 2Department of Biology, University of Bergen, PO Box 7803, Bergen N-5020, Norway; 3Department of Geography, Environmental Change Research Centre, University College London, Gower Street, London WC1E 6BT, UK; 4Bjerknes Centre for Climate Research, University of Bergen, Allégaten 55, N-5007, Bergen, Norway; 5School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3PY, UK; 6School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK; 7Department of Geography & Environmental Systems, University of Maryland, 1000 Hilltop Circle, Baltimore County, Baltimore, MD 21250, USA; 8Department of Geography, Swansea University, Swansea SA2 8PP, UK; 9Environmental Change Initiative, Brown University, Box 1951, Providence, RI 02912, USA; 10Plant Conservation Unit Botany Department, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; 11Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada; 12School of Geography, Politics and Sociology, Newcastle University, Claremont Road, Newcastle-Upon-Tyne NE1 7RU, UK; 13Department of Geography, Centre for Hydrological and Ecosystem Science, Loughborough University, Loughborough LE11 3TU, Leics, UK; 14Department of Geosciences and Geography, University of Helsinki, Gustaf Hällström katu 2a, Helsinki 00141, Finland; 15Center for Macroecology, Evolution and Climate, National Museum of Natural History, University of Copenhagen, Copenhagen Ø, DK-2100, Denmark; 16Department of Plant Biology, University of Illinois, 505 S Goodwin Ave, Urbana, IL 61801, USA; 17School of Geography and the Environment, University of Southampton, Southampton SO17 1BJ, UK; 18Department of Biology, York University, 4700 KeeleStreet, Toronto, ON M3J 1P3, Canada; 19Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Invalidenstr. 43, 10115 Berlin, Germany; 20School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK; 21Hull York Medical School, University of York, York YO10 5DD, UK; 22School of Geography and Geosciences, University of St Andrews, St Andrews KY16 9AL, UK; 23Scottish Marine Institute, Scottish Association for Marine Science, Oban PA37 1QA, UK; 24Department of Geology and Geological Engineering, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA; 25School of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, Belfast BT7 1NN, UK; 26Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK; 27Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; 28Environment Centre for Wales, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK; 29School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK; 30Centre for Environmental Change and Quaternary Research, School of Natural and Social Sciences, University of Gloucestershire, Cheltenham GL50 4AZ, UK; 31Natural England, Suite D, Unex House, Bourges Boulevard, Peterborough PE1 1NG, UK; 32Department of Geography & Sustainable Development, School of Geography & Geosciences, University of St Andrews, Irvine Building, North Street, St Andrews KY16 9AL, Fife, UK; 33Palaeoecology

© 2013 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society

This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Laboratory, Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK; 34 Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK; 35 Senckenberg Research Institute and Natural History Museum and Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, Frankfurt am Main 60325, Germany; 36 Romanian Academy “Emil Racoviță”, Institute of Speleology, Clinicilor 5, Cluj Napoca 400006, Romania; 37 Centre for Environmental Management, University of Ballarat, Ballarat, Vic., Australia; 38 Patrick Center for Environmental Research, The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia PA 19103, USA; 39 Department of Geography, Loughborough University, Loughborough LE11 3TU, Leics, UK; 40 GeoZentrum Nordbayern, University of Erlangen-Nürnberg, Loewenichstraße 28, Erlangen 91054, Germany; 41 Department of Environmental Sciences, University of Helsinki, Helsinki 00014, Finland; 42 Environmental Department, University of York, Heslington, York YO103DD, UK; 43 PAGES, International Project Office, Zähringerstrasse 25, 3012 Bern, Switzerland; 44 Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University in Poznan, Dziegielowa 27 61-680, Poznan, Poland; 45 The L.A.K.E.S Institute, Dreihubelweg 68, Lyss 3250, Switzerland; 46 Institute for the Environment, Brunel University, Uxbridge, London UB8 3PH, UK; 47 Centre for Evolutionary and Ecological Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066, Blindern, 0316, Oslo, Norway; 48 School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK; 49 Department of Geology, University of Cincinnati, Cincinnati OH 45221, USA; 50 Department of Environment, Earth & Ecosystems, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; 51 The Economist, 25 James Street, London, SW1A 1HG, UK; 52 Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, UK; 53 Department of Geosciences and Department of Biology, University of Akron, Akron, OH 44325-4101, USA; 54 Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; 55 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; 56 Biological and Environmental Sciences, University of Stirling, Stirling FK94LA, UK; 57 Institute of Environmental Change and Society, University of Regina, 3737 Wascana Parkway, Regina SK S4S 0A2, Canada; 58 Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, Tartu 50411, Estonia; 59 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK; 60 Department of Geography and Nelson Institute Center for Climatic Research, University of Wisconsin, Madison WI 53706, USA, and 61 Palaeoceanology Unit, Faculty of Geosciences, University of Szczecin, Mickiewicza 18, Szczecin PL-70-383, Poland

Summary

1. Priority question exercises are becoming an increasingly common tool to frame future agendas in conservation and ecological science. They are an effective way to identify research foci that advance the field and that also have high policy and conservation relevance.

2. To date, there has been no coherent synthesis of key questions and priority research areas for palaeoecology, which combines biological, geochemical and molecular techniques in order to reconstruct past ecological and environmental systems on time-scales from decades to millions of years.

3. We adapted a well-established methodology to identify 50 priority research questions in palaeoecology. Using a set of criteria designed to identify realistic and achievable research goals, we selected questions from a pool submitted by the international palaeoecology research community and relevant policy practitioners.

4. The integration of online participation, both before and during the workshop, increased international engagement in question selection.

5. The questions selected are structured around six themes: human–environment interactions in the Anthropocene; biodiversity, conservation and novel ecosystems; biodiversity over long time-scales; ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing information from multiple records; and new developments in palaeoecology.

6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes and the continued application of long-term data for better-informed landscape management.

* Correspondence author: E-mail: alistair.seddon@bio.uib.no

7. Synthesis. Palaeoecology is a vibrant and thriving discipline, and these 50 priority questions highlight its potential for addressing both pure (e.g. ecological and evolutionary, methodological) and applied (e.g. environmental and conservation) issues related to ecological science and global change.

Key-words: Anthropocene, biodiversity, conservation, ecology and evolution, human–environment interactions, long-term ecology, palaeoecology, palaeoecology and land-use history, research priorities, Palaeo50

Introduction

Palaeoecology combines biological, geochemical and molecular information from natural archives to reconstruct ecological and evolutionary systems deep into the past. Because ecological monitoring records do not typically extend beyond the past few decades, palaeoecology is key to understanding how ecosystems have responded to past disturbance, evaluating their resilience to perturbations and defining their pre-anthropogenic variability (Jackson 2007; Willis et al. 2010). High-resolution sediment sequences, for example, were pivotal in assessing the timing and extent of lake acidification across large areas of northern Europe and North America in the 1980s, and for attributing the cause to acidifying compounds derived from the combustion of fossil fuels since the Industrial Revolution (Battarbee et al. 2010). Today, European legislation such as the Water Framework Directive (WFD) requires the assessment of ecological quality in relation to pre-anthropogenic baselines. Palaeoecology has been demonstrated to be the best approach to provide objective information about past conditions (Bennion et al. 2010).

Long-term insights are also crucial for identifying and understanding ecological and evolutionary processes. From around 50 000 years ago, a disproportionate number of large-bodied mammals and birds (megafauna) began to go extinct in Eurasia, Australia and the Americas (Barnosky 2004). Accurately dated chronologies of Pleistocene fossils have allowed the timing and potential causes of these megafaunal extinctions to be constrained (Burney & Flannery 2005). In addition, recent studies have demonstrated that the loss of large herbivores led to the formation of novel ecosystems (Gill et al. 2009) and resulted in major changes in vegetation composition and fire regimes (Rule et al. 2012). In this case, integrated analysis of palaeoecological records revealed the unexpected legacies of extinction events on current ecosystem functioning; this cannot be accomplished by studying modern systems alone.

But what are the future important questions that palaeoecological studies could and should be addressing? This paper describes the results from an exercise to identify 50 priority research questions in palaeoecology. This was inspired by previous studies, which have used specific criteria to identify priority research questions to advance the field of a given discipline (Sutherland et al. 2006, 2009, 2011, 2013; Pretty et al. 2010; Grierson et al. 2011; Petrokofsky, Brown & Hemery 2012; Walzer et al. 2013). Here, we present the results of a two-day workshop held at the Biodiversity Institute, University of Oxford, in December 2012 and discuss both pure (e.g. ecological and evolutionary, methodological) and applied research questions (e.g. environmental and conservation) on time-scales covering decades to millions of years.

Materials and methods

We adapted the methodology of Sutherland et al. (2011) to incorporate an open application process and online voting over the course of the workshop. We asked individuals to identify their top priority questions in various branches of palaeoecological science (see Appendix S1 in the Supporting Information). Prior to the workshop, 905 questions were submitted online from 127 individuals, laboratories and organizations, which spanned 26 countries and five continents. Workshop coordinators [AWRS, AWM, AGB] pre-screened the submitted questions for duplication, which resulted in 804 questions organized into 55 topics (see Appendix S3). The questions were then selected and refined through an iterative process of voting and reworking using a simple scoring system (0, zero priority; 1, low priority; 2, high priority; Fig. 1). All participants are listed as co-authors above. Questions are identified in the text by reference to their number (e.g. [Q1]) and are not ranked but are grouped thematically, both between and within working groups.

Results

HUMAN–ENVIRONMENT INTERACTIONS IN THE ANTHROPOCENE

1. When did human activities first trigger global environmental change and can we define the start of the Anthropocene with reference to these activities?
2. How did changes in human livelihood, settlement strategies and land-use affect land cover, ecosystem structure, nutrient cycles and climate over the late Quaternary?
3. Why are some species and ecosystems more sensitive to environmental change than others and therefore respond first or to the greatest degree?
4. Why do different species and ecosystems experience varying time-lags in their response to environmental change?
5. What effect has Holocene landscape fragmentation had on the ability of natural and semi-natural vegetation types to respond to environmental change?
6. How can the relationships between climate, herbivory, fire and humans be disentangled?
7. What are the impacts of pollutants on biota, including contaminants of emerging concern and their interactions with other stressors?
It has long been known that combustion of fossil fuels pollutes the Earth’s atmosphere. The concept of the Anthropocene recognizes that human activity has now transformed many of the Earth’s ecosystems on a global scale (Crutzen & Stoermer 2000), yet formalizing this as a new geological epoch remains controversial (Zalasiewicz et al. 2011; Gibbard & Walker 2013). One debate surrounds whether the Anthropocene began at the onset of the Industrial Revolution, or thousands of years earlier following the expansion of agriculture and concomitant increases in atmospheric CO₂ and CH₄ (Ruddiman 2012). A key challenge for palaeoecologists is to understand when specific human activities, including hunting, land clearing and agriculture, began altering ecosystems at globally relevant scales [Q1] and how ecosystems responded in these human-mediated landscapes [Q2–6].

The broad theme of human–environment interactions was identified as an area where a strong overlap exists between ecological and palaeoecological research (see, e.g., Sutherland et al. 2013). However, an additional challenge identified by palaeoecologists concerned the threats posed by new and emerging pollutants, especially when interactions with other stressors such as climate change were considered (Noyes et al. 2009; Murray, Thomas & Bodour 2010) [Q7]. For example, widespread application of antifouling tributyltin (TBT) on boats in the Norfolk Broads, England, resulted in the decline in grazing organisms and subsequent proliferation of phytoplankton, which led to the collapse of aquatic macrophyte communities (Sayer et al. 2006; Fig. 2). Palaeoecological records were vital in identifying these major changes in ecosystem structure and function and have much to offer in disentangling the drivers and impacts of multiple stressors (see also [Q35]).

Several biodiversity intactness indices, for example, require knowledge of a ‘baseline’ ecological state (Scholes & Biggs 2005; Nielsen et al. 2007), but this fundamental information is often cited as a ‘key deficiency’ or knowledge gap (The Royal Society 2003; Froyd & Willis 2008). Furthermore, in novel ecosystems or in those that have experienced very rapid change or species reshuffling, a return to baseline conditions may not be achievable or even appropriate (Hobbs et al. 2006). ‘Conservation palaeobiology’ is emerging as a discipline to address the challenges of using long-term data to inform restoration and management (Dietl & Flessa 2011). Important issues to be addressed in future include assessing the degree of change from specified historical ecosystems (Fluin et al. 2007; Gillson & Duffin 2007) [Q8]; determining the viability and level of intervention required to restore such historic conditions where desirable (van Leeuwen et al. 2008) [Q9, 10]; investigating the extent of human influence and the management of cultural landscapes (Chambers et al. 2013; Shaw & White 2013) [Q8, 9, 11]; and identifying and guiding conservation of emerging novel ecosystems in order to maintain ecosystem services (Jackson & Hobbs 2009) [Q11, 12]. Promoting and communicating palaeoecological data in conservation planning could also play an important role in informing ecosystem management [Q13].

Resilience theory is also becoming an influential framework in landscape management, on account of its potential for understanding ecological change in complex systems. The theory highlights the importance of identifying slow variables (i.e. processes occurring over decadal–centennial time-scales or longer) that can lead to transitions between alternative stable states (Holling 1973). For example, the relationship between resilience, environmental change and political dynasties in the Erhai lake catchment in Yunnan Province, China, was analysed by Dearing (2008) (Fig. 3). Analysis of lake sediment and historical records showed that agricultural expansion ~1400 cal. years BP initiated widespread gullying that continued for ~600 years. These long-term records revealed the possibility of alternate steady states in the catchment and suggested that the landscape is characterized by low resilience today. Identifying critical thresholds and predicting when they might be crossed has been highlighted as a priority research area in ecology (Scheffer & Carpenter 2003; Sutherland et al. 2013) and one where palaeoecology has the potential to provide many exciting insights [Q14–17].

Biodiversity over Long Time-Scales

18. What is the role of sea-level change in community and diversity dynamics through time and across marine and terrestrial environments?
19. What drives the spatial expansion and contraction of a species over its duration?
20. At what rates have species ranges shifted during past intervals of climate change, and what geophysical factors, biological traits and their interactions have affected these rates?

Fig. 2. Biostratigraphy and butyltin (pollutant) profiles (µg g⁻¹) for a sediment core from Hickling Broad, England. Macrofossil data are expressed as a flux (no. cm⁻² year⁻¹) to account for differential rates of sediment accumulation over the core profile. Palaeoecological data were used to identify a major shift in aquatic community structure following exposure to pollutant stressors. The cartoon depicts the transition from macrophyte- to plankton (diatom)-dominated communities following the introduction of TBT pollutants from the 1960s onwards. Adapted with permission from Sayer et al. (2006). Copyright (2006) American Chemical Society.
21. How can the rate and spatial dynamics of extinctions in the fossil record, together with palaeoclimate modelling, help in predicting future ecological and biodiversity loss?

22. Why do the co-occurrences of some species persist through time? Is the stability of these associations caused by similar environmental niches, co-evolutionary relationships or randomness?

23. What processes control the stability/variability of realized and fundamental niches through time?

24. How has varying atmospheric composition shaped biotic interactions (e.g. between C3 and C4 plants, trees and grasses, megaherbivores and forage, insects and plants)?

25. What are the appropriate null models in palaeoecology for testing hypotheses about ecological and evolutionary processes?

Biodiversity dynamics are primarily regulated through the interaction between speciation and extinction rates through time. Molecular phylogenies on extant taxa are limited in that they typically only provide insights into the speciation process. In contrast, palaeoecological records can be used to track the waxing and waning of a species, and in some cases (e.g. Cenozoic planktonic foraminifera), the record can be interpreted as a single line of descent that begins with speciation and ends in extinction (Simpson 1962). One important consideration is the abiotic processes (including, but not limited to, temperature) influencing diversification rates. Sea-level variations throughout the Phanerozoic, for example, are likely to have had major influences on the evolutionary trajectories of different species through reproductive isolation and speciation. Sea-level changes may also influence evolutionary processes by increasing chances of dispersal and changing habitat type (Abe & Lieberman 2009). Similarly, environmental instability early on in a species’ life span has been shown to influence species’ persistence over time (Liow et al. 2010), but the rate and driving mechanisms of this process remain poorly understood [Q18,19]. On shorter time-scales, changes in climate over glacial-interglacial cycles have also been demonstrated to influence migration rates, dispersal and range size changes (Bennett 1997). Understanding how these environmental variables influence geographical range and niche dynamics is essential as geographical range directly impacts on the extinction risk of species. This is an area of research where palaeoecology has much to offer [Q20, 21, 23].

Biotic interactions can also shape evolutionary processes. Whilst the Quaternary record shows constant turnover of communities and development of novel ecosystems, particularly at times of rapid climate change, on deeper time-scales the persistence of some species, especially plants, is remarkable (Willis & McElwain 2014). This leads to the question of which factors lead to long-term persistence [Q22] and the challenges of quantifying the interplay between abiotic change and biotic interactions (Ezard et al. 2011). A classic example of this is the relationship between C3 and C4 plants from the Oligocene (~33 Ma); how this biotic interaction was influenced by changing atmospheric CO2 concentrations and aridity is still poorly understood (Strömberg 2011) [Q24].

Interestingly, a question on ‘null models’ [Q25] emerged in the priority list. Null models use permutation procedures on ecological data in order to produce a distribution that would be expected in the absence of a particular ecological mechanism (Gotelli & Graves 1996). Although null models have played a particularly important role for explaining patterns of dispersal (Hubbell 2001), this approach is fundamental to all scientific disciplines and yet is rarely considered (see also, [Q49]).
ECOSYSTEM PROCESSES AND BIOGEOCHEMICAL CYCLING

26. How have terrestrial carbon, nitrogen and silica cycles been linked in the past, specifically at times of abrupt climate change?

27. What was the effect of centennial-scale climate variability on the carbon balance of terrestrial and aquatic ecosystems at regional to global scales?

28. How can palaeoecological data from continental shelf areas help characterize anthropogenic impacts on geochemical fluxes (e.g. silica, C, N and P) from land to shallow marine ecosystems during the Holocene?

29. How does species turnover (e.g. immigrations, extinctions) and varying community composition affect ecosystem function, including carbon sequestration?

30. How can sedimentary records be used to address process-based questions and to test mechanistic ecological models so as to provide insights about the past functioning of ecological systems?

31. How can ecological interactions (e.g. competition, predation, mutualism, commensalism) and their possible evolutionary consequences be inferred from palaeoecological data?

32. How can disturbances such as insect outbreaks or pathogens be detected in palaeoecological data?

33. What are the taphonomic characteristics of ancient DNA (aDNA), in particular under different climatic and sedimentary contexts?

Ecological systems are linked with the abiotic environment through fluxes of energy and matter. Therefore, quantifying the rate and magnitude of the biogeochemical cycling of different nutrients, and how these rates respond to different stressors, is fundamental to understanding how an ecosystem functions and an area that palaeoecological science can address [Q26–29]. It has long been recognized that the uptake of carbon by terrestrial ecosystems in mid- to high latitudes, for example, is limited by N availability (Mitchell & Chandler 1939). A key question for global change ecologists involves understanding how these two cycles will covary in future, particularly in the context of increasing carbon dioxide concentrations and excess nitrogen deposition (Galloway & Cowling 2002) [Q27].

The utility of this approach has recently been demonstrated in an integrated palaeoecological study from 86 sites globally (Fig. 4). This revealed the slow response of the global N cycle relative to major changes in CO2 during the last glacial–interglacial transition (McLauchlan et al. 2013). Overall, a decline in N availability (indicated by declining values of δ15N) was observed between 15 000 and 7500 cal. years BP, occurring at the same time as known increases in terrestrial net carbon accumulation in plant and soil organic matter. Surprisingly, there was not a comparable change in sedimentary δ15N over the past 500 years, which reflects the fact that humans are altering both the C and N cycles in the present time. Thus, the ultimate trajectory of N availability is being controlled by local or regional factors. Such studies highlight the important role that palaeoecology can play in understanding ecological functioning, particularly at times of abrupt climate change.

In ecological research, problems involving complex trophic interactions, biogeochemical cycling and population dynamics are often addressed using process-based models [Q30–31].

Fig. 4. Changes in lacustrine sedimentary δ15N during the late Pleistocene and Holocene from 86 sites globally. The δ 15N record is a proxy for nitrogen availability, with higher 15N values occurring when N supply is high relative to biotic demand. Palaeoecological evidence revealed both the slow response of the nitrogen cycle to major changes in CO2 and temperature over the glacial–interglacial transition; and no net change in N demand over the past 500 years. This is surprising since there has been doubling of the pre-industrial supply of nitrogen in the past 200 years. (a) A smoothing spline curve (0.05 smoothing parameter) fitted to the means of sites in 100-yr bins is shown (red) with 95% bootstrapped confidence intervals (grey). Declines in sedimentary δ 15N from 15 000 cal. years BP to the breakpoint at 7056 ± 597 cal. years BP correspond with periods of global net terrestrial carbon gain (shaded green). Dotted black line is the breakpoint regression. (b) A different set of high-resolution sedimentary δ 15N records shows no net change over the past 500 years. Reprinted by permission from Macmillan Publishers Ltd: Nature (McLauchlan et al. 2013), copyright 2013.

This also represents an exciting area in palaeoecology, particularly for understanding demographic effects and biotic interactions (Jeffers, Bonsall & Willis 2011). In other cases, important biotic variables remain unknown. In research concerning pest-pathogen outbreaks, for example, reliable detection methods of pest-pathogens are still required [Q32]. Similarly, major ecological insights can be gained from understanding changes in genetic variability of populations through the recovery and study of aDNA from fossil remains. However, a remaining technical challenge concerns the understanding of taphonomic processes influencing aDNA preservation [Q33] (e.g. Haile et al. 2007).

COMPARING, COMBINING AND SYNTHESIZING
INFORMATION FROM MULTIPLE RECORDS

34. What methods can be used to develop more robust quantitative palaeoenvironmental reconstructions and ensure reliable estimates of the associated uncertainties?

35. How can palaeoecologists disentangle the separate and combined effects of multiple causal factors in palaeoecological records?

36. When using modern analogues, what measures can be taken to be sure that the training set is sufficient to reconstruct the full range of likely past conditions, and if not, what else should be used to supplement these methods?

37. What methods can be used to identify and quantify the effect of diagenetic and taphonomic processes on the palaeoecological record?

38. How does taxonomic and numerical resolution affect the recognition of community, metacommunity and other ecological patterns?

39. How can common environmental signals be identified in multiple records at different spatial and temporal scales?

40. What methods can be used to better assess the leads, lags and synchronicities in palaeorecords at different spatial scales?

41. Given that palaeoecology relies on accurately dated chronologies, how can the often incompatible dates derived from different dating techniques (e.g. \(^{210}\)Pb & \(^{14}\)C, \(^{14}\)C & OSL) be reconciled to improve the dating of key time periods (e.g. the Industrial period; Marine Isotope Stage 3)?

Modern research in palaeoecology focuses both on understanding the ecology and environment of single geographical locations (via, for example, analysis of lake, peat, ocean and ice core records) and on reconstructing past environments and ecosystems at regional, continental and global scales. Whilst tools for single-site analysis have been evolving since the earliest work in palaeoecology (e.g. Fagri & Iversen 1950), tools for inter-site comparison and regional synthesis are relatively undeveloped and face two main challenges. The first is to disentangle the effects of multiple causal factors on palaeoecological records at single sites and across multisite networks (Cunningham et al. 2013; Juggins 2013). The second is to quantify the sources of uncertainty that accumulate as one moves through the causal chain that links climate or other environmental drivers to the palaeoecological observations (Fig. 5).

There are many sources of uncertainty in palaeoecology. Some relate simply to the stochasticity of the natural world, but others arise because of the often-indirect link between the palaeoenvironment and the observations obtained. For example, palaeoecological records typically comprise multispecies assemblages from multiple biological groups (Birks & Birks 2006) that are preserved in long environmental archives and that experience complex post-depositional processes (Birks & Birks 1980). The transfer function methods used to quantify the relationship between ecological assemblage and climate are already used to formalize some of the links in the causal chain from palaeoenvironment to field and laboratory observations (e.g. Haslett et al. 2006). However, explicitly causal models are rare and many such links are simply described qualitatively and not formally modelled. Five questions draw attention to these issues in general or as they relate to specific links in the causal chain [Q34–38].

An additional challenge involves the synthesis of information from multiple sites [Q39–41]. For such projects, issues of chronology often become a primary focus since, unless the records to be combined are on a comparable time-scale (with reliable estimates of uncertainties), robust synthesis is impossible (Blaauw & Heegaard 2012). There is a need to improve existing and develop new chronological techniques and to understand and reconcile the differences observed between the chronologies derived from different techniques (e.g. Piotrowska et al. 2010; Blockley et al. 2012). The need to develop new methods for dating 19th-century sediments is seen as a particular priority (e.g. see Rose & Appleby 2005). As sediments become older, this time period will eventually fall beyond the range of \(^{210}\)Pb dating and the gap between conventional \(^{14}\)C and \(^{210}\)Pb dating horizons will become progressively greater. To resolve this, novel dating techniques such as \(^{32}\)Si hold great potential (Morgenstern et al. 2013) [Q41].
DEVELOPMENTS IN PALAEOECOLOGY

42. Do ecological principles, formulated to account for present-day (10–100 years) patterns, hold when applied to palaeoecological patterns (>100–1000 years), or are there palaeoecologically important ecological processes that are impossible to study with modern observational data?

43. What common questions can be addressed by ecologists and palaeoecologists to bridge the contrasting spatial and temporal scales between the two disciplines effectively?

44. How can palaeoecological records contribute to and advance key concepts that are currently central to ecological thinking, including model comparison and stochastic process modelling?

45. How can forest inventory data, modern pollen data bases and pollen loading equations be integrated effectively to facilitate the generation of robust estimates of tree and land cover?

46. How best can palaeoecologists create an accessible, consistent, usable and future-proof record of historical and archaeological sources integrated with contemporary ecological observations?

47. What new opportunities and research agendas, arising from the availability of higher spatial, temporal and taxonomic resolution data, will be created with the adoption of automated counting systems for microfossils?

48. What are the developmental and genetic controls on morphology, and how can the fossil record be used to study phenotypic plasticity and the evolution of developmental systems?

49. How do palaeoecologists encourage hypothesis testing rather than data-dredging approaches when exploring relationships between proxies and records?

50. How can closer collaboration between palaeoecologists and statisticians be fostered in order to ensure development and dissemination of appropriate statistical techniques?

In the last three decades, palaeoecology has been transformed from a discipline dominated by studies on the composition and structure of fossil assemblages preserved in sediments (e.g. Birks & Birks 1980) into a sophisticated multidisciplinary science involving not only palaeobotany, palaeoecology and archaeology, but also inorganic and organic geochemistry, stable-isotope assays, geochronology, dendrochronology, aDNA studies, modelling and applied statistics (Flessa & Jackson 2005; Birks 2008). Here, two outstanding chronology, aDNA studies, modelling and applied statistics geochemistry, stable-isotope assays, geochronology, dendrozoology and archaeology, but also inorganic and organic tiddisciplinary science involving not only palaeobotany, palaeo-sediments (e.g. Birks & Birks 1980) into a sophisticated multi-
multiscale study of species dynamics, vegetation composition and land-scape structure in space and time [Q45, 46].

However, despite these new developments, some fundamental issues remain to be addressed. Thus, the importance of the essential links between palaeoecology and ecology was emphasized, with a focus on integrating data across spatial, taxonomic and temporal scales (e.g. Gray 2004; Helama et al. 2010) [Q42–44]. Finally, three questions were targeted at challenging the research approaches of palaeoecologists themselves. There is an increasing need to exploit the full potential of dynamic modelling, quantitative model comparison and statistical hypothesis testing in palaeoecological analyses (Jeffers, Bonsall & Willis 2011; Jeffers et al. 2012) [Q44, 49] so as to provide a rigorous basis for further quantitative analytical approaches in palaeoecology (Birks 1985, 2012) [see also Q25]. This requires a close collaboration between palaeoecologists, ecological modellers and applied statisticians [Q50].

Discussion

Evaluation

Our study follows other priority research exercises in, for example, ecology, applied ecology and conservation science (Sutherland et al. 2006, 2009, 2013). All of these exercises are dependent on the individual skills, interests and expertise of the participants, and our questions do not therefore represent a definitive list. We also noted that whilst the 804 screened questions were a mixture of both general and specific, questions became increasingly general through subsequent iterations. More than 100 questions involving pollen analysis were submitted, for example, but these were translated into more general questions that could be applied to multiple proxy groups or habitat types. The end result is a list of questions that can be tailored to a variety of research problems.

As an example, a widespread decline of Tsuga canadensis (Eastern hemlock) is observed in fossil pollen records ~5500 cal. years BP across its entire range in eastern North America. Its drivers have been ascribed to climate (Foster et al. 2006; Shuman, Newby & Donnelly 2009), a pest-pathogen outbreak (Davis 1981) or a combination of the two. Whilst there is some evidence for pest head capsules of insect pests found in limited sites around the time of the decline (Bhiry & Filion 1996), evidence for a range-wide outbreak remains inconclusive. Thus, one obvious task is to find new ways of detecting pest-pathogen outbreaks in the palaeoecological record [Q32]. Additional information could be obtained using process-based models to infer population dynamics [Q31, 44]. If the hemlock decline was driven by climate, then an additional question would be why this species responded more sensitively than others [Q3], or whether it was the result of cross-scale interactions between climate and the pathogen, or the interactions between multiple stressors (Booth et al. 2012) [Q35, 39]. Thorough testing of the problem also requires integrating and modern pollen is essential in data synthesis. Data-mining exercises could be used to provide more reliable reconstructions of species dynamics, vegetation composition and landscape structure in space and time [Q45, 46].

multiple palaeoecological sites [Q39]. Even the timing and synchrony of the hemlock decline is now being debated so that resolving age uncertainties between pollen and other climate records is vital [Q40].

LOOKING FORWARD

This exercise also provided an opportunity to reflect on the status of the discipline today. How do our questions compare to those identified in fundamental ecology and what can we infer about the future directions? Von Post’s seminal work in the early 20th century was heavily focused on describing patterns of vegetation change as a relative dating tool over the past 11 000 years. There was little consideration of the underlying ecological mechanisms responsible for the observed changes. In contrast, from the 1980s onwards, many fossil pollen data sets were developed specifically to reconstruct past climate change with little attention given to the patterns of vegetation change. In these studies, quantification and reconstructions of single sites were the key focus, although there were a growing number of studies that were being applied to test specific ecological hypotheses related to, for example, impacts of climate change on early agriculture; causes of regional-scale declines or extinctions of major forest trees; and the impacts of catchment vegetation changes on lake ecosystems.

The questions identified in this study highlight a different situation for modern palaeoecological science. Only 8% of the initial questions submitted to the website were specifically targeted at filling data gaps or were concerned with a specific regional study. None of these were selected in the final question list. Instead, topics covered included community, species and diversity dynamics (18%); ecosystem functioning (12%); global change ecology and human impacts (18%); and ecosystem management (12%). This suggests that the perceived disconnect between neo-ecology and palaeoecology that has been reported in the past is being eroded (see, e.g., Froyd & Willis 2008), since common themes between these questions and those in the recent fundamental ecology exercise can be identified (Sutherland et al. 2013). Examples include factors that control species range shifts; biogeochemical cycling under rapid climate change; and measuring and quantifying ecological resilience. On these topics in particular, there is great potential for further integration between the two subdisciplines.

These developments are also reflected in the greater role played by palaeoecology within other spheres of science. There has been, for example, an increase in the use of palaeoenvironmental data within Intergovernmental Panel on Climate Change (IPCC) reporting between 1990, when the data were considered ‘encouraging’, and 2007, where palaeoecological proxies contribute strongly to model testing and validation (Jansen et al. 2007). Estimates of climate sensitivity (the amount of warming produced by a doubling of CO₂) can be enhanced using the information of past temperature changes from sediment records (Edwards, Crucifix & Harrison 2007). Similarly, when palaeoecological data are combined with higher-frequency tree-ring data sets, they can be used to reconstruct millennial-scale climatic variability (Moberg et al. 2005). These reconstructions can then be used in conjunction with modelling studies to determine the relative importance of volcanic, solar and anthropogenic climate forcing (e.g. Jansen et al. 2007).

One other striking feature of the 50 questions is the heavy dependence on methods. Forty percent of the questions were related to methodology, either directly by focusing upon improved precision and accuracy or by finding new ways to apply and interpret palaeoecological data to address broader questions of, for example, landscape management. In palaeoecological research, this is not surprising. Proxy data are indirect measures of a targeted environmental variable, whilst robust palaeoecological inferences are also heavily dependent on indirect dating techniques. This is in contrast to, for example, neo-ecology, in which the ecological units of analysis can often be directly observed. This result does not undermine the capability of palaeoecology to provide long-term insights. It does, however, highlight the need for continued rigour in the discipline and widespread acknowledgement of the importance of understanding what proxy data can and cannot tell us. A major focus for the future then will remain in characterizing the uncertainties between target variable and proxy source to make robust ecological and evolutionary inferences (e.g. Jackson 2012; Fig. 5).

The questions selected also hint at cross-cutting themes that have the potential to influence palaeoecological research in future. The move from site-specific descriptions towards addressing global-scale issues, for example, is reliant on upscaling and comparing multiple records. This will require efficient data management techniques that are able to compare and correlate multiple proxies. A second cross-cutting theme involves disentangling the synergistic effects of multiple variables (e.g. fire, human impact, faunal composition). We now realize that ecosystems represent complex systems, experiencing chaotic fluctuations and alternative stable states, and these dynamics partially explain the unpredictable ecosystem responses following an extrinsic forcing. Finally, there are a number of questions that highlight the importance of biotic interactions. Better characterization of these in palaeoecological records may also improve our understanding of community dynamics in complex systems.

In summary, the 50 questions identified and discussed in this paper highlight the potential for palaeoecology to address both empirical and applied research questions related to ecological science and global change. These questions demonstrate the critical importance of historical context in understanding the Earth system, and whilst we do not claim that they are definitive, they outline key areas in the future palaeoecological research agenda.

Acknowledgements

The authors are grateful to all persons who coordinated question submissions and who made contributions to the online site. All contributions are listed in the Supporting Information (Appendix S4). We thank William Sutherland and Gillian Petrokovsky for providing key advice during the initial workshop design, and two anonymous referees for helpful suggestions on an earlier
version of this manuscript. William Sutherland also invited AWM to attend the 100 Fundamental Questions in Ecology workshop at the British Ecological Society, London, for 1 day. The Palaeo50 workshop was funded by the Biodiversity Institute at the Oxford Martin School, Past Global Changes (PAGES), the Quaternary Research Association and the British Ecological Society. Finally, we thank all members of the Biodiversity Institute, Oxford, for their continued support and help over the course of the two-day workshop.

References


Received 5 May 2013; accepted 12 November 2013
Handling Editor: Matt McGlone

Supporting Information
Additional Supporting Information may be found in the online version of this article:

Appendix S1. Detailed methodology to outline the methods used to identify our 50 priority questions.

Appendix S2. Guidelines provided to participants at the beginning of the workshop.

Appendix S3. Complete list of submitted questions.

Appendix S4. Full list of contributors for Acknowledgements.

Table S1. Working group (WG) themes and keywords.