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Abstract. A concurrent system is persistent if throughout its operation no activity which became
enabled can subsequently be prevented from being executed by any other activity. This is often
a highly desirable (or even necessary) property; in particular, if the system is to be implemented
in hardware. Over the past 40 years, persistence has been investigated and applied in practical
implementations assuming that each activity is a single atomic action which can be represented, for
example, by a single transition of a Petri net.

In this paper we investigate the behaviour of GALS (Globally Asynchronous Locally Synchronous)
systems in the context of VLSI circuits. The specification of a system is given in the form of a Petri
net. Our aim is to re-design the system to optimise signal management, by grouping together con-
current events. Looking at the concurrent reachability graph of the given Petri net, we are interested
in discovering events that appear in ‘bundles’, so that they all can be executed in a single clock tick.
The best candidates for bundles are sets of events that appear and re-appear over and over again in
the same configurations, forming ‘persistent’ sets of events. Persistence was considered so far only
in the context of sequential semantics. In this paper, we move to the realm of step based execution
and consider not only steps which are persistent and cannot be disabled by other steps, but also
steps which are nonviolent and cannot disable other steps. We then introduce a formal definition of
a bundle and propose an algorithm to prune the behaviour of a system, so that only bundled steps
remain. The pruned reachability graph represents the behaviour of a re-engineered system, which in
turn can be implemented in a new Petri net using the standard techniques of net synthesis. The pro-
posed algorithm prunes reachability graphs of persistent and safe nets leaving bundles that represent
maximally concurrent steps.

Keywords: asynchronous and synchronous circuit, GALS system, persistence, nonviolence, step
transition system, step semantics, Petri net.
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1. Introduction

A concurrent system is persistent [2, 3, 4, 16] if throughout its operation no activity which became
enabled can subsequently be prevented from being executed by any other activity. This is often a highly
desirable (or even necessary) property; in particular, if the system is to be implemented in hardware [7,
8, 22]. Over the past 40 years, persistence has been investigated and applied in practical implementations
assuming that each activity is a single atomic action which can be represented, for example, by a single
transition of a Petri net (used as a formal model of a concurrent system). In other words, persistence was
considered assuming the sequential execution semantics of concurrent systems [19].

Traditional circuit design styles have been following one of the two main strands, namely syn-
chronous and asynchronous. In a nutshell, these two approaches differ in their techniques of synchro-
nising interaction between circuit elements. Asynchronous designs adopt ‘on request’ synchronisation
where interaction is regulated by means of handshake control signals. They are designed to be adaptive
to delays of signal propagation. Synchronous designs, on the other hand, assume worst case delay of
the critical path and determine a global periodic control signal for synchronisation called the clock. The
clock signal limits the many sequencing options considered in asynchronous control. Thus synchronous
circuits can be considered as a proper subset of asynchronous circuits [6].

Asynchronous logic was the dominant design style with most early computers. In particular, David
Muller’s speed-independent circuits, dating back to the late 1950s, have served many interesting ap-
plications such as the ILLIAC I and ILLIAC II computers [18]. However, since 1960, an era when
fabrication of integrated circuits (ICs) became a feasible business, synchronous design became the main-
stream technique as it met the market needs with its shorter design cycle. Today, majority of designs are
synchronous, well etched in the heart of semiconductor industry together with superior CAD tools and
EDA flows.

non−monotonic
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Figure 1: Hazardous switching of an AND gate.

One of the main issues with the complexity of asynchronous circuits was the handling of hazards.
Hazards are manifestations of undesirable switching activity called glitches. In the asynchronous style
of synchronisation, the output of each circuit element is potentially sensitive to its inputs. This can give
rise to non-monotonic pulses (or glitches) when transitioning between output states, as illustrated in the
waveform of Figure 1 taking the case of an AND gate. Due to tight timing between the rising edge of
input a and falling edge of input b, the output c produces a non-monotonic pulse before stabilising to
a low. This behaviour is hazardous as it is uncertain how the fanout of the AND gate will interpret the
glitch; the output c temporary switching to logical 1 or staying at logical 0 all the time.
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As shown, for instance, in paper [22], the phenomenon described in the above example can be con-
veniently interpreted in terms of formal models such as Keller’s named transition systems [13] or Petri
nets [6]. In particular, what we see in this circuit is the effect where a signal that is enabled (rising edge
of c) in a certain state of the circuit may become disabled without being executed after the occurrence
of another signal (falling edge of b). Such an effect corresponds to the violation of persistence property
at the level of signal transitions if the latter are used to label the corresponding named transition system.
Furthermore, when such a circuit is modelled by a labelled Petri net following the technique of [22],
the Petri net would also be classified as a non-persistent one. Thus, it was shown in [22] that the mod-
elling and analysis of an asynchronous circuit with respect to hazard-freedom is effectively reduced to
the analysis of persistence of its corresponding Petri net model.

Synchronous circuits, on the other hand, do not require persistence satisfaction as they are intrin-
sically immune to hazardous behaviour. The principle reason being that the clock, set at worst-case
latency period, filters out undesirable circuit switching. This greatly simplifies circuit design compared
to asynchronous methods wherein the same circuit had to be analysed for persistence and redesigned
to ensure glitch-free operation. Clocked circuits are thus preferred over asynchronous circuits for de-
signing functionally correct (hazard-immune) ICs efficiently. However with chip sizes scaling to deep
sub-micron level, semiconductors are experiencing severe variability and it is becoming extremely com-
plicated to design chips in the synchronous fashion. This is because designing for variability requires
longer safety margins which in turn reduces the clock frequency and degrades circuit performance. To
cope with these challenges, asynchronous design methodologies have re-emerged owing to their inherent
adaptiveness [9]. However, they still suffer significant challenges such as complicated design flow, high
overhead costs from control and, lack of CAD support tools and legacy design reuse. Therefore attempts
are being made to find a compromise.

An on-trend intermediate solution is mixed synchronous-asynchronous design, chiefly acting in the
form of Globally Asynchronous Locally Synchronous (GALS) methodology. Its benefits are well known
in literature [11, 12, 20]. GALS system design, introduced in [5], can exploit the advantages of asyn-
chrony and at the same time maximally reuse the products of synchronous design flow. This design tech-
nique divides a digital system into synchronous islands which communicate asynchronously by hand-
shake mechanism. Each island has its own local clock which can be activated on demand by means
of a handshake control signal. Such systems comprise a mixed temporal behaviour. Asynchronous
handshakes handle interaction between components where adaptability can significantly improve perfor-
mance, while clocking is applied to components where worst case performance is tolerable. However,
it is worth noting that modelling GALS systems would involve detection of potential hazardous states
due to presence of asynchronous components, making their design and verification a significant research
challenge.

Being a recent trend, there is a lack of formal models that describe correctness of GALS designs.
The complexity in modelling them begins with the investigation of persistence. It should be noted that
the standard notion of persistence has been defined at the level of single actions, which is also known as
interleaving semantics of concurrency. This notion has been adequate for representing the correctness
of the behaviour of circuits that are fully asynchronous. In asynchronous circuits, there is concurrency
between independent actions and sequential order between causally related actions. This notion is well
represented by Keller’s named transition systems [13]. Figure 2(a) depicts such a model capturing the
asynchronous behaviour of a system with four events: a, b, c and d. Now, in synchronous circuits, the
clock signal would trigger a single action or several actions. These circuits exhibit parallelism between
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Figure 2: Temporal representations of systems having concurrent, parallel and mixed concurrent-parallel
behaviours: (a) interleaving model for asynchronous behaviour; (b) step model for synchronous be-
haviour; and (c) mixed model for GALS behaviour.

actions in the same clock cycle and sequential order between groups of actions in adjacent clock cycles.
To represent this group execution of actions, we will use steps, and therefore we need step transition
systems to represent such a behaviour. A step represents a single action or a group of actions that are
triggered simultaneously from a particular state by the clock signal. Figure 2(b) shows such a transition
system model capturing the temporal behaviour of a synchronous system with the help of steps. For the
case of GALS, there is a mixture of synchrony and asynchrony and hence both concurrent and parallel
behaviour have to be represented. Figure 2(c) illustrates the mixed temporal behaviour seen in such
systems. In all three cases, step transition systems provide a suitable behavioral model, as a single
transition can be treated as a singleton step.

Synchronous and asynchronous systems have distinct techniques to guarantee functionally correct
behaviour. However, for GALS systems, it is not so straightforward as correctness should be accounted
from both angles. We would like to find an adequate representation of the correct behaviour of GALS
systems. Here, it would be natural to define such a behaviour in analogous way as it was done for
asynchronous circuits, i.e., with the use of the notion of persistence. However, when modelling GALS
systems we have to consider complex actions, namely steps, and corresponding transition systems. This
paper is hence centred around extending the notion of persistence to steps.

The main motivation for studying persistent steps in this paper is as follows. Digital system design
based on formal models is normally associated with two main tasks: one is the verification of a system’s
behavioural specification or checking the model of the system implementation, while the other is the
synthesis of the circuit implementation from its specification. In the context of verification we would
like, for example, to check if the Petri net model of a GALS system satisfies the requirement of hazard-
freedom under a particular form of synchronisation of actions (in steps). In the context of synthesis, we
would like to find the optimal partitioning of actions into synchronous steps so that the complexity of
control of these steps is minimised. For example, the intuitive complexity of handling synchronisations
safely in the three scenarios of Figure 2 varies between them, from the most intricate in the fully asyn-
chronous one (case (a)) to the simplest in fully synchronous one (case (b)), placing the GALS version in
the middle (case (c)). With this varying complexity, one can design systems that may exhibit hazards if
they are treated as fully asynchronous, but when actions are synchronised into steps the system would
behave safely. Amongst the methods for synchronising actions into steps, we can consider those that are
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based on the insertion of additional control circuits to physically ‘bundle’ actions together, or based on
ensuring the appropriate ‘bundling’ constraints based on timing, or delays. Traditional globally clocked
systems, self-timed systems working under fundamental mode assumptions, and asynchronous systems
with relative timing [6] are all of the latter category.

It is this idea of bundling those steps of actions that are ‘hazard-free’ or persistent that motivated
our notion of bundles, introduced in this paper. In terms of nets and corresponding transition systems,
bundles are informally sets of transitions that can be executed synchronously and therefore be treated as
some kind of ‘atomic actions’, giving rise to new ‘bigger’ transitions. Section 5 provides a more formal
treatment for bundles and shows a constructive procedure for deriving them by pruning reachability
graphs or transition systems, depending on whether we are solving the verification or synthesis problem.
For example, in the process of synthesis of the control policy for a GALS system, such a ‘pruned’
transition system would represent the desired behaviour, which then we would like to implement in a
form of a Petri net.

The paper is organised as follows. Section 2 recalls the basic definitions and notations concerning
step transition systems and PT-nets. Section 3 introduces various types of persistent and nonviolent steps
of transitions in PT-nets and Section 4 discusses their basic properties. Section 5 presents the main
application result of the paper, an algorithm that prunes the concurrent reachability graph of a net, which
serves as an initial system specification, to obtain a representation of a desired ‘GALS’ behavior. Finally,
Section 6 contains conclusions and presents directions for future work.

2. Preliminaries

In this section we recall definitions and notations concerned with step transition systems and step seman-
tics of Petri nets used throughout the paper.

Let T be a finite set of net transitions representing actions of a concurrent system. A set of transitions
is called a step, and we use α, β, γ, . . . to range over all steps P(T ). Sometimes we identify a step α
with its characteristic function α : T → {0, 1}, and then write α =

∑
a∈T α(a) · a. The size |α| of α is

defined as the number of its elements.

Definition 2.1. (step transition system)
A step transition system (or ST-system) over a set of net transitions T is a triple S = (Q,A, q0) consisting
of a set of states Q, including the initial state q0 ∈ Q, and a set of labelled arcs A ⊆ Q× P(T )×Q. It
is assumed that:

• (q,∅, q) ∈ A for all q ∈ Q;

• the transition relation is deterministic, i.e., if (q, α, q′) ∈ A and (q, α, q′′) ∈ A then q′ = q′′;

• each state is reachable, i.e., if q ∈ Q then there are sequences of steps α1, . . . , αn (n ≥ 0) and
states q1, . . . , qn = q such that (qi−1, αi, qi) ∈ A for 1 ≤ i ≤ n. �

For an ST-system S as above, we introduce the following notations:

• q α−→ q′ and q α−→ whenever (q, α, q′) ∈ A;

• EnS(q) = {α | q
α−→} ⊆ P(T ) is the set of all steps enabled at a state q;
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• EnS =
⋃
q∈Q EnS(q) ⊆ P(T ) is the set of all the enabled steps of S;

• readyS(q) =
⋃
EnS(q) =

⋃
α∈EnS(q)

α ⊆ T is the set of all transitions ready to be executed at a
state q, i.e., those belonging to steps enabled at q.

(a)

a b

c d {c, d}
{c} {d}

{d} {c}

{a, b}
{a} {b}

{b} {a}{c}

{b}
{c, b}

(b)

Figure 3: A PT-net N (a); and its concurrent reachability graph CRG(N ) (b). Note that arcs (in fact,
self-loops) labelled by the empty step are not shown in CRG(N ).

Definition 2.2. (place/transition net)
A place/transition net (or PT-net) is a tuple N = (P, T,W,M0), where P and T are finite disjoint sets
of respectively places and transitions, W : (P × T ) ∪ (T × P ) → N is an arc weight function, and
M0 : P → N is an initial marking (in general, any mapping M : P → N is a marking). �

We use the standard conventions concerning the graphical representation of PT-nets, as shown in Fig-
ure 3(a). For every element x ∈ P ∪ T , we use

•x = {y |W (y, x) > 0} and x• = {y |W (x, y) > 0}

to denote the pre-set and post-set of x, respectively. If x ∈ T , then any p ∈ •x is a pre-place of x, and
any p ∈ x• is a post-place. The dot-notation extends in the usual way to a set X ⊆ P ∪ T :

•X =
⋃
x∈X

•x and X• =
⋃
x∈X

x• .

Moreover, for every place p ∈ P and step α ∈ P(T ), we denote:

W (p, α) =
∑
a∈T

α(a) ·W (p, a) and W (α, p) =
∑
a∈T

α(a) ·W (a, p) .

In other words,W (p, α) gives the number of tokens that the execution of α removes from p, andW (α, p)
is the total number of tokens inserted into p after the execution of α.
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Definition 2.3. (place/transition net behaviour)
Let M be a marking of N . A step α ∈ P(T ) is enabled and may be executed at M if, for every p ∈ P :

M(p) ≥W (p, α) . (1)

We denote this by M [α〉. Executing such a step leads to the marking M ′, for every p ∈ P defined by:

M ′(p) =M(p)−W (p, α) +W (α, p) . (2)

We denote this byM [α〉M ′. Moreover, for a singleton step α = {a}, we writeM [a〉 andM [a〉M ′ rather
than M [{a}〉 and M [{a}〉M ′. �

The concurrent reachability graph of N is the ST-system

CRG(N ) = ([M0〉, A,M0)

over T where:

[M0〉 = {Mn | ∃α1, . . . , αn,M1, . . . ,Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi} (3)

is the set of reachable markings and (M,α,M ′) ∈ A iff M [α〉M ′. Furthermore, we call α1 . . . αn,
as in the formula (3), a step sequence and write M0[α1 . . . αn〉Mn. Figure 3(b) shows the concurrent
reachability graph of the PT-net in Figure 3(a).

Remark 2.1. Note that for any Petri net N , CRG(N ) is an ST-system, but we have different require-
ments for steps enabled in CRG(N ) and in an arbitrary ST-system. This is intentional distinction. In
Section 5, we define sub-ST-systems, and a sub-ST-system of a CRG might not be a CRG of a Petri net.

Definition 2.4. (sequential and concurrent conflict)
Two distinct transitions, a and b, of N are in:

• sequential conflict at a marking M whenever M [a〉 and M [b〉, but M [ab〉 does not hold;

• concurrent conflict at a marking M whenever M [a〉 and M [b〉, but M [{a, b}〉 does not hold. �

Note that sequential conflict implies concurrent conflict, but reverse implication does not hold; e.g.,
transitions a and b in Figure 4 are in concurrent conflict but not in a sequential one.

(a)

a b

M0

{a} {b}

(b)

Figure 4: A safe persistent PT-net N (a); and its concurrent reachability graph CRG(N ) (b).
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Definition 2.5. (safe net)
N is safe if, for all reachable markings M ∈ [M0〉 and places p ∈ P , M(p) ≤ 1. �

Note that reachable markings of safe nets can be treated as sets of places. Moreover, being a safe
PT-net does not depend on the chosen semantics, i.e., the sequential semantics where only singleton steps
are executed, or the full step semantics.

A step α of a PT-net N is:

• active if there is a reachable marking of N enabling it;

• positive if W (α, p) ≥W (p, α), for every p ∈ P ;

• disconnected if (•a ∪ a•) ∩ (•b ∪ b•) = ∅, for all distinct a, b ∈ α;1

• lying on self-loops if W (p, a) =W (a, p), for all a ∈ α and p ∈ P .

Clearly, the empty step is lying on self-loops, and if α is lying on self-loops then it is also positive.

Fact 2.1. (marking monotonicity)
If M [α〉 and M ′(p) ≥M(p), for all p ∈ P , then M ′[α〉. �

Fact 2.2. (step monotonicity)
If M [α〉 and β ⊆ α, then M [β(α \ β)〉. �

Fact 2.3. (disconnectedness)
A step α is enabled at a reachable marking M of a safe PT-net iff α is disconnected and consists of
transitions enabled at M . �

Remark 2.2. Three above facts are very intuitive and look trivial. However, they have a crucial impor-
tance in the discussion on persistence and nonviolence.

3. Step persistence in nets

Muller’s speed independence theory provided a unique method for guaranteeing hazard-freeness of asyn-
chronous circuits [17]. The semimodularity condition in this work required that an excitation of a circuit
element must not be withdrawn before being absorbed by the system [21]. This condition was identi-
fied by Keller in [13] to be the same as the property of persistence2 in a transition system model for
asynchronous parallel computation. Thus satisfying the property of persistence became one of the key
requirements when designing hazard-free asynchronous circuits.

Later, the idea of persistence was investigated in many papers, for example, in [1, 2, 3, 4, 7, 8, 16, 22].
However, with the exception of [7, 8], it was only considered in the context of sequential executions of
systems, and defined for single transitions (rather than steps).

In the rest of this section, N = (P, T,W,M0) is an arbitrary PT-net.

1The notion of disconnectedness as defined here is not related to the standard graph-theoretic notion of disconnectedness (i.e.,
that a graph is disconnected if there is a pair of vertices without a connecting path).
2[13] was the first work to consider persistence in the context of Petri nets.
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Definition 3.1. (persistent net, [16])
N is persistent if, for all distinct transitions a, b ∈ T and any reachable marking M ∈ [M0〉, M [a〉 and
M [b〉 imply M [ab〉. �

We can re-write the net-oriented definition of persistence from the position of a single transition.
Interestingly, such an attempt leads to two possible formalisations. In the first one, executing a nonviolent
transition does not disable any other enabled transition, and in the second one, a persistent transition
cannot be disabled by executing any other transition.

Definition 3.2. (nonviolent/persistent transition)
Let a be a transition enabled at a marking M of N . Then a is locally:

• nonviolent at M if, for every transition b enabled at M , b 6= a =⇒ M [ab〉.

• persistent at M if, for every transition b enabled at M , b 6= a =⇒ M [ba〉.

Moreover, an active transition a is globally nonviolent (or globally persistent) inN if it is locally nonvi-
olent (resp. locally persistent) at every reachable marking of N at which it is enabled. �

The above net-oriented and transition-oriented definitions are closely related as, due to the symmetric
roles played by a and b in Definition 3.2, we immediately obtain the following.

Proposition 3.1. The following are equivalent:

• N is persistent;

• N contains only globally nonviolent transitions;

• N contains only globally persistent transitions.

We now introduce the central definitions of this paper, in which we lift the notions of persistence and
nonviolence from the level of individual transitions to the level of steps.

Definition 3.3. (nonviolent step in a net)
Let α be a step enabled at a marking M of N . Then:

• α is locally A-nonviolent at marking M (or LA-nonviolent) if, for every step β enabled at M ,

β 6= α =⇒ M [α(β \ α)〉.

• α is locally B-nonviolent at marking M (or LB-nonviolent) if, for every step β enabled at M ,

β ∩ α = ∅ =⇒ M [αβ〉.

• α is locally C-nonviolent at marking M (or LC-nonviolent) if, for every step β enabled at M ,

β 6= α =⇒ M [αβ〉.

Moreover, an active step α is globally A/ B/ C-nonviolent (or GA/GB/GC-nonviolent) in N if it is respec-
tively LA/LB/LC-nonviolent at every reachable marking of N at which it is enabled. �
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Each of the three types of step nonviolence is a conservative extension of the transition nonviolence
introduced in Definition 3.2. Intuitively, type-A nonviolence requires that only the unexecuted part of
a delayed step is kept enabled, and so it is ‘protected’ by α. Type-B and type-C nonviolence, however,
insist on maintaining the enabledness of whole delayed steps.

Definition 3.4. (persistent step in a net)
Let α be a step enabled at a marking M of N . Then:

• α is locally A-persistent at marking M (or LA-persistent) if, for every step β enabled at M ,

β 6= α =⇒ M [β(α \ β)〉.

• α is locally B-persistent at marking M (or LB-persistent) if, for every step β enabled at M ,

β ∩ α = ∅ =⇒ M [βα〉.

• α is locally C-persistent at marking M (or LC-persistent) if, for every step β enabled at M ,

β 6= α =⇒ M [βα〉.

Moreover, an active stepα is globally A/ B/ C-persistent (or GA/GB/GC-persistent) inN if it is respectively
LA/LB/LC-persistent at every reachable marking of N at which it is enabled.

Again, each of the three types of step persistence is a conservative extension of transition persistence
of Definition 3.2. Type-A persistence requires that only the unexecuted part of a delayed step is kept
enabled, and in this case a persistent step can fail to fully ‘survive’. Type-B and type-C persistence,
however, insist on preserving the enabledness of whole steps. In type-B of nonviolence and persistence,
two steps are considered distinct if they are disjoint, whereas in the other two cases it is enough that they
are different, and so they can have a nonempty intersection. The empty step is trivially nonviolent and
persistent according to all the nonviolence and persistence types in Definitions 3.3 and 3.4. Note also
that although one could drop β 6= α in the definitions of type-A nonviolence and persistence, we decided
to keep it in order to emphasize a link with the original notion of persistence introduced in [16].

Since, as proven later, type-A and type-B nonviolence (as well as persistence) are equiva-
lent, in the examples we discuss only the type-A and type-C variants of nonviolence and
persistence.

Moving from sequential to step semantics changes the perception of persistence in PT-nets introduced
by the standard Definition 3.1. In particular, in the sequential semantics, by Proposition 3.1, all transitions
in a persistent net are both globally nonviolent and globally persistent. In the step semantics the situation
is different. Consider, for example, the PT-net in Figure 5. It is persistent, and all of its active steps are
both GA-persistent and GA-nonviolent. However, its nonempty steps fail to be LC-persistent or LC-non-
violent at some of the markings that enable them. More precisely, {a}, {b} and {a, b} are neither LC-per-
sistent nor LC-nonviolent at M0, while {c}, {d} and {c, d} are neither LC-persistent nor LC-nonviolent
at M1 = {p5, p6, p7, p8}. This should not come as a surprise, as type-C persistence and nonviolence are
demanding properties. Type-A persistence and nonviolence, on the other hand, are close in spirit to their
sequential counterparts.

A duality of nonviolence and persistence is illustrated in Figure 6, where:
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p1
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p3

p4
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p6

p7

p8
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c
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M4

M5

M0 M1

{b}{a}

{a}{b}

{c}{d}

{d}{c}

{a, b}
{c, d}

Figure 5: A safe persistent PT-net and its concurrent reachability graph.

• {a} is both GA-nonviolent and GC-nonviolent, but neither LA-persistent nor LC-persistent at M0,

• {b} is both GA-persistent and GC-persistent, but neither LA-nonviolent nor LC-nonviolent at M0.

A step can be both nonviolent and persistent. For example, if we merge the two places in Figure 6,
then {a} and {b} become GA/GC-nonviolent/persistent.

p1 p2

a b

M0

M1

{b}

{a}

Figure 6: A safe PT-net illustrating the duality of persistence and nonviolence.

4. Relating persistent and nonviolent steps

In this section, we investigate the expressiveness of different notions of persistence and nonviolence
defined for steps, assuming first that N = (P, T,W,M0) is a general PT-net.

Proposition 4.1. Let α be a step enabled at a reachable marking M of N .

1. If α is GA/GB/GC-nonviolent in N , then α is LA/LB/LC-nonviolent at M .

2. If α is GA/GB/GC-persistent in N , then α is LA/LB/LC-persistent at M .
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Proof:
Follows directly from Definitions 3.3 and 3.4. ut

We then obtain a number of inclusions between different types of persistent and nonviolent steps.

Proposition 4.2. Let α be an active step and M be a marking of N . Then:

1. α is LA-nonviolent at M iff α is LB-nonviolent at M .

2. α is LA-persistent at M iff α is LB-persistent at M .

Proof:
Assume that α is enabled at M , and β is another step enabled at M .

(1) Suppose that α is LA-nonviolent at M and β ∩ α = ∅. Then M [α(β \ α)〉 and β \ α = β. Hence
M [αβ〉, and so α is LB-nonviolent at M .
Conversely, suppose α is LB-nonviolent at M and β 6= α. Then M [α(β \ α)〉 as (β \ α) ∩ α = ∅ and
M [β \ α〉 (cf. Fact 2.2). Hence, α is LA-nonviolent at M .

(2) Suppose that α is LA-persistent at M and β ∩ α = ∅. Then M [β(α \ β)〉 and α \ β = α. Hence
M [βα〉, and so α is LB-persistent at M .
Conversely, suppose that α is LB-persistent at M and β 6= α. Then M [(β \ α)α〉 as (β \α)∩α = ∅ and
M [β \ α〉 (cf. Fact 2.2). Hence M [(β \ α)(α ∩ β)(α \ β)〉 (cf. Fact 2.2). Thus, by M [β〉, M [β(α \ β)〉.
Hence α is LA-persistent at M . ut

Corollary 4.1. Let α be an active step of N . Then:

1. α is GA-nonviolent in N iff α is GB-nonviolent in N .

2. α is GA-persistent in N iff α is GB-persistent in N .

Proposition 4.3. Let α be an active step and M a marking of N . Then:

1. If α is LC-nonviolent at M , then α is LA-nonviolent at M .

2. If α is LC-persistent at M , then α is LA-persistent at M .

Proof:
Since enabledness of steps is monotonic in PT-nets (cf. Fact 2.2), the two implications follow directly
from Definitions 3.3 and 3.4, where the statements for LC-persistence and LC-nonviolence have stronger
consequents. ut

Corollary 4.2. Let α be an active step of a N . Then:

1. If α is GC-nonviolent in N , then α is GA-nonviolent in N .

2. If α is GC-persistent in N , then α is GA-persistent in N .

We now make a series of statements and observations concerning the general PT-net model.
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p1 p2 p3

p4
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M0

M1

M3

M2

M4

{b}

{d}

{a}

{a}, {a, c}

{c}

{c}

Figure 7: A safe PT-net and its concurrent reachability graph.

• The implications in Proposition 4.3 cannot be reversed. A counterexample is provided in Figure 7,
where {a} is both LA-nonviolent and LA-persistent at M3 = {p2, p3}. However, it is neither LC-
nonviolent nor LC-persistent at M3. The example in Figure 7 can as well be an illustration for
Proposition 4.1 (type-A) showing the case of an LA-nonviolent and an LA-persistent step {a} (at
M3), which is neither GA-nonviolent nor GA-persistent (because of M0).

• The implications in Corollary 4.2 cannot be reversed. A counterexample is again provided in
Figure 7, where {a, c} is both GA-nonviolent and GA-persistent, but it is neither GC-nonviolent
nor GC-persistent. As this step is only enabled at marking M3, it fails to be LC-nonviolent or
LC-persistent as well. Moreover, in Figure 7, {d} is a step that is type-A and type-C globally
nonviolent and persistent, because it is only enabled at one marking, M1, and no other nonempty
step is enabled at M1.

• The top PT-net in Figure 8 shows that a step {a} may be GA-persistent, but only LC-persistent (at
M4). Step {a} is not GC-persistent, because it is not LC-persistent at M2. The same example can
be used when considering nonviolence.

• The middle PT-net in Figure 8 shows an example of a step, {a}, that is LC-nonviolent and LC-per-
sistent at M0 (hence also LA-nonviolent and LA-persistent at M0), but it is neither GA-nonviolent
nor GA-persistent (consequently neither GC-nonviolent nor GC-persistent).

• There may be steps in PT-nets that fail to satisfy all the types of persistence and nonviolence; for
example, {a, c} and {b} in the bottom PT-net of Figure 8.

• There are PT-nets where all steps are neither persistent nor nonviolent whatever type (A or C) we
choose. For example, take the bottom PT-net in Figure 8 and delete p2, p5 and c with all adjacent
arcs. Then, the only nonempty steps in the concurrent reachability graph are {a} and {b}, and they
prevent each other from being persistent. As a result, they also fail to be nonviolent.
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p1 p2

p3 p4 p5

b ac
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{a, b}

p1

p2 p3 p4

a b c
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M3 M4

M0

M2

{a}

{b}

{c}{a}

p1 p2

p3 p4 p5

a b c

M0

M1M2

M3

M4

{b}{a}{c}

{a, c}

{c}{a}

Figure 8: Three safe PT-nets and their concurrent reachability graphs.

4.1. Global persistence and nonviolence in safe PT-nets

In this section, we focus our attention on safe PT-nets, and assume throughout that N = (P, T,W,M0)
is such a net.

It turns out that all non-singleton steps inN , which are GC-persistent or GC-nonviolent, are built out
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of transitions lying on self-loops. To show this, we first prove an auxiliary result.

Proposition 4.4. Let α be a GC-persistent or GC-nonviolent step enabled at a reachable marking M of a
safe PT-net N . Then •(α ∩ β) = (α ∩ β)•, for every step β 6= α enabled at M .

Proof:
We may assume that α ∩ β 6= ∅ as for α ∩ β = ∅ the result holds by •(α ∩ β) = ∅ = (α ∩ β)•.

Assume that α is GC-persistent (or respectively GC-nonviolent) and consider two cases.
Note that by Fact 2.3 steps α, β and α ∩ β are disconnected.

Case 1: p ∈ •(α∩β), for some step β 6= α enabled atM . Clearly,M(p) = 1 and there exists b ∈ (α∩β)
such that p ∈ •b.

If α is GC-persistent, there is a marking M ′ such that M [β〉M ′[α〉. As M ′[α〉 and p ∈ •(α ∩ β),
we have M ′(p) = 1. Furthermore, M ′(p) = M(p) −W (p, β) +W (β, p). On the other hand, if α is
GC-nonviolent, there is a marking M ′ such that M [α〉M ′[β〉. As M ′[β〉 and p ∈ •(α ∩ β), we have
M ′(p) = 1. Furthermore, M ′(p) =M(p)−W (p, α) +W (α, p).

And so, in both cases, by disconnectedness of α and β, and the fact that M(p) =M ′(p) = 1 we get
W (b, p) =W (p, b) = 1. Moreover, for any c ∈ (α∪ β) such that c 6= b we get W (c, p) =W (p, c) = 0.
Therefore W (p, a) =W (a, p) for each a ∈ (α ∪ β). Hence p ∈ (α ∩ β)•, and so •(α ∩ β) ⊆ (α ∩ β)•.

Case 2: p ∈ (α ∩ β)• \ •(α ∩ β). Then, by M [α ∩ β〉 and the safeness of N , M(p) = 0. Hence, by
M [α〉 and M [β〉, we must have p /∈ •α ∪ •β. Consequently, since there is M ′′ such that M [βα〉M ′′ in
case of GC-persistence of α and M [αβ〉M ′′ in case of GC-nonviolence of α, we obtain M ′′(p) ≥ 2, a
contradiction with N being safe. Thus (α ∩ β)• \ •(α ∩ β) = ∅.

Hence •(α ∩ β) = (α ∩ β)• and the result holds. ut

Theorem 4.1. Let α be a non-singleton active step of a safe PT-net N . If α is GC-persistent or GC-
nonviolent, then it is lying on self-loops.

Proof:
If α = ∅ the result holds. Let |α| ≥ 2. Suppose that a ∈ α and M be a reachable marking enabling α.
Since {a} 6= α and M [a〉 for any marking M such that M [α〉, we have •(α ∩ {a}) = (α ∩ {a})•
(cf. Proposition 4.4). Hence •a = a•. ut

We now want to relate the persistence and nonviolence of a step with the persistence (resp. non-
violence) of its constituent transitions in safe nets. We first consider GA-persistent and GA-nonviolent
steps, but as we already know, from Corollary 4.1, the results would also hold for GB-persistent (resp.
GB-nonviolent) steps.

Theorem 4.2. Let α be an active step in a safe PT-netN . If all the transitions in α are globally persistent
(or globally nonviolent), then α is GA-persistent (resp. GA-nonviolent).

Proof:
Let M be a reachable marking and β 6= α be a step in N such that M [α〉 and M [β〉.

We first assume that all the transitions inα are globally persistent. We need to show thatM [β(α \ β)〉.
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Let α ∩ β = {a1, . . . , am}, α \ β = {b1, . . . , bn} and β \ α = {c1, . . . , ck}. Note that all the
transitions in these three sets are different. From M [β〉 and Fact 2.2, we have M [a1 . . . amc1 . . . ck〉.
Now, since each bi is globally persistent and enabled at M , we have that M [a1 . . . amc1 . . . ckb1 . . . bn〉.
Since α and β are steps in a safe net N enabled at some marking (M ), we have, from Fact 2.3, that
transitions in α and β have disjoint pre-sets and post-sets. Hence we have M [β(α \ β)〉.

Assume now that all the transitions in α are globally nonviolent. Note that, by Fact 2.3, β is discon-
nected. We need to show that M [α(β \ α)〉.

Letα = {a1, . . . , am} and β\α = {c1, . . . , ck}. FromM [α〉 and Fact 2.2, we haveM [a1 . . . am〉M ′.
Now, for each transition ci, since M [ci〉 and every ai is globally nonviolent, we have that M ′[ci〉. Thus,
by Fact 2.3, M ′[β \ α〉, and so M [α(β \ α)〉. ut

We now consider GC-persistent steps. In this case the antecedent in the implication is stronger.

Theorem 4.3. Let α be an active step in a safe PT-netN . If all the transitions in α are globally persistent
and lying on self-loops, then α is GC-persistent.

Proof:
Let M be a reachable marking and β 6= α be a step such that M [α〉 and M [β〉. We need to show that
M [βα〉.
Let α ∩ β = {a1, . . . , am}, α \ β = {b1, . . . , bn} and β \ α = {c1, . . . , ck}. Proceeding similarly as in
the previous proof we can show that

M [a1 . . . amc1 . . . ckb1 . . . bn〉 .

Since all transitions in α are lying on self-loops and are globally persistent, we further obtain

M [a1 . . . amc1 . . . cka1 . . . amb1 . . . bn〉 .

Hence, from M [α〉, M [β〉 and Fact 2.3, we have M [βα〉. ut

In Theorems 4.2 and 4.3, the reverse implications do not hold. A counterexample is provided in
Figure 9, where a persistent step α = {a, c} contains a non-globally persistent transition a. Indeed,
α = {a, c} is both GA-persistent and GC-persistent, but a ∈ α is not persistent at M0 = {p1, p2},
because there exists b 6= a such that M0[a〉 and M0[b〉, but M0[ba〉 does not hold. A counterexample
for ‘non-reversibility’ of Theorem 4.2 in the case of GA-nonviolence can be found in Figure 7, where a
GA-nonviolent step {a, c} contains transition a that is not globally nonviolent (because of M0).

The situation is slightly different in the case of GC-nonviolence.

Theorem 4.4. Let α be an active step of a safe PT-netN . If all the transitions in α are lying on self-loops,
then it is GC-nonviolent.

Proof:
Since all the transitions in α are lying on self-loops, for every marking M such that M [α〉, we have
M [α〉M . Hence α is GC-nonviolent in N . ut

Corollary 4.3. Let α be a non-singleton active step of a safe PT-net N . Then α is GC-nonviolent if and
only if α is lying on self-loops.

Proof:
Follows from Theorems 4.4 and 4.1. ut
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Figure 9: A safe PT-net N (a); and its concurrent reachability graph CRG(N ) (b).

5. Pruning reachability graphs

In this section, we turn from general considerations relating to the nonviolence and persistence of active
steps to more application oriented discussion, restricting ourselves to the case of global persistence.

The original motivation for studying persistent steps in this paper was to discover which sets of
transitions — called later bundles — can be executed synchronously and therefore be treated as some
kind of ‘atomic actions’, giving rise to new ‘bigger’ transitions, which would execute in a ‘hazard-free’
way. In the application area of asynchronous circuits, bundling actions would reduce signal management
by merging concurrent signals into one event. This merging must be done in a consistent fashion. The
best candidates for bundles are persistent steps, but if we want to form ‘bigger’ transitions from them, we
must make sure that one enabled persistent step does not include another enabled persistent step. All the
transitions in a bundle must always appear together, in the same configurations. In the ideal situation (we
say ideal, because it might be difficult to achieve), we do not want to allow, for example, three persistent
steps {a, b}, {a} and {b} to be enabled in a given transition system. We need to choose: either to opt
for {a, b} and delete {a} and {b}, or the other way round. Therefore, we need to develop an algorithm
which, for a given net N , would allow us to prune its reachability graph CRG(N ) in such a way that
all persistent steps would satisfy an additional ‘non-inclusion’ condition. The ‘pruned’ transition system
would represent the desired behaviour, which then we would like to implement in a form of a Petri
net in a process of synthesis. We start by defining sub-ST-systems which will be obtained by pruning
concurrent reachability graphs.

Definition 5.1. (sub-ST-system)
An ST-system S = (Q,A, q0) is a sub-ST-system of an ST-system S ′ = (Q′, A′, q0) if Q ⊆ Q′, A ⊆ A′

and, for every q ∈ Q, readyS(q) = readyS′(q). We denote this by S 4 S ′. �

In the above definition, EnS of a ‘properly pruned’ reachability graph S ′ will be a set of bundles.
What we mean by ‘properly pruned’ will be described by conditions stated in Problem 1.

We now re-define for ST-systems the three notions concerned with global persistence introduced for
PT-nets. The reason is that once we start pruning an ST-system, we need to check whether the remaining
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steps that were previously persistent remain persistent. Such checks will be carried out for ST-systems
that might not be concurrent reachability graphs of any PT-nets.

Definition 5.2. (persistent step in an ST-system)
A step α ∈ EnS is GA/GB/GC-persistent in an ST-system S = (Q,A, q0) if, for all states q ∈ Q and
steps β such that α, β ∈ EnS(q) we respectively have:

(GA) β 6= α =⇒ q
β(α\β)−−−−→

(GB) β ∩ α = ∅ =⇒ q
βα−−→

(GC) β 6= α =⇒ q
βα−−→ .

�

Proposition 5.1. A step α is GA/GB/GC-persistent in a PT-net iff α is respectively GA/GB/GC-persistent
in its concurrent reachability graph.

Proof:
Follows directly from the definitions. ut

We have the following relationships between just introduced notions of step persistence.

Proposition 5.2. Let S = (Q,A, q0) be an ST-system.

1. If α ∈ EnS is GA-persistent, then it is also GB-persistent.

2. If α ∈ EnS is GC-persistent, then it is also GB-persistent.

Proof:
(1) Let q ∈ Q and q α−→ and q

β−→ be such that β ∩ α = ∅. Since α ∈ EnS is GA-persistent, we have

q
β(α\β)−−−−→. Hence q

βα−−→ which means that α ∈ EnS is GB-persistent.

(2) Follows directly from Definition 5.2. ut

Unlike for PT-nets, in the case of ST-systems, GB-persistence does not imply GA-persistence of steps.

Indeed, let α ∈ EnS be a GB-persistent step in S, and β 6= α and q ∈ Q be such that q α−→ and q
β−→.

We know that β ∩ (α \ β) = ∅. However, with such assumptions, we cannot in general guarantee

that q
α\β−−→. Though the latter is true for the concurrent reachability graphs of PT-nets, we must also

consider ST-systems resulting from their pruning (see the ST-system depicted on Figure 11(c), where
the step {b, d} is GB-persistent, but not GA-persistent). For similar reasons, in the case of ST-systems,
GC-persistence does not imply GA-persistence.

We now can formulate a problem which is our main concern in this section.
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Problem 1. Let N be a PT-net and CRG(N ) be its concurrent reachability graph. Construct an ST-
system S such that S 4 CRG(N ) and all steps in EnS are GB-persistent in S3, and additionally satis-
fying (GNI) or (LNI), where the latter conditions are defined as follows:

(GNI) α 6⊂ β, for all nonempty steps α, β ∈ EnS

(LNI) α 6⊂ β, for all states q and all nonempty steps α, β ∈ EnS(q) .

We denote this respectively by

S 4global
pers CRG(N ) and S 4local

pers CRG(N ) .

We also refer to (GNI) as global non-inclusion, and to (LNI) as local non-inclusion. �

The difference between 4global
pers and 4local

pers is that the latter only requires non-inclusion of bundles
locally for each state, whereas the former insists that non-inclusion holds globally.

Proposition 5.3. S 4global
pers CRG(N ) implies S 4local

pers CRG(N ).

Proof:
Follows directly from the definition. ut

In our first attempt to solve Problem 1, we will concentrate on PT-nets that are persistent according
to Definition 3.1. We then have the following result.

Theorem 5.1. Let N be a PT-net which is persistent according to Definition 3.1. Then there is an ST-
system S satisfying S 4global

pers CRG(N ).

Proof:
It suffices to take CRG(N ) and delete all nonempty non-singleton steps. ut

As the above proof produces completely sequential solution, we call such pruning to be trivial. We
will now search for nontrivial, hence more concurrent ones. We will also require that the original PT-net
is not only persistent, but also safe.

Proposition 5.4. Let N be a safe PT-net which is persistent according to Definition 3.1. Then all active
steps in N are GB-persistent in CRG(N ).

Proof:
Let α ∈ EnCRG(N ). As N is persistent according to Definition 3.1, all transitions in α are globally
persistent according to Definition 3.2. Hence, from Theorem 4.2 and the fact thatN is safe, we have that
α is GA-persistent in N , and also GB-persistent in N (see Corollary 4.1). Following Proposition 5.1, we
conclude that α is GB-persistent in CRG(N ). ut
3Alternatively, we could require GA-persistence or GC-persistence. We opted here for GB-persistence, because it is the weakest
of the three notions.
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The last result guarantees the GB-persistence of steps in the concurrent reachability graph of a safe
persistent PT-net N , but the non-inclusion conditions ((GNI) and (LNI)) are not, in general, satisfied in
CRG(N ) due to Fact 2.2. To satisfy the non-inclusion conditions, we need to prune CRG(N ), but in
such a way that GB-persistence of steps is maintained. We now explore what happens if we choose to
prune all but the maximal steps at every reachable marking.

In what follows, the ST-system CRGmax (N ) is obtained from CRG(N ), the concurrent reachability
graph of a PT-net N , by deleting at every reachable marking M , all the arcs labelled by non-maximal
nonempty steps (we do not delete the empty steps for technical reasons), and then removing those nodes
that became unreachable from the initial state by the removal of such steps.

Proposition 5.5. CRGmax (N ) 4 CRG(N ).

Proof:
Follows directly from the definitions and the fact that, for each enabled step, there is a maximal step
enabled at the same marking. ut

Proposition 5.6. CRGmax (N ) satisfies (LNI) in Problem 1.

Proof:
Follows from the fact that maximal nonempty steps are incomparable. ut

Figures 10 and 11 show examples of persistent and safe PT-nets for which the described pruning
procedure works as their CRGmax (N ) graphs contain only GB-persistent steps. In all these examples
the pruned reachability graph satisfies CRGmax (N ) 4local

pers CRG(N ), and in case of the example in
Figure 10(a), we even have CRGmax (N ) 4global

pers CRG(N ). So, the proposed pruning procedure helped
to achieve local non-inclusion without jeopardising GB-persistence of the remaining steps. However, in
Figures 10(f) and 11(c), the persistence in initial markings is achieved only because the steps enabled
there are not disjoint, and so type-B persistence holds trivially.

In general, pruning non-maximal steps may make some of the remaining steps non-GB-persistent.
Figure 12(c) shows that the initially enabled step {b} is not GB-persistent after the pruning procedure, as
after executing {a} it is not longer enabled. Instead step {b, c} is enabled, because it was the maximal
step in the marking M . We therefore propose a weaker version of condition (GB) which holds for safe
and persistent PT-nets.

Proposition 5.7. LetN be a safe PT-net which is persistent according to Definition 3.1. Then, for every

marking M in CRGmax (N ), M α−→ and M
β−→ implies:

(GB′) β ∩ α = ∅ =⇒ ∃γ : α ⊆ γ ∧M βγ−→ .

Proof:
From Proposition 5.4 we know that M

βα−−→ in CRG(N ). Moreover, there is a maximal step γ available

(as it is not removed by the pruning) after executing β from M such that α ⊆ γ. Hence M
βγ−→ in

CRGmax (N ). ut
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Figure 10: Three safe persistent PT-nets N (a, d, g); their concurrent reachability graphs CRG(N )
(b, e, h); and the corresponding CRGmax (N ) 4local

pers CRG(N ) obtained in the pruning procedure
(c, f, i).

Hence, pruning non-maximal steps may result in the loss of persistence when α ⊂ γ in (GB′). In
such a case we may, however, ‘repair’ N by disabling γ. The mechanism for achieving this is simple,
namely we select one transition from α, one transition from γ \ α, and make sure that they cannot be
executed in the same step.

Let N be a PT-net and x 6= y be two transitions. Then Nx↔y is obtained from N by adding a new
place p marked with one token, and such that W (p, x) = W (x, p) = W (p, y) = W (y, p) = 1. This
construction is illustrated in Figure 12(d, e), where we try to fix the problem of the netN in Figure 12(a).
We added a new place p and chose b and c to play the roles of x and y (the only choice in this example)
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Figure 11: A safe persistent PT-net N (a); its concurrent reachability graph CRG(N ) (b); and
CRGmax (N ) 4local

pers CRG(N ) obtained in the pruning procedure (c).

creating N ′ = Nb↔c. The new place disables the concurrent step {b, c} at M , leaving enabled only the
singleton steps {b} and {c}. They are now maximal steps at M . In fact, in this simple example, we have
only singleton steps in the concurrent reachability graph of N ′, and so the pruning is trivial.

In the following propositions we show that after the proposed modification the PT-net generates a
concurrent reachability graph which is a sub-ST-system of the reachability graph of the initial net. Also,
the modified net is still safe and persistent according to Definition 3.1.

The two following facts result directly from definitions:

Fact 5.1. Let N be a safe PT-net which is persistent according to Definition 3.1. Then we have

CRG(Nx↔y) 4 CRG(N )

Moreover, the reachable markings of CRG(Nx↔y) and CRG(N ) are the same, if we identify each
reachable marking M of N with the marking M ∪ {p} of Nx↔y. �
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Figure 12: A safe persistent PT-netN (a); its concurrent reachability graph CRG(N ) (b); CRGmax (N )
obtained in the pruning procedure which does not satisfy CRGmax (N ) 4local

pers CRG(N ) (c); a persistent
and safe PT-net N ′ = Nb↔c (d); and its concurrent reachability graph CRG(N ′) = CRGmax (N ′)
which trivially satisfies CRGmax (N ′) 4local

pers CRG(N ′) (and also CRGmax (N ′) 4global
pers CRG(N ′))

(e).

Fact 5.2. Let N be a safe PT-net which is persistent according to Definition 3.1. Then CRG(Nx↔y) is
also persistent (according to Definition 3.1) and safe. �

We can now propose a dynamic way of pruning embodied by the following algorithm:

while ¬(CRGmax (N ) 4local
pers CRG(N )) do

chooseM,α, β, γ in CRGmax (N ) satisfying (GB′) with α ⊂ γ
choose x ∈ α, y ∈ γ \ α
N := Nx↔y

It follows from what we already demonstrated that the above algorithm always terminates and for the final
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{c}
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Figure 13: A safe persistent PT-net N (a); CRGmax (N ) not satisfying CRGmax (N ) 4local
pers CRG(N )

(b); N ′ = Nd↔c (c); CRGmax (N ′) (d); N ′′ = Nb↔c (e); and CRGmax (N ′′) (f). Both N ′ and N ′′
have been obtained as by-products of the successful runs of the pruning and modification algorithm. It is
not possible to obtain in this way N ′′′ in (g) even though CRGmax (N ′′′) 4global

pers CRG(N ) (h).

PT-net N ′ we have CRGmax (N ′) 4local
pers CRG(N ′) 4 CRG(N ) and therefore CRGmax (N ′) 4local

pers

CRG(N ). Since the algorithm is non-deterministic, we may try various strategies for choosing x and y.
Figure 13 shows that different strategies may lead to different solutions.
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In the context of GALS system design, pruning a system’s concurrent specification enables a de-
signer to generate a suitable behavioural model that offers the flexibility of asynchronous design coupled
with the simplicity of synchronous design. The control circuit synthesised from such a specification will
hence manage a mixture of sequential, parallel and concurrent request signals that execute the bundles of
the pruned system while maintaining a functionally correct system flow. Specifically, a bundle deals with
the execution of a single action or simultaneous execution of multiple actions in a single clock domain,
while concurrent interactions between distinct bundles indicate synchronisation between different clock
domains. For example, let us consider the Petri net model in Figure 14(a) which satisfies the temporal
specification given in Figure 2(c). Actions a and b belong to different clock domains and have been spec-
ified to execute asynchronously. However, their completions must be synchronised before the execution
of bundle {c, d} which belongs to a third clock domain. Another GALS implementation of the same
system is depicted behaviourally in Figure 14(b) and its derived Petri net model is shown in Figure 14(c).
To give an idea of the practical implications of pruning in digital system design, the two pruned examples
can be viewed as a classic case of trade-off between power and latency. A scenario where the latter im-
plementation would be beneficial is the reduction of electromagnetic interference (EMI) which is caused
by the simultaneous switching of circuit elements [15]. Here, if the concurrent execution of actions a
and b leads to higher peak power as compared to the execution of bundle {c, d}, then the designer would
want to order the bundles as indicated. This would be particularly intuitive when considering a complex
system where many such blocks exist and a pruned behavioural specification is required to ensure low
spectral energy peaks.

a

c

b

d

(a)

{a}

{b}

{c, d}

(b)

a

c

b

d

(c)

Figure 14: A PT-net generating the concurrent reachability graph of Figure 2(c) under the assumption
that a and b belong to two different clock domains, while c and d belong to a third clock domain (a); and
another GALS implementation of the same system (assuming the same clock domains as in (a)) both
behaviourally (b) and as a derived PT-net (c).

It is essential that pruning is performed in a step persistent manner, according to the rules introduced
in this paper. Each rule will ensure a distinct case of hazard-free step execution and also affect control
circuit complexity differently. To briefly motivate how these rules affect GALS circuits, we discuss the
case of LNI using the examples given in Figure 13. It should be noted that the enabling of a step, when
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translated to circuit behaviour, results in switching the concerned request signal to a logical 1, triggering
the execution of its comprising actions. The following paragraph explains how a non-monotonic pulse
can arise if specific countermeasures are not considered in the circuit synthesis procedure.

The case of local inclusion of steps is compared with the case of local non-inclusion taking Fig-
ure 13(b) and Figure 13(h), respectively. In the former specification, the execution of {a} and {b, d} is
concurrent but not simultaneous due to shared resources, as indicated in the Petri net model shown in
Figure 13(a). If the arbitration of the shared resource favours executing action {a}, the step {b, d} should
get its resource after the completion of action {a}. However, owing to the given temporal specification,
a new request signal pertaining to step {b, c, d} will be generated, disabling the request of step {b, d}.
This results in a non-monotonic pulse, as illustrated in Figure 15, which could lead to a hazardous com-
putation as it is uncertain how the system will interpret the glitch. Such a glitch will not occur when
executing the specification of Figure 13(h), as the action {b, d} that was enabled does not get disabled
until execution and hence is step persistent.

Now, if the former specification is a requirement for the design, only an arbitration between the
request signals for the two steps {b, d} and {b, c, d} can ensure hazard freedom. This, however, com-
plicates the control circuit synthesis due to the addition of an extra arbitration block which is not the
case when implementing the latter. Step persistence therefore plays a vital role in the two main aspects
of formal modelling of digital systems: in the verification of GALS systems to ensure freedom from
hazard, and in the synthesis of GALS circuit implementation to ensure optimal control circuitry.

Volts

time

non−monotonic
pulse

req({b, c, d})

req({b, d})

req({a})

Figure 15: Hazardous switching in GALS step execution semantics.

6. Conclusions

In GALS, bundling is envisaged to reduce signal management, and could reduce the cost of scheduling
and control, and improve system performance. The ideal way to model mixed synchronous-asynchronous
systems is to start with a concurrent model that is persistent and fully asynchronous in behaviour. Then
run several iterations that derive a combination of bundles that represents the temporal nature the designer
requires. Careful selection of bundles is essential so that the pruned behaviour of the fully asynchronous
model still exhibits some characteristics of its parent and is persistent. Step persistence is hence an im-
portant characteristic that will guarantee true persistent behaviour for mixed synchronous-asynchronous
models.

In this paper we developed a pruning procedure for reachability graphs of persistent and safe nets.



J.Fernandes et. al / Persistent and Nonviolent Steps and the Design of GALS Systems 27

This procedure constructs a step transition system that contains only bundles. The bundles in our al-
gorithm represent maximally concurrent steps of the initial system that are persistent and satisfy non-
inclusion constraints.

We hope that the reader have found the theory presented in this paper as a necessary first step in
paving the way towards automating the design of GALS systems. Right now, we are not trying to
answer how this theory can be applied in the scenarios of verification and synthesis mentioned in the
introduction. This will be done in our subsequent papers, which will have to answer many new questions
arising on the way, including, for example, what a rigorous metric for the complexity of bundle control
is, how the notions of maximal steps (global and local) affect such a complexity, or what the different
forms of step persistence (type-A, type-B and type-C) imply in terms of hazard-avoidance in the system.

A move into the realm of step based execution semantics creates a wealth of new fundamental prob-
lems and intriguing questions, some of which have been addressed in [10, 14]. In particular, there are
different ways in which the standard notion of persistence could be lifted from the level of sequential
semantics to the level of step semantics. For example, if part of an enabled step has been executed by
another step, should we insist on the whole delayed step to be still enabled, or just its remaining part?
Moreover, one may consider steps which are persistent and cannot be disabled by other steps, as well as
steps which are nonviolent [1, 2, 14] and cannot disable other steps.

In the future we intend to investigate other possible pruning algorithms, weakening our constraints
and allowing the initial system’s behaviour to be given by a net that is not necessarily persistent. Fur-
thermore, we plan to allow in the algorithms the choice of non-maximal bundles in certain cases. For
example, input signals are usually behaving in fully asynchronous way and should not be bundled.

This is the place, where nonviolence should start to play a foreground role. Note that persistence and
nonviolence bring distinct advantages to the design process. In particular, one may start from a persistent
skeleton and then perform a series of nonviolent additions. Alternatively, and as we do it in this paper,
one may perform a series of persistent deletions from a persistent skeleton. In a way, persistence is
analytical as persistent deletions require careful considerations of already existing steps, whereas nonvi-
olent additions trigger a constructive process. Another potential advantage of nonviolence is that under
realistic progress conditions, one might first execute nonviolent transitions (phantom transitions) without
disabling any other transitions.
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[15] Król, T., Krstić, M., Fan, X., Grass, E.: Modeling and reducing EMI in GALS and synchronous systems.
PATMOS’09, Lecture Notes in Computer Science 5953, Springer (2009) 146–155.

[16] Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. JACM 25 (1978)
352–364.

[17] Muller, D.E., Bartky, W.S.: A theory of asynchronous circuits. Proceedings of an International Symposium
on the Theory of Switching, Harvard University Press (1959) 204-243.

[18] Myers, C.: Asynchronous circuit design. Wiley (2004).

[19] Sparso, J., Furber, S.: Principles of asynchronous circuit design: a systems perspective. Kluwer Academic
Publishers (2001).

[20] Stevens, K.S., Gebhardt, D., You, J., Xu, Y., Vij, V., Das, S., Desai, K.: The future of formal methods and
GALS design. Electronic Notes in Theoretical Computer Science 245 (2009) 115–134.

[21] Yakovlev, A.: Designing self-timed systems. VLSI SYSTEM DESIGN VI (1985) 70–90.

[22] Yakovlev, A., Koelmans, A., Semenov, A., Kinniment, D.: Modelling, analysis and synthesis of asynchronous
control circuits using Petri nets. INTEGRATION, the VLSI Journal 21 (1996) 143–170.


