
Copyright:

This is a pre-copyedited, author-produced PDF of an article accepted for publication in ICES Journal of Marine Science following peer review. The version of record Graham H, Rastrick SPS, Findlay HS, Bentley MG, Widdicombe S, Clare AS, Caldwell GS. Sperm motility and fertilisation success in an acidified and hypoxic environment. ICES Journal of Marine Science 2015. DOI: 10.1093/icesjms/fsv171 is available online at: http://dx.doi.org/10.1093/icesjms/fsv171.

DOI link to article:

http://dx.doi.org/10.1093/icesjms/fsv171

Date deposited:

21/01/2016

Embargo release date:

13 October 2016

This work is licensed under a [Creative Commons Attribution-NonCommercial 3.0 Unported License](http://creativecommons.org/licenses/by-nc/3.0/)

Newcastle University ePrints - eprint.ncl.ac.uk
Sperm motility and fertilisation success in an acidified and hypoxic environment.

Helen Graham1*, Samuel P.S. Rastrick2,3, Helen S. Findlay4, Matthew G. Bentley1,5, Stephen Widdicombe4, Anthony S. Clare1, Gary S. Caldwell1

Addresses: 1 School of Marine Science and Technology, Ridley Building, Claremont Road, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE1 7RU, UK
2 Marine Biology and Ecology Research Centre, University of Plymouth, Davy 618, Drake Circus, PL4 8AA
3 Institute of Marine Research, P. O. Box 1870 Nordness, 5870 Bergen, Norway.
4 Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
5 Present Address: Faculty of Science & Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB

Address for correspondence: Helen Graham, Uni Research Environment Postboks 7810, 5020 Bergen Email; Helen.Graham@uni.no

Keywords: Ocean acidification, hypoxia; oxygen saturation; sperm motility; Fertilisation success, climate change

Abstract
The distribution and function of many marine species is largely determined by the effect of abiotic drivers on their reproduction and early development, including those drivers associated with elevated CO$_2$ and global climate change. A number of studies have therefore investigated the effects of elevated pCO$_2$ on a range of reproductive parameters, including sperm motility and fertilisation success. To date, most of these studies have not examined the possible synergistic effects of other abiotic drivers, such as the increased frequency of hypoxic events that are also associated with climate change. The present study is therefore novel in assessing the impact that a hypoxic event could have on reproduction in a future high CO$_2$ ocean. Specifically, this study assesses sperm motility and fertilisation success in the sea urchin *Paracentrotus lividus* exposed to elevated pCO$_2$ for 6 months. Gametes extracted from these pre-acclimated individuals were subjected to hypoxic conditions simulating an hypoxic event in a future high CO$_2$ ocean. Sperm swimming speed increased under elevated pCO$_2$ and decreased under hypoxic conditions resulting in the elevated pCO$_2$ and hypoxic treatment being approximately equivalent to the control. There was also a combined negative effect of increased pCO$_2$ and hypoxia on the percentage of motile sperm. There was a significant negative effect of elevated pCO$_2$ on fertilisation success, and when combined with a simulated hypoxic event there was an even greater effect. This could potentially affect cohort recruitment and in turn reduce the density of this ecologically and economically important ecosystem engineer therefore potentially effecting biodiversity and ecosystem services.

Introduction

Global climate change, fuelled by enriched atmospheric carbon inventories, is altering the physicochemical status of the global ocean (Diaz and Rosenberg, 2008; Kroeker *et al.*, 2010; Byrne, 2012). The increasing partial pressure of seawater CO$_2$ (pCO$_2$) is driving a
decline in seawater pH – a process termed ocean acidification (OA). Seawater pH is predicted to drop by 0.3 to 0.5 units by 2100 (based on pCO_2 concentrations of 730-1020 µatm respectively; (IPCC, 2014). The combination of rising pCO_2 and increasing sea surface temperature will place an additional burden on marine systems by reducing oxygen solubility (Hofmann and Schellnhuber, 2009). Increased frequencies of ocean hypoxic events, such as may occur via ocean upwelling, are predicted (Pörtner and Langenbach, 2005; Pörtner, 2008; Oschlies et al., 2008) making it necessary to understand the combined effects of OA and hypoxia on marine species and ecosystems (Reum et al., 2015).

Reproductive processes and early ontogenetic stages of marine animals appear particularly vulnerable to changing seawater properties (Pörtner and Farrell, 2008; Byrne et al., 2010a,b; Cooper et al., 2012). Broadcast spawning, a reproductive strategy common in many marine animals, exposes gametes directly to the seawater environment (Crimaldi, 2012). Spawned gametes have therefore been used extensively in attempts to describe the potential impacts of OA on reproductive processes (Havenhand and Schlegel, 2009; Byrne et al., 2010a, b; Ericson et al., 2010; Frommel et al., 2010; Morita et al., 2010; Cooper et al., 2012). Hitherto, reductions in seawater pH have been shown in several studies to impact sperm swimming ability by causing changes in internal pH (pH_i) of sperm and affecting motility of the flagellum (Havenhand et al., 2008; Fitzpatrick et al., 2009; Morita et al., 2010; Caldwell et al., 2011). These changes in sperm pH, affect fertilisation by slowing the fast block to polyspermy through interfering with the Na^+/H^+ exchange and preventing the fertilisation membrane being raised (Reuter et al., 2011; Gonzalez-Bernat et al., 2013). Despite variable results, the consensus is that OA, as a function of climate change, will negatively impact marine biodiversity and ecosystem function via disruption of reproductive processes (Dupont et al., 2010; Byrne, 2012).
Over the past decade, the dissolved oxygen content of coastal waters has changed dramatically and this has led to widespread occurrences of hypoxia, especially in coastal areas, which have shown an exponential increase of hypoxic events of 5.54% year\(^{-1}\) (Diaz and Rosenburg, 1995; Diaz, 2001; Vaquer-Sunyer and Duarte, 2008). Normal dissolved oxygen levels range between 5.0 and 8.0 mg O\(_2\) l\(^{-1}\) in coastal waters, hypoxic conditions are defined as occurring when levels of dissolved oxygen fall below 2.8 mg O\(_2\) l\(^{-1}\) (30% oxygen saturation or less) (Diaz and Rosenburg, 1995). The duration of an hypoxic event can be long term/permanent, or short term (incidental, or episodic) as investigated in the present study (Middelburg & Levin, 2009). Hypoxia has been shown to negatively affect reproduction and development of marine invertebrates across a range of reproductive endpoints including gonad growth (Siikavuopio et al., 2007), reproduction (Cheung et al., 2008), egg production (Marcus et al., 2004), reproductive output (Spicer and El-Gamal, 1990), and embryonic development (Chan et al., 2008). A recent study by Shin et al. (2014) reported that hypoxia, as a single stressor, significantly reduced sperm motility in *Hydroides elegans*, which compromised fertilisation success. There was also a negative effect of hypoxia on embryonic development with an increase in the number of malformed embryos (Shin et al., 2014). As elevated pCO\(_2\) and hypoxia, when applied individually, are reported to have similar negative effects on reproduction, they may be expected to have synergistic or additive effects when applied together. Consequently, we examined the effects of long-term exposure (6 months) of adult sea urchins to elevated pCO\(_2\) prior to spawning, followed by the exposure of spawned gametes to hypoxia and OA before and during fertilisation. This study was designed to represent the effect of an hypoxic event in a high pCO\(_2\) ocean, and the effects that this may have on sperm motility and fertilisation success of the sea urchin *Paracentrotus lividus*; an ecologically and economically important marine grazing species. With the occurrence of hypoxic events set to rise, it is
important to understand the potential impacts on animal reproduction in an already acidifying ocean and to consider possible effects on the future abundance and distribution of marine biodiversity.

Materials and methods

Animal husbandry and culture history

In order to assess the effects of long-term parental exposure to elevated pCO$_2$ on sperm motility and fertilisation success, adult *Paracentrotus lividus* (supplied by Dunmanus Seafoods Ltd, Durrus, Bantry, Co. Cork, Ireland), were exposed for six months to mean pCO$_2$ conditions predicted to occur by the end of this century (Caldeira and Wickett, 2003). Exposures were conducted in the Plymouth Marine Laboratory (Plymouth, UK) Intertidal Mesocosm Acidification System (PML-IMAS) previously described by Queiros *et al*. (2014) and Collard *et al*. (2015). In brief, the nominal treatments used in the present study were 380 μatm and 750 μatm pCO$_2$. Within each of these nominal treatments urchins were randomly assigned to one of four tanks per pCO$_2$ treatment (8 tanks total, tank volume 1 m3). Within each of these separate tanks, urchins were further divided into three baskets (30 cm x 20 cm x 20 cm) with original stocking densities of six urchins per basket (18 per tank). The temperature of each tank was maintained independently using aquarium heaters (Aqua One, 150W, Kong’s (UK) Limited, Romsey, UK.) and chillers (BOYU L-350). pCO$_2$ gas mixes were also supplied separately to each tank. Ambient pCO$_2$ treatments were maintained by bubbling untreated air through the water in each tank. Elevated pCO$_2$ treatments were maintained by enriching the air with CO$_2$ before bubbling (after Findlay *et al*., 2008). pCO$_2$ levels (μatm) of both the untreated and CO$_2$ enriched air were monitored using a CO$_2$ Analyser (LI-820, Li-Cor, Lincoln, USA). To prevent pCO$_2$
and temperature gradients forming within the tanks, the water was circulated using pumps
(Aquael 1000 filter, Aquael, Warszawa, Poland). Natural seasonal variation in temperature
and photoperiod is known to impact on gametogenesis and spawning condition. Consequently, these cycles were recreated in the laboratory by monthly adjustments in
temperature appropriate to replicate the mean ambient monthly seasonal temperature of
Plymouth Sound. Photoperiod was also adjusted monthly by changing the length of time
the lighting was on each day using T8 triphosphor fluorescent tubes (which are designed to
meet saltwater aquarium lighting requirements) to match natural seasonal changes in day
length. Each tank (1m³) received a one-third by volume water change every three weeks or
if nitrate levels, which were monitored weekly using a nutrient autoanalyser (Branne and
Luebbe Ltd. AAIII; Brewer and Riley, 1965), exceeded 25 mg L⁻¹, however no particular
tank needed to changed more often than others. Urchins were fed ad libitum for 48 h once
every week with fresh macroalgae (Ulva lactuca and Laminaria sp; approx. 500 g per
basket) collected from Plymouth Sound. Following feeding, the remaining macroalgae and
any faecal pellets were removed to prevent nitrate build up.

Simulated hypoxic events

After six months of acclimation to present ambient and future predicted pCO_2
levels in the PML-IMAS, 20 randomly selected adult *Paracentrotus lividus* (7 from the
380 µatm treatment and 13 from the 750 µatm treatment) were induced to spawn by intra-
coelomic injection of 0.5 - 1.0 mL 0.5 M KCl until gametes from 3 males and 3 females
from each treatment had be collected for analysis for fertilisation success (below). Three
males were used for sperm motility analysis and at least 200 sperm were tracked per time
point per individual. Subsamples of the gametes collected from these individuals were
then exposed to either normoxic or hypoxic conditions at their respective acclamatory
pCO_2 level. Oxygen content was manipulated through input of nitrogen into sealed
chambers, Normoxic conditions were set at >80 % dissolved oxygen (DO) and hypoxic
conditions were maintained at <30% DO. Normoxic or hypoxic air from these chambers
was then mixed with CO$_2$ in a second sealed chamber to produce either 380 or 750 µatm
pCO_2 and monitored using a CO$_2$ analyser (LI-820, Li-Cor , Lincoln, USA) before
entering the experimental chambers where the well plates containing the sperm motility
and fertilisation assay were placed. Oxygen content in these plates was determined using
an OxySense® system (OxySense® 5250i, Dallas, USA) for both normoxic and hypoxic
conditions. pH was monitored continually using a micro pH probe (Micro-Inlab pH
combination electrode, Metter Toledo, Leicester, UK) connected to a calibrated pH meter
(Seven Easy pH meter, Metter Toledo, Leicester, UK)... Temperature was maintained to
match the monthly acclimation temperature of 15 °C using a water bath (Grant Cambridge
Ltd, Cambridge, UK) and was monitored using a K-type thermocouple in each chamber
connected to a temperature logger (Omega, HH806AU, Manchester, UK). Specific water
chemistry for gametes incubations are shown in Table 2.

Reproduction analysis

Following spawning (as described above), sperm were collected dry (i.e. undiluted)
and stored on ice for no more than 1 h. Sperm were not pooled and males were treated as
individuals. Female were allowed to express their eggs for 1 h, and the eggs kept separate
for analysis. Egg densities were determined by counting 3 x 50 µL aliquots from each
female. Sperm densities were determined by haemocytometer and adjusted to 10^7 sperm
ml$^{-1}$ using either hypoxic or normoxic filtered sea water at 380 or 750 µatm pCO_2 (FSW
0.22 µm filtered). Three subsamples (5 µL) of sperm from each individual, held at 15 °C from each of the combined CO₂ and oxygen levels (380 µatm pCO₂ and 750 µatm pCO₂; 30 % and >80 % O₂ saturation; Table 2) were taken at 10 minute intervals (from 1 to 61 minutes) and transferred immediately to a glass slide (18 samples per individual in total). Sperm motility, determined as percentage motility and swimming speed (curvilinear velocity, VCL) was measured by computer assisted sperm analysis (CASA) at 15 °C according to Caldwell et al. (2011). A minimum of 200 sperm were tracked per time point.

Fertilisation assays were conducted at combined CO₂ and oxygen levels (380 µatm and 750 µatm; 30 % and >80 % O₂ saturation; Table 2) in 6-well multi-plates with gametes collected from 3 males and 3 females at densities of 2.5 x 10⁵ ml⁻¹ for sperm and 500 eggs per well, containing 10 ml FSW. Fertilisation success was determined after two hours based on the occurrence of the first mitotic cleavage.

Carbonate chemistry

Seawater for the experimental system was collected from PML’s long term monitoring site, the Western Channel Observatory, station L4 (‘50º 15.00’N, 4º 13.02’W). The physico-chemical parameters (temperature, salinity, pH, dissolved inorganic carbon (DIC), and total alkalinity (A_T)) of the seawater were measured three times a week for the duration of the experimental period using the methods of Findlay et al. (2013). Additional carbonate system parameters were calculated from temperature, salinity, A_T and pH as described in Findlay et al. (2013). The long-term physico-chemical data are presented in Findlay et al. (2013) and Collard et al. (2015). The water chemistry parameters after six months of incubation in the 380 µatm and 750 µatm ambient temperature treatments used
in the present study are presented in Table 1. The physico-chemical parameters for gamete incubation were measured/calculated in the same way and are presented in Table 2.

Data analysis

Motility data from sperm with a head area <5 μm2 and >35 μm2 were discounted to eliminate false negatives attributable to sperm clumping or sperm misidentification by the CASA software (Caldwell et al., 2011). A test for normality (Kolmogorov-Smirnov) was carried out and data transformed using a natural logarithm when not normally distributed. A 2-way ANOVA was conducted on the log VCL data to determine significant factors and interactions using time as a co-factor. Percentage sperm motility and fertilisation success data were arcsine transformed prior to statistical analysis and a test for normality (Kolmogorov-Smirnov) was carried out. Two-way ANOVA was conducted, for percentage sperm motility time was used as a co-factor.

Results

Sperm motility

Neither time (p = 0.141) nor pCO$_2$ (p = 0.370) as single variables significantly affected percentage motility (Table 3a, Fig. 1a). Percentage motility decreased under hypoxia at both 380 μatm pCO$_2$ (p = 0.032) and 750 μatm pCO$_2$ (p < 0.005; Table 3a) levels. Hypoxia at 750 μatm pCO$_2$ led to the lowest percentage motility, although this did not differ significantly from the percentage motility at the 380 μatm pCO$_2$ hypoxic level; and there was no significant interaction between pCO$_2$ and hypoxia (Table 3a; Figure 1a).
Swimming speed (VCL) increased at 750 µatm pCO₂ under both normoxic and hypoxic conditions relative to 380 µatm pCO₂ treatments (Table 3b, Figure 1b). Both pCO₂ and hypoxia separately showed significant effects on VCL (both p <0.01), however there was no significant interaction (Table 3b). VCL was significantly reduced under 380 µatm pCO₂ hypoxic conditions (p<0.05) compared with controls. Overall there was a significant effect of time on VCL (p<0.01) (Figure 2). This was driven by changes in the 380 µatm pCO₂ and 750 µatm pCO₂ normoxic treatments. In the 380 µatm pCO₂ normoxic treatment VCL was highest at 1 minute and significantly decreased after 50 minutes (p<0.05) and 60 minutes (p<0.05); figure 2). In the 750 µatm pCO₂ normoxic treatment VCL was highest at 10 minutes this significantly decreased at 20 minutes (p<0.01). Although this decrease did not remain significant at 30 minutes (p=0.115) and 40 minutes (p=0.051) it was significant at 50 minutes (p<0.01) and 60 minutes (p<0.01; Figure 2). There was no significant difference in VCL across track time in the 380 µatm pCO₂ (p= 0.844) and 750 µatm pCO₂ (p=0.719) hypoxic treatments.

Fertilisation success

Fertilisation success was significantly reduced by both elevated pCO₂ and by reduced oxygen. Under normoxic conditions, the elevated pCO₂ caused a decrease of 7% (p = <0.005). Hypoxic conditions under normal pCO₂ levels, however, caused a further decrease by 63% (p = <0.005). The combined impact of high pCO₂ and low oxygen was most detrimental, with fertilisation success reduced to 3% (p = <0.005). There was, therefore, a significant interaction between hypoxia and elevated pCO₂ (p = <0.005).

Discussion
The results of the current study suggest that if an hypoxic event were to occur under future ocean acidification scenarios, there would be a significant decrease in the fertilisation success of *P. lividus*, although sperm motility would not be significantly affected by combined pCO$_2$ and hypoxic conditions. The results also highlight the need for further studies into the synergistic effects of abiotic factors, as ocean acidification is unlikely to occur in isolation from other climate related stressors such as warming and hypoxia.

There was no significant effect of pCO$_2$ on the percentage of motile sperm, in agreement with a previous study (Havenhand and Schlegel, 2009). Although sperm swimming speed, which remained high across all treatments, was significantly higher at elevated pCO$_2$. In contrast, the majority of previous studies (e.g. Havenhand and Schlegel, 2009; Frommel *et al*., 2010; Morita *et al*., 2010) concerned with sperm swimming speed reported a slowing under acidified conditions. However the current study differs from much of the previous literature as sperm motility and swimming speed were tracked over a one-hour period; substantially longer than many previous studies which have used track times of a few seconds post activation (Morita *et al*., 2010; Schlegel *et al*., 2012). This longer tracking time was used, because fertilisation of broadcast spawners may not necessarily happen immediately, as gametes need to disperse. Tracking for one hour allows a more realistic assessment of what may happen naturally. Consistent with this reasoning, the present study shows that changes in sperm swimming speed over the first hour of activation differed between treatments (Figure 2); a point which may have been missed previously due to shorter tracking times. An explanation for an increase in sperm swimming speed is offered in previous work (Caldwell *et al*., 2011) by means of sperm activation pH. This is the mechanism whereby sperm are stored in an immotile state at pH
7.2, below the activation threshold of sperm dynein ATPase that powers the flagellum (Johnson et al., 1983). When the sperm are released into the water column the pH of the sperm is increased to 7.6 and the flagellum is activated and mitochondrial respiration begins (Christen et al., 1983). This indicates that there will be an increase in sperm swimming speed, perhaps modulated by sperm-activating peptides (SAPs), which are released by the egg jelly coat. These SAPs evolved 70 million years ago when atmospheric CO₂ was far higher than present day levels and oceans had a lower pH (pH 7.4-7.6) (Neill and Vacquier, 2004; Darszon et al., 2008; Caldwell et al., 2011).

Hypoxia is also an important factor in relation to sperm motility. The current study shows that both sperm percentage motility and VCL were reduced under hypoxic conditions. Previous research into the effects of hypoxia on sperm swimming speed gave contrasting results, with the majority of studies seeing a reduction in sperm swimming speed when exposed to hypoxic conditions (Bencic et al., 1999a, b; Wu et al., 2003; Shin et al., 2014) similar to the results described here. Sperm motility is an energetically demanding process requiring ATP, which is generated in mitochondria located in the mid piece of the sperm. In the absence of oxygen ATP cannot be synthesised from ADP via oxidative phosphorylation, thereby limiting energy availability for flagellum activity. Therefore, under hypoxic conditions where oxygen availability is limited, sperm are unable to become active (Billard and Cosson, 1990; Fitzpatrick et al., 2009). However when increased pCO₂ and hypoxia are considered together, both percentage sperm motility and sperm VCL did not differ significantly from the control treatment. If the reduction in sperm motility through hypoxia is considered with the increase in sperm swimming speed due to increasing pCO₂, there is potential for a mediating effect of hypoxia on the impact of OA.
In contrast to sperm motility, fertilisation success is reduced under both increased pCO_2 and hypoxic conditions. The effects of increased pCO_2 on fertilisation success have been widely studied and are believed to be attributable to developmental delay (Kurihara and Shiryiama 2004) or to the slowing of the fast block to polyspermy (Reuter et al., 2011). Previous studies on the effects of OA on fertilisation success have obtained variable results but there was no significant effect on fertilisation success in the majority of studies on echinoderms (e.g. Byrne et al., 2009; Byrne et al., 2010a, b; Martin et al., 2011). However, a few studies have obtained results similar to those of the current study. A reduction in fertilisation success under OA was noted for the sea urchins *Paracentrotus lividus* (Moulin et al., 2011) and *Heliocidaris erythrogamma* (Havenhand et al., 2008). These intra- and inter-specific differences have previously been attributed to variations in experimental design. In addition contrasting with the present study none of these previous studies have pre-acclimated the adults from which the gametes were obtained.

Here, hypoxia as a single factor caused a significant decrease in fertilisation success; in general studies on effects of hypoxia on reproductive capacity show a significant negative effect on reproductive endpoints including fertilisation success. This significant reduction suggests that early embryonic development is reliant on aerobic respiration. Respiratory rate in sea urchin eggs has previously shown a marked increase after fertilisation (Yasumasu et al., 1996), which would account for the reduction seen here under hypoxic conditions. After fertilisation, oxygen is required primarily for the oxygenation of glycogen, which is stored in the eggs and is an essential energy reserve for development. The oxygen used is attained through diffusion across the oocyte membrane and this diffusion is determined by the difference in oxygen partial pressure between the egg and the external environment. For broadcast spawners, the relevant conditions are those of the external marine environment (Herreid, 1980; Wang and Zhan, 1995). Hypoxic
conditions may cause a decrease in this gradient, thus the eggs are less capable of acquiring adequate oxygen, which in turn may lead to the inhibition of embryonic development. Riveros et al. (1996) showed a significant reduction in fertilisation success (below 40%) when the sea urchin *Arbacia spatuligera* was exposed to oxygen levels of 30% and below. Similarly, in the sea urchin *Strongylocentrotus droebachiensis* there was a significant negative effect of hypoxia on gonad growth (Siikavuopio et al., 2007).

Reductions in reproductive ability and output also occur in brine shrimp (Spicer and El-Gamal, 1990), copepods (Marcus et al., 2004; Sedlaceck and Marcus, 2005; McAllen and Brennan, 2009) and gastropods (Cheung et al., 2008). The results from previous studies also indicate a reduction in energy allocation for reproduction (Cheung et al., 2008) as well as a reduction in developmental rate, indicating developmental delay (McAllen and Brennan, 2009).

The results of the present study suggest a synergistic effect between increased pCO$_2$ and hypoxia, as there was a significant reduction in fertilisation success under hypoxic conditions and a significant difference between the 380 μatm and 750 μatm treatments. The diffusion of pCO$_2$ created during respiration is reliant on a diffusion gradient similar to that for oxygen and under increased pCO$_2$ the CO$_2$ molecules do not move as readily across the egg membrane, leading to reductions in fertilisation success. This synergistic effect may lead to severe negative effects on species recruitment and distribution. Recent studies (Gobler et al., 2014) also found a negative synergistic effect of increasing OA and hypoxia in relation to larval development and survivorship. Reduced survivorship (by >50 %) and inhibition of growth and metamorphosis (by >50 %) occurred under low oxygen conditions in two calcifying bivalves: bay scallops, *Argopecten irradians*, and hard clams, *Mercenaria mercenaria*. However, in contrast to Gobler et al. (2014), Frieder et al. (2014) found that there was no significant effect of low pH or low O$_2$
on survivorship of the mytilid species, *Mytilus californianus* and *M. galloprovincialis*, and no effect of combined increased pCO$_2$ and low O$_2$ on their early development.

The present study is novel in assessing the impact that an hypoxic event would have on the reproductive parameters of sperm motility and fertilisation success in a future high CO$_2$ world. There is a significant effect of both pCO$_2$ and hypoxia on sperm swimming speed, with reduced speeds being seen under hypoxic conditions and increased speeds being seen under increased pCO$_2$ levels. In normoxic conditions increased speed at elevated pCO$_2$ could possibly have negative effects on fertilisation success because sperm that swim faster use up their available energy faster (motility decreased after 20 minutes) leading to a possible trade-off between sperm speed and longevity. This suggests that sperm swimming speed is not necessarily the most important factor in fertilisation success.

Broadcast spawning is affected by many factors, including water currents and chemistry, and as fertilisation may not happen immediately, sperm need to be motile for longer (Levitan, 2000) and so sperm released in a future high pCO$_2$ ocean may use up their energy quicker and result in a reduction in fertilisation success. However, as also shown in this study, if swimming speed decreases to lower levels, as associated with hypoxia under ambient pCO$_2$ levels, fertilisation success is reduced despite swimming activity remaining constant for longer (> 1 hour). In addition, when elevated pCO$_2$ and hypoxia are combined their contrasting effects lead to sperm swimming speed similar to that observed in control treatments and swimming activity remaining constant for over an hour. Despite this fertilisation success was lowest in this treatment. This suggests that a least under the combined of hypoxia and elevated pCO$_2$ the direct synergistic effects of these stressors on fertilisation success is more important than indirect effects of sperm motility and longevity.
It appears that an hypoxic event will negatively affect fertilisation success regardless of oceanic $p\text{CO}_2$, but this effect will be intensified under near future $p\text{CO}_2$ conditions. This is in contrast to the results for sperm motility which suggests an increase in sperm swimming speed under increased $p\text{CO}_2$ conditions which will be mediated by a hypoxic event. If fertilisation success is negatively impacted, there will likely be knock-on effects such as reduced recruitment but also effects on the food chain, as $P.\text{lividus}$ is not only an important grazing species but also an important source of prey for larger organisms. It is also an important commercial species and the impacts of climate change may negatively affect its aquaculture.

Acknowledgements

The original concept was developed by HG, and SPSR. Experiments were carried out by HG and SPSR. Data analysis was carried out by HG. Animals and sea water parameters were maintained by staff at Plymouth Marine Laboratory under supervision of HSF, SPSR and SW; particular thanks go to technicians Amanda Beesley, Joana Nunes and Adam Cowles. The CO$_2$ system was designed by HSF who also analysed the sea water chemistry. All authors contributed to the final manuscript. The NERC Consortium Grant NE/H017127/1 ‘Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles’ awarded to SW and HF funded the PML IMAS and supported SPSR. HG was supported by NERC studentship NE/H525046/1 awarded to ASC, MGB and GSC.

References

invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology, 157: 2061-2069.

experimental environment dataset. British Oceanographic Data Centre – Natural Environment Research Council, UK.

development and molecular plasticity in the Mediterranean sea urchin

Table 1. Water chemistry parameters for the ambient and future predicted OA scenarios (after Findlay et al., 2013). Parameters labelled with * were calculated using CO2Sys software. Seasonal light(L):dark(D) cycles are presented for the date of the experiment.

<table>
<thead>
<tr>
<th>Nominal pCO$_2$ treatment (µatm)</th>
<th>380</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA (µmol kg$^{-1}$)</td>
<td>2255.24 ± 133.1</td>
<td>2183.17 ± 101.6</td>
</tr>
<tr>
<td>pH</td>
<td>8.08 ± 0.03</td>
<td>7.93 ± 0.09</td>
</tr>
<tr>
<td>Temperature (ºC)</td>
<td>15.04 ± 0.90</td>
<td>15.66 ± 0.65</td>
</tr>
<tr>
<td>Salinity</td>
<td>35.00 ± 0.1</td>
<td>34.90 ± 0.2</td>
</tr>
<tr>
<td>DIC (µmol kg$^{-1}$)*</td>
<td>2073.90 ± 122.9</td>
<td>2062.90 ± 131.3</td>
</tr>
<tr>
<td>pCO$_2$(µatm)*</td>
<td>483.00 ± 24.6</td>
<td>722.40 ± 198.2</td>
</tr>
<tr>
<td>Ω Cal*</td>
<td>3.18 ± 0.25</td>
<td>2.31 ± 0.32</td>
</tr>
<tr>
<td>Ω Arg*</td>
<td>2.04 ± 0.15</td>
<td>1.49 ± 0.21</td>
</tr>
<tr>
<td>L:D cycle</td>
<td>16:8</td>
<td>16:8</td>
</tr>
<tr>
<td>Nitrate</td>
<td>7.313±12.97</td>
<td>7.93±13.20</td>
</tr>
</tbody>
</table>
Table 2. Water Chemistry parameters for the ambient and future predicted OA scenarios used in experimental chambers. Parameters labelled with * were calculated using CO2Sys software.

<table>
<thead>
<tr>
<th>Nominal oxygen and pCO₂ treatment (µatm)</th>
<th>380 normoxic</th>
<th>380 hypoxic</th>
<th>750 normoxic</th>
<th>750 hypoxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperm motility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA (µmol kg⁻¹)</td>
<td>2366.70±68.3</td>
<td>2366.70±68.3</td>
<td>2207.05±222.5</td>
<td>2207.05±222.5</td>
</tr>
<tr>
<td>pH</td>
<td>8.07 ±0.01</td>
<td>8.07±0.01</td>
<td>7.94±0.01</td>
<td>7.94±0.01</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>15.2±0.12</td>
<td>15.3±0.07</td>
<td>15.3±0.09</td>
<td>15.24±0.08</td>
</tr>
<tr>
<td>Salinity</td>
<td>35.0±0.1</td>
<td>35.0±0.01</td>
<td>34.9±0.2</td>
<td>34.9±0.2</td>
</tr>
<tr>
<td>DIC (µmol kg⁻¹)</td>
<td>2123.90±3.13</td>
<td>2036.72±2.90</td>
<td>2125.73±3.28</td>
<td>2036.31±3.30</td>
</tr>
<tr>
<td>pCO₂ (µatm)</td>
<td>376.36±5.54</td>
<td>501.89±8.89</td>
<td>382.29±6.27</td>
<td>499.99±11.97</td>
</tr>
<tr>
<td>Ω Cal*</td>
<td>4.17±0.05</td>
<td>3.00±0.004</td>
<td>4.14±0.04</td>
<td>3.00±0.05</td>
</tr>
<tr>
<td>Ω Arg*</td>
<td>2.68±0.03</td>
<td>1.93±0.03</td>
<td>2.66±0.03</td>
<td>1.93±0.03</td>
</tr>
<tr>
<td>Oxygen (µatm)</td>
<td>190.70±4.4</td>
<td>54.08±3.0</td>
<td>189.85±4.2</td>
<td>52.96±3.1</td>
</tr>
<tr>
<td>Fertilisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA (µmol kg⁻¹)</td>
<td>2366.70±68.3</td>
<td>2366.70±68.3</td>
<td>2207.05±222.5</td>
<td>2207.05±222.5</td>
</tr>
<tr>
<td>pH</td>
<td>8.08±0.01</td>
<td>8.06±0.02</td>
<td>7.94±0.01</td>
<td>7.95±0.02</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>15.2±0.16</td>
<td>15.3±0.08</td>
<td>15.3±0.17</td>
<td>15.3±0.08</td>
</tr>
<tr>
<td>Salinity</td>
<td>35.0±0.1</td>
<td>35.0±14</td>
<td>34.9±0.2</td>
<td>34.9±0.2</td>
</tr>
<tr>
<td>DIC (µmol kg⁻¹)</td>
<td>2122.45±5.90</td>
<td>2035.92±4.58</td>
<td>2130.62±9.42</td>
<td>2031.3±10.16</td>
</tr>
<tr>
<td>pCO₂ (µatm)</td>
<td>375.88±11.37</td>
<td>498.14±13.96</td>
<td>390.63±18.75</td>
<td>486.41±29.72</td>
</tr>
<tr>
<td>Ω Cal*</td>
<td>4.19±0.09</td>
<td>3.01±0.06</td>
<td>4.07±0.09</td>
<td>3.07±0.15</td>
</tr>
<tr>
<td>Ω Arg*</td>
<td>2.69±0.06</td>
<td>1.94±0.04</td>
<td>2.61±0.09</td>
<td>1.98±0.09</td>
</tr>
<tr>
<td>Oxygen (µatm)</td>
<td>190.96±3.6</td>
<td>52.11±4.8</td>
<td>190.81±3.7</td>
<td>53.24±4.4</td>
</tr>
</tbody>
</table>
Table 3. ANOVA table for (a) percentage sperm motility; (b) sperm curvilinear velocity; and (c) fertilisation success at elevated pCO$_2$ (750 versus 380 μatm) in combination with hypoxic and normoxic conditions. Sperm motility data corrected for time.

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum squared</th>
<th>Mean squared</th>
<th>F-Value</th>
<th>P(>f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO$_2$</td>
<td>2</td>
<td>49.961</td>
<td>49.961</td>
<td>0.813</td>
<td>0.370</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>643.293</td>
<td>643.293</td>
<td>10.470</td>
<td>0.002</td>
</tr>
<tr>
<td>Time</td>
<td>7</td>
<td>135.788</td>
<td>135.788</td>
<td>2.210</td>
<td>0.141</td>
</tr>
<tr>
<td>pCO$_2$*Oxygen</td>
<td>4</td>
<td>1.023</td>
<td>1.023</td>
<td>0.017</td>
<td>0.898</td>
</tr>
<tr>
<td>residuals</td>
<td>79</td>
<td>4853.940</td>
<td>61.442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO$_2$</td>
<td>2</td>
<td>3.253</td>
<td>3.253</td>
<td>9.105</td>
<td>0.003</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>3.445</td>
<td>3.445</td>
<td>9.642</td>
<td>0.003</td>
</tr>
<tr>
<td>Time</td>
<td>7</td>
<td>4.013</td>
<td>4.013</td>
<td>11.233</td>
<td>0.001</td>
</tr>
<tr>
<td>pCO$_2$*Oxygen</td>
<td>4</td>
<td>0.069</td>
<td>0.069</td>
<td>0.194</td>
<td>0.661</td>
</tr>
<tr>
<td>residuals</td>
<td>79</td>
<td>28.223</td>
<td>0.357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO$_2$</td>
<td>1</td>
<td>1621.303</td>
<td>1621.303</td>
<td>62.735</td>
<td><0.005</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>20801.082</td>
<td>20801.082</td>
<td>804.876</td>
<td><0.005</td>
</tr>
<tr>
<td>pCO$_2$*Oxygen</td>
<td>1</td>
<td>521.013</td>
<td>521.013</td>
<td>20.160</td>
<td><0.005</td>
</tr>
<tr>
<td>residuals</td>
<td>32</td>
<td>827.002</td>
<td>25.844</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. The effects of CO$_2$-induced acidification in combination with hypoxia on *Paracentrotus lividus* sperm: (a) percentage sperm motility adjusted for time and (b) log VCL. Means ± 95% confidence intervals. Graphs show estimated marginal means. Graph (b) adjusted for time at 30 minutes.
Figure 2: The effects of CO$_2$-induced acidification in combination with hypoxia on *Paracentrotus lividus* sperm swimming speed (VCL) over time. Data are means ±95% confidence intervals.
Figure 3. Effects of CO$_2$-induced acidification in combination with hypoxia on *Paracentrotus lividus* fertilisation success. Data are means ± 95% confidence intervals.