
Copyright:

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Public Opinion Quarterly following peer review. The version of record Karp J, Luhiste M. Explaining Political Engagement with Online Panels: Comparing the British and American Election Studies, Public Opinion Quarterly 2016 is available online at: http://dx.doi.org/10.1093/poq/nfw014

Date deposited:
18/07/2016

Embargo release date:
23 June 2017
Explaining Political Engagement with Online Panels:
Comparing the British and American Election Studies

Jeffrey A. Karp*
Amory Building
Rennes Drive
University of Exeter
Exeter, EX4 4RJ United Kingdom
+44 (0)1392 723183
j.karp@exeter.ac.uk
URL: www.jkarp.com

Maarja Lühiste
Newcastle University
Newcastle upon Tyne
Tyne and Wear NE1 7RU
United Kingdom
maarja.luhiste@ncl.ac.uk

*Corresponding author
JEFFREY A KARP is Professor of Political Science at the University of Exeter.

MAARJA LÜHISTE is Lecturer in Politics at Newcastle University.

Acknowledgements

We would like to thank the three anonymous reviewers for their helpful comments and suggestions.

This work was supported by the Economic and Social Research Council (grant number RES-239-25-0032).

*Address correspondence to Jeffrey Karp, University of Exeter, Department of Politics, Amory Building, Rennes Drive, Exeter, EX4 4RJ, United Kingdom
Abstract

Online surveys have seen a rapid growth in the last decade and are now frequently being used for electoral research. Although they have obvious advantages, it is unclear whether the data produce similar inferences to more traditional face-to-face surveys, particularly when response to the survey is correlated with the survey variables of interest. Drawing on data from the latest American and British Election Studies, we examine how age affects political engagement comparing responses between face-to-face and online surveys. The results indicate that online surveys, particularly those where respondents have opted-in, reduce variance and overestimate the proportion of those who are politically engaged which produces different conclusions about what motivates citizens to vote. These findings suggest that there is a greater need to acknowledge selection bias when examining questions about political engagement, particularly when it comes to election surveys that rely on opt-in panels that are more likely to attract those who are interested in the subject matter and thus more politically engaged.
Introduction

For more than half a century, the American National Election Study (ANES) was the primary source of data for electoral research in the United States. From the beginning, the ANES relied on personal face-to-face (FTF) interviews. This approach was once considered to be the gold standard by which all other survey methods were to be compared (see Groves et al. 2004, 163; de Leeuw 2005). It is still the most widely used mode in electoral research outside the United States.¹ The primary advantage of FTF surveys is their ability to conduct lengthy interviews with high response rates. However, FTF surveys are costly and reaching a point that will soon be unsustainable. For example, the 2012 ANES is estimated to have cost $4.2m to complete 2,000 FTF interviews of 70 minutes in length (both pre and post) or $2,100 per respondent.² The Economic and Social Research Council’s (ESRC) call for the 2015 British Election Study (BES) was for a maximum of £1.25 million, most of which was devoted to the core FTF probability sample which traditionally consists of about 3,000 completed FTF interviews. The rising costs of FTF interviews raise questions about whether their cost can be justified particularly when response rates, which have long been viewed as one of their primary advantages, are in decline.

In comparison, online surveys are a bargain making original data collection within the reach of far more academics with relatively small research budgets. As an example, the 2006

¹ Of the 104 election studies in 46 countries that participated in the Comparative Study of Electoral Systems (CSES) between 1996-2014, nearly three quarters (72 percent) rely on FTF surveys, while 20 percent were conducted over the telephone and the rest conducted by mail.

² Personal communication with Gary Segura, Co-Principal Investigator of the ANES, February 29, 2012.
Cooperative Congressional Election Study (CCES) and the 2008 Cooperative Campaign Analysis Project (CCAP) offered researchers 1,000 pre and post online interviews lasting ten minutes during the campaign and five minutes post election for just $15,000 (Vavreck and Rivers 2008). The proliferation of online panels available today means that researchers have access to more data sources and even have the ability to design their own surveys. Aside from cost, another advantage of online surveys is speed and flexibility; questionnaires can be distributed quickly and the medium allows for visual and audio presentation that are not possible with telephone or even FTF surveys. Another advantage that online surveys have over FTF surveys is the absence of an interviewer, which has the potential to alter response patterns (Atkeson et al. 2014). For this reason, online surveys appear to reduce social desirability bias (Chang and Krosnick 2009). Investigators for both the ANES and the BES have recognized these advantages and have incorporated online surveys into their studies.

Some members of the academic community have been quick to embrace online panels as a new and inevitable development in survey methodology that is comparable to more traditional probability based methodologies, but others, namely those in the public opinion community, remain sceptical. One of the primary concerns with online surveys is the method used to select respondents. Many, but not all, online surveys are based on nonprobability samples where respondents “opt in” to a survey in exchange for a reward of some kind. Unlike traditional probability samples that rely on the principle of randomness, such nonprobability techniques are purposive and rely on targeted advertising campaigns, monetary incentives to recruit participants, and quotas to build a representative sample (see Couper 2000). With nonprobability samples margins of sampling error are indicative rather than real. It is not clear according to statistical theory how to compute a standard deviation, nor how to estimate standard errors, or whether there is any other way to systematically assess the expected variability in quota sampling. According to the American Association of
Public Opinion Research (AAPOR), “virtually all surveys taken seriously by social scientists, policy makers, and the informed media use some form of random or probability sampling, the methods of which are well grounded in statistical theory and the theory of probability.”

In 2012, the ANES introduced a dual mode design in its Time Series Study that combined the traditional FTF interviewing with a separate online sample drawn from Knowledge Networks. Unlike opt-in panels, Knowledge Networks (KN) uses a traditional sampling procedure to build their online panel and provide Internet access to respondents who do not currently have it. While the approach taken by KN is designed to solve one problem, others are quick to point out that there is no guarantee that random recruitment can achieve greater accuracy given low recruitment and high attrition (Rivers and Bailey 2009). In addition, it has become increasingly difficult to justify the high costs associated with this approach when other less expensive methods are available that may produce results that are just as accurate. Rivers (2006) suggests that a representative sample can be built from purposive rather than random selection through a technique known as matching. This involves a two-step process that first constructs a sampling frame from a high quality probability sample, such as the Current Population Survey. A target sample is then constructed by matching those from a large panel of potential respondents to the sampling frame. Sampling matching methodology is a form of purposive selection intended to match the joint distribution of a set of covariates in the target population. Such an approach was used by Polimetrix (acquired by YouGov) to produce the CCES and CCAP studies discussed above. The question remains, whether these inexpensive approaches to data collection deliver what we want them to deliver. Can we now obtain high quality public opinion data generalizable to the underlying population with these new methods?

3 Knowledge Networks was acquired by GfK, Germany’s largest market research institute, in 2011.
In this paper we examine how results from models that rely on data from different types of online panels might affect inferences about youth and political engagement, a question of long standing theoretical interest. In part, online surveys offer several advantages to examining this question; younger respondents are often difficult to reach in FTF surveys and may be more likely to be found online. In addition, online surveys may be better suited for examining questions about voter turnout because they are not likely to suffer from social desirability bias which is a common problem with FTF surveys (as discussed above). Our primary interest here is not to focus simply on whether online panels produce results that are statistically different from FTF surveys. Rather we are interested in addressing whether the results produced from online panels lead to different substantive interpretations than traditional FTF surveys. To investigate this question we employ data from the 2012 American National Election Study (ANES) and the 2010 British Election Study (BES). As mentioned above, both national election studies use both FTF and online survey modes. However, the sampling method employed for the online panels differs considerably: the ANES utilizes a more costly probability sampling, while the BES relies on opt-in panels. This offers a unique opportunity to investigate how survey mode and sampling design may influence the inferences we make in electoral research.

Differences between face-to-face and online surveys

A number of studies have attempted to test the validity of data collected through online surveys using two primary methods. One method compares estimates of pre-election polls to electoral outcomes. Many of the studies find that nonprobability samples are extremely accurate (Twyman 2008; Vavreck and Rivers 2008; Taylor et al. 2001) but others find that Internet surveys fail to accurately reflect the outcome (Gibson and McAllister 2008). Another method involves comparing data obtained from probability samples administered either FTF
or by telephone with data collected online. For example, Sanders et al. (2007) used data from the 2005 British Election Study to compare responses obtained from the FTF survey, which had formed the core of the BES, to an equivalent survey administered to an online panel by YouGov. They found statistically significant, but small, differences in distributions of key explanatory variables in models of turnout and party choice. In particular, they found that “…the Internet sample appeared to be slightly less left leaning than the probability sample” (p.279). Nevertheless, they write, “More important, in our view, the in-person and Internet surveys yield remarkably similar results when it comes to estimating parameters in voting behavior models.” They conclude that “these findings prompt the conclusion that, by using high-quality Internet surveys, students of British voting behavior are unlikely to be misled about the effects of different variables on turnout and party choice” (p. 279). Similar conclusions have been reached by others. For example, Stephenson and Crete (2010) compared telephone and Internet surveys in Quebec and found that although the point estimates differed between the two surveys the substantive conclusions that were drawn about voting behaviour were similar. Ansolabehere and Shaffner (2014) also compare point estimates and various models including political knowledge, news consumption, and presidential approval across telephone, mail, and Internet surveys and find few instances of significant differences across modes.

Others, however, remain more sceptical. Yeager et al. (2011) compared the accuracy of estimates obtained from telephone and Internet surveys to benchmarks obtained from large probability FTF samples with high response rates and found that nonprobability survey measurements were much more variable in their accuracy. They conclude by stating that nonprobability samples are more appropriate when testing null hypotheses than to estimate the strength of an association. Malhotra and Krosnick (2007) compared data from the ANES with Internet panels recruited by Harris Interactive and YouGov. In both of the latter cases,
samples were based on opt-in panels that had initially been recruited through advertisements on websites and other means. They examined a series of relationships between demographic and attitudinal variables and vote choice and turnout. They found significant differences in about a quarter of the models, but the magnitude of the effects are unclear. They conclude that “...results may differ considerably depending upon the mode/sampling method employed.” While this suggests the need to be careful when using nonprobability samples, it is not exactly clear how results would lead researchers to draw different conclusions of theoretical importance.

Youth and Political Engagement

Voter turnout is often viewed as an indicator of the health of democracy. Declining rates of turnout have been observed in many western democracies, which often attracts a great deal of attention and demands explanation. Documenting the 30-year trend in declining political and civic engagement in America, Putnam (2001, 33) attributes virtually all of the decline to the gradual replacement of voters who came of age before the New Deal and World War II to the generation who came of age later. The theory of generational replacement has been extensively explored and is a common explanation for trends in turnout (Campbell et al. 1960; Butler and Stokes 1971; Nie, Verba and Petrocik 1978). The core argument is based on the assumption that younger cohorts are distinctly different from other cohorts leading to questions as to what makes them distinct. For example, Wattenberg (2007) attributes the low levels of apathy among young people to changes in media habits from generation to generation which have led young people to be far less likely to be exposed to news about

4 Logit coefficients are reported which are not transformed into probabilities making it difficult to assess the magnitude of the effects across samples.
public affairs than elderly people. While Zukin (2006) also find that changes in engagement between generations can be understood on the basis of the political, social, and economic environment within which each generation was raised, they challenge the assumption that young people are apathetic. While there appears to be a widening age gap in political engagement, younger people are just participating in different ways and are likely to match their elders in many aspects of civic engagement, defined as voluntary activity (see also Dalton 2008). Franklin (2004) also attributes the differences to generational effects and argues that it depends on context; young voters are more likely to adopt habit forming behaviour when they are enfranchised in elections that drive change. This results in a generational effect where turnout varies by different cohorts depending under which circumstances they were socialized.

Nickerson (2006) provides a different interpretation. Young people are less likely to vote because they are less likely to be mobilized by parties who find it more difficult to track them down and deliver the message. Political campaigns are poorly suited for mobilizing young voters because the operational time frame is short and young people do not have significant resources to make campaign contributions which leaves campaigns with little incentive to mobilize young people. However when contacted, young voters are equally responsive to mobilization efforts. Niemi and Hanmer (2010) also found evidence to support the view that mobilization is an important explanation for why young people vote. They also found, however, that other motivational factors, such as partisanship, were equally important.

In short, this brief review of some of the literature suggests a range of interpretations about why young people are disengaged in the political process. Below we rely on data from the British and the American contexts, where voter turnout has fluctuated in recent elections, to determine whether we reach similar conclusions about youth and political engagement.
when the analysis is based on data collected by using different sampling methodologies and varying survey modes.

Data

The American National Election Studies (ANES) and the British Election Studies (BES) constitute one of the longest series of national election studies in the world. An ANES survey has been administered after every election since 1948 and a BES survey since 1964. They are the primary sources of data on electoral behaviour in the United States and Britain. Funded by national research councils, they each constitute a significant investment and therefore consume a large proportion of the funding available in political science research.

Since its inception, the ANES has employed a cross-section area probability sample and the BES has used a national probability sample. Both studies have been conducted with FTF interviews. In the 2000s, both national election studies also introduced an online panel. While traditionally the BES and ANES have used comparable sampling strategies, there are significant differences in the sampling of their online panels. As explained above, the BES online sample is a non-random design drawn from a larger opt-in panel recruited by YouGov, while the 2012 ANES employs a more traditional probability sampling approach for recruiting online respondents.

The online component of the BES studies are based on a panel design that includes an initial baseline survey administered two months before the election followed by another interview on a random day during the campaign and a final interview after the election. YouGov draws a quota sample from a panel of over 360,000 British adults who were initially recruited from a variety of sources. Respondents are selected on the basis of age, gender, social class and the type of newspaper they read (upmarket, mid-market, red-top, no newspaper). The data are then weighted by these same attributes along with region using
targets derived from the census and the National Readership Survey. The data are also weighted by party identity, which is based on YouGov’s own estimates from 80,000 responses to its other surveys conducted before and after the 2010 general election. In comparison, the FTF surveys involve a clustered multi-stage probability design (see Appendix for details). Weights are used to correct for over-sampling by region and marginality and household size and age and sex are used to compensate for non-response (see Howat, Norden, and Pickering 2011).

The 2012 ANES online sample, on the other hand, is drawn from the GfK KnowledgePanel, a panel that was recruited by using either address-based sampling (ABS) or random-digit dialling (RDD). To avoid selection bias, respondents without a computer and Internet service were offered a free web appliance and free Internet service (ANES 2014). Hence, the ANES online sample has been designed more similarly to traditional public opinion surveys used in political science research than the BES online sample. Together these election surveys allow for several types of comparisons. We can assess differences in responses between different survey modes within each election study. We can also compare differences across countries in both survey mode and sampling design.

One of the challenges in surveying younger people is that they are more difficult to reach. An analysis of the weights that are deposited for the 2010 BES and 2012 ANES supports this assumption. Surprisingly, however, younger respondents are under represented more in the online panels, which require larger weights to correct the distributions, than they are in the FTF surveys. As can be seen from Table 1, more weight is given to the youngest respondents in both online panels than in the FTF survey. Nearly all of those aged 18-24 and more than half of those aged 25-34 are given more weight in the BES online panel. In the

5 See https://yougov.co.uk/about/panel-methodology/ for further details.
ANES online panel, the weights are smaller, but about a third in the same age categories are given more weight to compensate for their under representation. In contrast, in the ANES FTF sample, younger respondents, on average, are actually slightly over represented. Less than one fifth of those in the youngest category in the ANES FTF were given more weight, compared to one quarter of the online panellists in the same age group. Both the ANES and BES online samples also over represent older respondents, as does the BES FTF survey, while the ANES FTF under represents the oldest respondents. The standard deviations for the weights are largest for the youngest respondents in the BES online survey. This indicates that any inferences about younger age groups will be based on smaller samples. If these samples do not reflect the true population, the weights will just inflate any bias rather than correct for it.

(Table 1 here)

As Table 2a reveals, online respondents have higher levels of political engagement than those interviewed FTF. In the BES online panel, 89 percent report being very interested in the campaign compared to 79 percent in the FTF survey. The online panel also has larger proportions who express a strong sense of civic duty. In the BES online survey, 86 percent agree that it was a citizen’s duty to vote, compared to 70 percent in the FTF survey. The only measure where there is no significant difference in overall engagement between the two samples is in the case of attention to specific political events. In both cases two thirds report seeing a political debate in both the opt-in panel and FTF survey. Nevertheless substantial gaps are evident amongst the youngest groups across all three measures of engagement in the BES. In the ANES, the online panellists also appear to be more engaged but the differences are smaller and in some cases not statistically significant particularly amongst the youngest respondents. In the ANES, the online panel is significantly more attentive to the campaign than the FTF, with a difference of 5 percent. The ANES data show a similar pattern on civic
duty, with 51 percent expressing that voting is primarily a duty compared to 44 percent of the FTF respondents. Slightly more, however, report following political events in the FTF sample (81 percent) than online (77 percent). In sum, respondents in the online panels appear to be more interested in politics, have a higher degree of civic mindedness, and are more likely to report voting than those in surveys using probability sampling.

(Table 2a here)

Table 2b displays reported turnout by age groups in both election studies. The survey estimates, which are weighted to correct for differences from known targets (as explained above), are substantially higher than the actual turnout. It is well known that respondents have an incentive to give a socially desirable response and report voting when they have not done so (Karp and Brockington 2005). The results from the British FTF survey are consistent with this expectation even though the question, like the ANES, has been phrased to reduce over reporting (see Appendix). While the actual turnout in the 2010 election was 66 percent (up from 61 percent in 2005), 77 percent reported having voted in the face-to-face survey. When checked against the electoral register in local authority offices, 29 percent of the validated non-voters had reported voting indicating that the discrepancy observed in Table 2b can be partly attributed to over reporting. We assume that, in the absence of an interviewer, online respondents are less likely to over report voting. Unfortunately, neither the ANES nor the BES conducted a voter validation study for online respondents, which makes it impossible to test this hypothesis. The only study, to our knowledge, to have investigated voter validation for respondents to an online survey is Ansolabehere and Hersh (2012, 446)

6 Various weights were deposited with the YouGov data but they all produce similar results.
7 At the time of writing, the ANES had not completed a validation study for the FTF respondents in 2012 so it is not possible to compare the rate to the BES FTF.
who examine the 2008 Cooperative Congressional Election Study (CCES). They find that about half of the validated non-voters claim to have voted, which raises questions about the assumption that self-administered surveys reduce the incentive to give a socially desirable response.

In any event, if the rate of over reporting does not vary across modes, then there should not be substantial differences between the samples. Table 2a indicates that there is just a three percent difference in reported turnout between the ANES FTF and online samples. However the difference between the BES samples is 14 percent. Of those in the BES online sample, 91 percent reported voting compared to 77 percent in the FTF. It is unlikely that this difference can be explained by a higher rate of over reporting in the BES online panel, which would have to exceed 80 percent. Moreover, there is no theoretical reason to expect a higher rate of over reporting in online surveys. All of this suggests that the BES YouGov panel has a greater selection bias. Not only is it likely that politically engaged respondents are more likely to sign up and complete an online survey but respondents who form a panel that have been carried over from successive surveys are likely to be more biased toward political engagement either because of testing effects or because those who remain in the panel are different from those lost through attrition. Of course, this may also be true of the ANES

8 Sanders et al. (2007) report that they were in the process of validating a sample of the 2005 BES opt-in respondents but these data have not been released and are not available for analysis.

9 In their analysis of the 2005 data, Sanders et al. (2007, 264) report a turnout rate of 84 percent in the opt-in panel compared to 72 percent in the FTF survey. They attribute the inflated figures to higher political interest in the opt-in panel.
online sample, although this could be mitigated by the introduction of fresh respondents who do not self-select into the panel.10

As Table 2a reveals, the discrepancies between the two BES modes are greatest in the youngest age categories, suggesting that the youngest respondents in the online samples are far more engaged than those interviewed face-to-face. This has obvious implications for inferences about the relationship between age and reported voter turnout, which we will explore in more detail below. While the difference in reported turnout between the two ANES modes is also the greatest in the youngest age category, the discrepancies between survey modes in different age categories are much more comparable.

(Table 2a and 2b here)

Comparing Results from Face-to-Face and Online Panels

When Sanders et al. (2007) examined mode effects in the 2005 BES they pooled the FTF and online panels together and estimated models of vote choice and turnout that include interactions between the samples and each of the variables.11 They interpret the lack of significance in many of the interaction terms as evidence that the samples produce the same

10 The average respondent in the ANES online panel had previously completed more than 150 surveys while one respondent completed as many as 923 surveys. The BES does not include a variable that indicates how many surveys a respondent has completed online, so it is not possible to investigate whether respondents who are repeatedly surveyed, either on political issues or other types of issues, are more engaged than fresh respondents. Nor is it possible to control for any possible effects.

11 One potential problem with this approach is that the standard errors are likely to be biased because no adjustment is made for the “stacking” of the data.
results. Null hypothesis testing, however, does not really tell us what we want to know which is whether there is a difference in the substantive impact of variables of theoretical interest. We believe the best approach is to estimate separate models for each sample and compare the magnitude of the effects to determine whether each sample does in fact produce the same results. As an initial investigation of the relationship between age and political engagement, we estimated models predicting interest in the campaign, attention to political events, civic duty, and turnout (see Appendix for question wording and results).

Figures 1a and 1b illustrate the relationship between age and these items, based on estimated probabilities derived from logit models. As the figures reveal, there is a clear relationship between age and all four of the measures of political engagement in both the FTF and online modes in the ANES while the relationship appears mixed in the BES, depending on the item and the mode. In Figure 1a, which illustrates the results for the BES, the effects of age are strongest on civic duty and the difference between the two modes is the widest. This means that the magnitude of the effects vary considerably by mode within the BES. The oldest citizens in the online survey are twice as likely to feel a strong sense of duty while in the FTF survey, the oldest citizens are three times as likely to feel a strong sense of civic duty. The online data suggest that there is a positive relationship between age and campaign interest that increases from .47 for the youngest citizens to .63 for the oldest but the FTF results suggest that there is no relationship. The online data suggest that there is little relationship between age and attention to political events while the FTF data suggest a weak negative relationship.

The estimates in both figures show that age increases the likelihood of voting but the BES online sample is a clear outlier. In the ANES, the estimates from both modes overlap

12 The estimates are derived from an ordered logit model and reflect the probability of being in the highest category.
with one another and fall within the confidence intervals indicating that the same relationship is observed in each sample. In contrast, while the relationship is still positive in the BES online survey it is much weaker than the estimates derived from the BES FTF sample, largely because the data are more skewed. The youngest age group in the online panel has a probability of voting of .83 compared to .72 in the FTF while the oldest citizens in both samples converge at a likelihood exceeding .94.

(Figure 1a and 1b here)

The analysis above suggests that age is an important determinate of political engagement but the magnitude of the effects varies substantially across the samples. To examine whether the data produce different interpretations of the factors that are known to influence turnout (e.g. party identification, campaign interest, mobilization and attention to it, civic duty, efficacy, gender, education and race/ethnicity), we estimate a series of multivariate models that include the three measures of political engagement along with other variables known to have an influence on voting.

As stated above, our primary interest is not simply to test whether the two samples produce different results but rather whether the substantive impact of variables of theoretical importance is different across the samples, which are based on different survey mode and sampling methodologies. Therefore, we also report first differences that illustrate the magnitude of the effects of each of the independent variables, holding all other variables constant at their means or modes. We also report the results of a chi-square test that indicates whether the estimates across the two samples are statistically significant.13

13 We use the suest command in Stata which combines the estimation results -- parameter estimates and associated (co)variance matrices -- stored under namelist into one parameter vector and simultaneous (co)variance matrix of the sandwich/robust type.
The results in Table 3 reveal that the estimates vary in magnitude and in some cases reverse direction between samples. More importantly, the differences between the estimates across survey modes are significantly greater in the case of the BES, compared to the ANES. While there are some differences in the coefficients across the two survey modes in the ANES, particularly in the case of efficacy and blacks, none of the discrepancies between coefficients are statistically significant. Also, the inferences one would make based on either the ANES FTF or online sample would be largely the same: campaign interest and civic duty are the most powerful predictors of voter turnout, followed by mobilization and party identification.

In contrast, the differences between the coefficients between the two samples are greater in the BES. In Table 3a, for example, which displays the results from the BES, the coefficient for female is positive in the FTF survey, though not significant, but is negative and significant (at p<.01) in the online panel. The chi-square test of the differences between the coefficients indicates that the estimates are statistically different. Sanders et al. (2007) findings, which were based on data from 2005, mirror those reported here for gender, even though their model specification differs. This suggests that there is something systematic about gender differences in turnout between the BES samples. In comparison, in the U.S., the coefficient for female is positive in Table 3b, though not significant, in both the FTF and online survey. Aside from gender, the data from the BES FTF survey suggest that ethnicity is also a significant factor that explains voting while the results from the BES online panel point to a different conclusion. The coefficient for whites is nearly three times as large as the

14 African Americans and those with higher levels of efficacy are more likely to vote in the FTF when controlling for other factors, which is largely consistent with previous research, while not significant in the online panel.
estimate from the online panel. Whites have a probability of voting that is nine percentage points greater than non-whites, whereas the BES online survey suggests that ethnicity has a trivial effect. However, the difference between the samples is not statistically significant.

The two BES samples also point to different inferences about the effects of campaign interest and civic duty. As with ethnicity, the effects of campaign interest are stronger in the BES FTF survey, leading one to conclude that interest in the campaign is an important explanation for why citizens vote. In contrast, the BES online data would suggest that interest in the campaign, while statistically significant, is not nearly as important as civic duty, which emerges as the only variable that really matters.

(Table 3 and 3b here)

The literature on youth and political engagement discussed above suggest that factors that influence turnout vary by age. For example, it might be more difficult to mobilize younger voters because they may be less receptive to party appeals. To examine this question, we also report the results of the same model of turnout for the youngest age group (18-35) in Table 4. As with the previous findings, the chi-square test indicates that the BES samples for the youngest cohort produce significantly different estimates for some of the primary variables of theoretical interest, while no significant differences across survey modes are found when estimating the same models with the ANES data. For example, the results from the BES FTF survey suggest that campaign interest can be a substantial motivator for the youngest age group. Young respondents who are not at all interested in the election have a probability of voting of .27 compared to .90 for those who are very interested. In comparison, there is very little change in the estimated probabilities (.89 to .96) derived from the BES online panel. In the case of the ANES, the change in probabilities is comparable in both modes: young citizens who are reporting low levels of campaign interest have a .43
Running Header
Explaining Political Engagement

(FTF) and .50 (online) probability of voting, compared to .74 (FTF) and .73 (online) for those who are very interested in the campaign.

The results from the BES online panel also suggest that young citizens who identify with the Labour party are less likely to report voting than young conservatives but the BES FTF survey suggests otherwise. Indeed the sign for Labour identifiers flips and is statistically different across the samples. Similarly the sign flips for gender but the differences between the estimates are not statistically significant. Both the ANES FTF and online survey suggest no gender difference in reported youth voting. While the sign for Democrats flips, neither the coefficient of the FTF survey nor the online surveys are statistically significant.

Both the BES and ANES FTF surveys produce consistent estimates about the role of mobilization on reported youth turnout. In both cases, the results suggest that mobilization can substantially increase a young citizen’s likelihood of reporting voting. In contrast, both online panels suggest that mobilization makes little difference. The differences between the estimates, however, are not statistically significant.

(Table 4a and Table 4b here)

Discussion

We have attempted to move beyond comparisons of responses from FTF and online samples to investigate whether results obtained from different survey methodologies lead to different interpretations of theoretical interest. Moreover, we have also tried to differentiate, to the extent possible, sampling effects from mode effects. We have focused on the questions of how age affects reported vote, which has a long and established history of scholarly interest. Furthermore, this topic provides a conservative test as online surveys should be better suited for examining this question, given assumptions about the ability to reach younger respondents and reductions in error associated with measuring political engagement. We find
that varying sampling approaches, rather than survey mode, produce different interpretations. Overall the results from the surveys employing probability sampling, whether they are administered face-to-face or online, are more consistent with theoretical expectations about age, partisanship and mobilization than the data produced from a non probability sample.

In particular, age emerges as an important determinant of political engagement in the ANES, regardless of the mode of the survey. Similar results are found in the BES FTF survey. In contrast, the BES opt-in panel minimizes the effects of age on many of the items, including turnout. When age is held constant, the BES samples produce different interpretations about what influences turnout among the youngest citizens. Niemi and Hanmer (2010) found evidence that both mobilization and partisanship were equally important explanations for why young people vote. The results from both the ANES and the BES FTF surveys are more consistent with this interpretation while the data from the online samples suggest that mobilization does not matter. Furthermore, because of the lack of variance in reported turnout in the BES online panel, the effects of many of the variables of theoretical interest are minimized, leading one to conclude that aside from civic duty none are that important.

These findings are clearly at odds with Sanders et al. (2007, 272) who conclude that “using either the probability or the Internet sample yields almost identical inferences about the determinants of turnout”. While it is possible that there is a greater bias in the 2010 BES than in the 2005 BES, the approach taken by Sanders et al. pools the two datasets together and controls for many of the differences between them which serves to minimize the differences. Furthermore, the authors’ focus on significance tests overlooks the substantive impact of the variables which is not easy to assess because the logit coefficients are not transformed into probabilities. The focus on statistical significance rather than substantive impact is a common problem in political science (Gill 1999).
We also tested whether the coefficients obtained from the different samples are significantly different and found differences for some variables that are of central theoretical importance. However this does not tell us very much. Meaningful statistical communication requires that researchers calculate and present quantities of direct substantive interest (King, Tomz and Wittenberg 2000). Indeed, although some of the estimates are statistically different across samples, the substantive impact varies. What is more telling is that the results from the opt-in online panel produce different theoretical interpretations of what motivates citizens to report voting. If these were the only data available, then it would provide a different picture than what is captured with more traditional FTF data or online panel data collected by using probability sampling.

While the results of this research point to specific problems of using nonprobability opt-in panels to study political engagement, we find no evidence that more sophisticated online survey data collection, relying on more traditional probability sampling, would lead to similar problems. We assume that one of the problems with the opt-in online panel is that it clearly overestimates the proportion of those who are politically engaged. This is likely to be the result of non-observation error, which has the potential to be more severe with opt-in online panels using nonprobability sampling (Baker et al. 2010, 15). Response bias is one source of error that is likely to be exasperated by the use of opt-in panels that already reflect the demographic bias of Internet users, such as high educational attainment (Dever et al. 2008). While financial rewards might provide an initial incentive to join an online panel, interest in the survey topic is likely to be a key factor that determines what surveys a panel respondent chooses to complete. This is especially problematic when the response is correlated with the survey variables of interest (see Groves et al. 2006), such as political engagement. While YouGov covers a broad range of topics in market research, the company frequently asks questions about politics which is embodied in the name itself. In contrast, the
ANES study was described to participants using a general name that sounded less political than “American National Election Studies” and is kept confidential so future study participants will not associate the study with the ANES. Selection bias may occur as YouGov participants opt into the panel to give voice on salient political issues or it may be equally likely that bias occurs through attrition when panellists decide to opt out of surveys that are of little interest.

While we have only focused on the question of political engagement, we suspect that this could be a factor with other questions of theoretical importance. For example, there is a long-standing debate about the causes and consequences of political cynicism. Respondents who are cynical about politics may be less inclined to complete an online survey. If this is the case, then online surveys that rely on nonprobability samples may lead researchers to draw different inferences about cynicism than if they were to rely on more conventional probability samples. While we do not examine potential problems of studying political cynicism with opt-in online panels, it is another possible research question of theoretical interest that requires further investigation. Of course it may well be the case that different variables will produce different results. Until we know more about these issues, election studies should continue to experiment with mixed mode surveys.

Response bias is a potential problem with all types of surveys, including FTF surveys. However, it is not likely to be nearly as problematic with probability samples because potential respondents do not opt in and are not able to selectively participate in a range of survey topics. Moreover, response bias can be reduced though the use of intangible rewards that can be offered to potential respondents such as the value of participating in an important research project (Dillman 1978). Sponsorship by a university or government gives the researcher further legitimacy, a strategy actively used by the ANES team when recruiting
online panellists (ANES 2014). Commercial enterprises do not offer these rewards in exchange for social interaction.

In sum, while online panels have many advantages, they may not be suited for addressing certain types of questions. The evidence from this analysis suggests that at least in the British context, data gathered from opt-in online panels can lead to different inferences and thus may not be appropriate to examining questions about political engagement. On the other hand, more sophisticated and more costly online surveys that rely on probability sampling appear to be a reasonable addition, and a possible alternative, to the even more costly FTF surveys.
Appendix 1: Information on the 2010 British Election Study and the 2012 American National Election Study

The 2010 British Election Study was funded by the British Economic and Social Research Council (ESRC). Data collection for the face-to-face interviewing was conducted by the University of Essex together with the British Market Research Bureau (BMRM) and the data collection for the Internet interviewing was performed by YouGov (for more information, see Howat, Norden, Pickering 2011).

The ANES 2012 Time Series Study, which we used to measure voter turnout and political engagement in the United States, is based upon work supported by (i) the National Science Foundation under Grants SES-0937715 and SES-0937727, (ii) the University of Michigan, (iii) and Stanford University. Data collection for the face-to-face interviewing was conducted by Abt SRBI and the data collection for the Internet interviewing was performed by GfK (formerly Knowledge Networks).

1. Population, sample, and fieldwork

The eligible population for the 2010 British Election Study face-to-face interview were all those resident in private households in Great Britain (ie. England, Scotland, and Wales), south of the Caledonian Canal, aged 18 years or older. The Primary Sampling Unit was the parliamentary constituency stratified by marginality. In total 200 constituencies were selected of which 149 were in England, 29 in Scotland and 22 in Wales. Within each constituency, two wards were selected with a probability proportionate to size. Within each ward, the Residential Postal Address File (PAF) was used to provide a sample frame of addresses. Addresses were selected from the complete list using a fixed sampling interval and random start. Within each selected dwelling unit, one person, aged 18 and over, was selected using a
Running Header
Explaining Political Engagement

pre-printed Krish grid. Fieldwork for the pre-election wave was carried out between the 23rd of January and the 18th of April, 2010 and for the post-election wave between the 7th of May and the 5th of September, 2010, in home by interviewers from TNS-BMRB (for more information, see Howat, Norden, Pickering 2011).

The internet study was conducted using the rolling campaign panel survey (RCPS) design, consisting of pre-campaign survey, campaign survey, and post-campaign survey. The campaign survey was carried out online by YouGov between the 8th of April and the 5th of May, 2010. The post-election internet interviews were conducted immediately after the general election (Whiteley et al. 2013).

The ANES 2012 Time Series was a dual-mode survey (face-to-face and internet) with two independent samples. The target population for the two samples was U.S. citizens age 18 or older, with over-sampling of black and Hispanic respondents. For the face-to-face mode, address-based sampling with in-person recruitment and interviews was utilized. Fieldwork for the face-to-face pre-election wave was carried out between the 8th of September and the 5th of November, 2012 and for the post-election wave between the 7th of November, 2012, and the 13th of January, 2013 (for more information, see ANES 2014). The 2012 ANES internet respondents were members of the GfK/Knowledge Networks KnowledgePanel, which is a large online panel of survey respondents who are invited to complete surveys several times each month on a variety of topics. Panelists are recruited using two probability sampling methods: address-based sampling and random-digit dialling. A sample of KnowledgePanelists selected from the KnowledgePanel received invitations to participate in the 2012 ANES Time Series Survey. This sample was limited to U.S. citizens who would be at least 18 years old by Election Day, November 6, 2012, and was limited to one person per household (for more information about the construction of the KnowledgePanel, see ANES 2014). Fieldwork for the face-to-face pre-election wave was carried out between the 11th of
Explaining Political Engagement

October and the 6th of November, 2012 and for the post-election wave between the 29th of November, 2012, and the 24th of January, 2013 (for more information, see ANES 2014).

2. Response rates

The BES completed 1,935 FTF interviews in the pre-election wave, resulting in a 56% response rate. In the post-election wave, 1,498 respondents completed interviews, resulting in a 77 percent retention rate. A top-up of 1,577 new respondents were also interviewed FTF after the election with a 49 percent response rate.

The sample size of the BES internet panel was 16,816 for pre-campaign interview; 14,973 for campaign interview; and 13,356 for post-election interview. The pre-campaign-campaign panel retention rate was 89%, the campaign-post-election panel retention rate was 91%, and the pre-campaign-post-election panel retention rate was 79%. Response rates for the internet survey are not provided.

The ANES completed 2,056 face-to-face interviews with a response rate of 38 percent. The response rate for the internet sample is a function of the recruitment of panel members, the retention of panellists from the time of recruitment to the point at which they were invited to take the ANES survey, and the response to those survey invitations. The response rate overall is about 2 percent (for more information, see ANES 2014). The panel retention rate for the ANES face-to-face component was 94% and 93% for the online survey (for more information, see ANES 2014).

3. Question Wording

Turnout
BES: ‘Talking to people about the General Election on May 6th, we have found that a lot of people didn’t manage to vote. How about you – did you manage to vote in the General Election?’

Categories: 1 – ‘Yes, voted’;

0 – ‘No, did not vote’.

ANES: ‘In talking to people about elections, we often find that a lot of people were not able to vote because they weren’t registered, they were sick, or they just didn’t have time. Which of the following statements best describes you: One, I did not vote (in the election this November); Two, I thought about voting this time, but didn’t; Three, I usually vote, but didn't this time; or Four, I am sure I voted?’

Categories: 1 – ‘I am sure I voted’;

0 – ‘I did not vote (in the election this November)’;

0 – ‘I thought about voting this time, but didn't’;

0 – ‘I usually vote, but didn't this time’.

Campaign interest

BES: ‘How interested were you in the general election that was held on May 6th this year?’

Categories: 1 – ‘Not at all interested’;

2 – ‘Not very interested’;

3 – ‘Somewhat interested’

4 – ‘Very interested’

ANES: ‘Some people don't pay much attention to political campaigns. How about you? Would you say that you have been [VERY MUCH interested, SOMEWHAT
interested or NOT MUCH interested/ NOT MUCH interested, SOMEWHAT interested or VERY MUCH interested] in the political campaigns so far this year?

Categories: 1 – ‘Not much interested’;
2 – ‘Somewhat interested’;
3 – ‘Very much interested’

Civic duty

BES: ‘Please say how far you agree or disagree with the following statement. I would be seriously neglecting my duty as a citizen if I didn’t vote.’

Categories: 1 – ‘Strongly disagree’;
2 – ‘Disagree’;
3 – ‘Neither agree nor disagree’;
4 – ‘Agree’;
5 – ‘Strongly agree’.

ANES: ‘Different people feel differently about voting. For some, voting is a choice - they feel free to vote or not to vote, depending on how they feel about the candidates and parties. For others voting is a duty - they feel they should vote in every election no matter how they feel about the candidates and parties. For you personally, is voting mainly a choice, mainly a duty, or neither a choice nor a duty?’

Categories: 1 – ‘Mainly a duty’;
2 – ‘Mainly a choice’;
3 – ‘Neither a duty nor a choice’.

Party identification
Running Header
Explaining Political Engagement

BES: ‘Generally speaking, do you think of yourself as Labour, Conservative, Liberal Democrat or what?’

Categories (dummies):

- Party ID: Conservative – ‘Conservative’ (reference category);
- Party ID: Labour – ‘Labour’;
- Party ID: Liberal Democrat – ‘Liberal Democrat’;

ANES: ‘Generally speaking, do you usually think of yourself as a [DEMOCRAT, a REPUBLICAN / a REPUBLICAN, a DEMOCRAT], an INDEPENDENT, or what?’

Categories:
- Party ID: Republican – ‘Republican’ (reference category);
- Party ID: Democrat – ‘Democrat’;

Mobilization: party contact

BES: ‘Have any of the political parties contacted you during the past month?’

Categories:
- 1 – ‘Yes’;
- 0 – ‘No’.

ANES: ‘During the campaign, did a party or candidate contact you in person or by any other means?’

Categories:
- 1 – ‘Yes’;
- 0 – ‘No’.

Follow political events (debates)
Explaining Political Engagement

BES: ‘Did you see or hear all or part of any of the three nationally televised debates among the party leaders that were held during the election campaign?’

Categories: 1 – ‘Yes’;
 0 – ‘No’.

ANES: ‘Did you watch any programs about the campaign on television?’

Categories: 1 – ‘Yes’;
 0 – ‘No’.

Efficacy: influence on politics

BES: ‘On a scale from 0 to 10, where 10 means a great deal of influence and 0 means no influence, how much influence do you have on politics and public affairs?’

Categories: Continuous scale where ‘0’ marks ‘No influence’ and ‘10’ marks ‘Great deal of influence’.

ANES: ‘How much can people like you affect what the government does?’

Categories: 1 ‘Not at all’;
 2 – ‘A little’;
 3 – ‘A moderate amount’;
 4 – ‘A lot’;
 5 – ‘A great deal’

Age

BES: ‘What is your year of birth?’

(age in years).

ANES: ‘R age on interview date (age group)’

(age in years).

Female
Explaining Political Engagement

BES : ‘What is your gender?’

Categories: 1 – ‘Female’;

0 – ‘Male’ (reference category).

ANES : ‘Are you male or female?’

Categories: 1 – ‘Female’;

0 – ‘Male’ (reference category).

Higher education

BES : ‘What is the highest qualification you have?’

Categories: 1 – ‘Postgraduate degree’ / ‘University or CNAA first degree, e.g. BA, BSc’ / ‘University or CNAA diploma’ / ‘Teaching qualification’ / ‘Nursing qualification’ / ‘Scottish higher education qualification’;

0 – ‘Gsce d-g cse grade 2-5 o level d-e’ / ‘City & guilds level 2nvq/svq2’ / ‘Gsce a*-c cse grade 1 o level grade a-c’ / ‘Scottish standard grades ordinary bands’ / ‘City & guilds level 2nvq/svq2’ / ‘Recognised trade apprenticeship’ / ‘A level’ / ‘On@/ond city & guilds level 3 nvq/svq3’ / ‘Clerical or commercial qualification’ / ‘Youth training certificate’ / ‘Hnc/hnd city & guilds level 4 nvq/svq 4/5’ / ‘Other technical professional or higher qualification’.

ANES : ‘SUMMARY- R level of highest education (group)’

Categories: 1 – ‘Bachelor’s degree’ / ‘Graduate degree’;

0 – ‘Less than high school credential’ / ‘High school credential’ / ‘Some post-high-school, no bachelor’s degree’.

Ethnicity / race

BES Q: ‘To which of these groups do you consider you belong?’

Categories: 1 – ‘White’;
0 – ‘Mixed background’ / ‘Asian or Asian British’ / ‘Black or Black British’ / ‘Other ethnic background’ (reference category).

ANES: ‘SUMMARY- R race and ethnicity group’

Categories:

1- White – ‘White non-hispanic’;

1- Black – ‘Black non-hispanic’;

0- Other – ‘Hispanic’ / ‘Other non-hispanic’ (reference category)
References

Butler, David, and Donald E. Stokes. 1971. Political change in Britain. St. Martin’s Press.

Explaining Political Engagement

de Leeuw Eith D. 2005. “To Mix or Not to Mix Data Collection Modes in Surveys”

Inferences about Political Attitudes and Behavior: Comparing the 2000 and 2004
ANES to Internet Surveys with Nonprobability Samples.” Political Analysis 15(3):
286 -323.

Cambridge, MA: Harvard University Press.

New Data and a Rethinking of Traditional Theories.” Social Science Quarterly 91(2):
301–323.

Rivers, Douglas. 2006. ‘Sample Matching: Representative Sampling from Internet Panels’,
http://www.polimetrix.com/documents/Polimetrix_Whitepaper_Sample Matching.pdf

Mode Matter For Modeling Political Choice? Evidence From the 2005 British

Stephenson, Laura B. and Jean Crete. 2010. “Studying Political Behavior: A Comparison of
Internet and Telephone Surveys” International Journal of Public Opinion Research
23(1): 24-55.

Figure 1a. Estimated Probabilities of Political Engagement by Age (BES 2010)

Note: Broken line represents 95% confidence intervals.
Figure 1b: Estimated Probabilities of Political Engagement by Age (ANES 2012)

Note: Broken line represents 95% confidence intervals.
Table 1: Distribution of weights by age group

<table>
<thead>
<tr>
<th>Age</th>
<th>British Election Study (BES)</th>
<th>Online Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FTF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>% above '1'</td>
</tr>
<tr>
<td>18-24</td>
<td>1.92</td>
<td>71</td>
</tr>
<tr>
<td>25-34</td>
<td>1.23</td>
<td>56</td>
</tr>
<tr>
<td>35-44</td>
<td>1.05</td>
<td>50</td>
</tr>
<tr>
<td>45-54</td>
<td>0.97</td>
<td>40</td>
</tr>
<tr>
<td>55-64</td>
<td>0.87</td>
<td>30</td>
</tr>
<tr>
<td>65+</td>
<td>0.76</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>American National Election Study (ANES)</th>
<th>Online Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FTF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>% above '1'</td>
</tr>
<tr>
<td>17-24</td>
<td>0.98</td>
<td>17</td>
</tr>
<tr>
<td>25-34</td>
<td>0.81</td>
<td>13</td>
</tr>
<tr>
<td>35-44</td>
<td>0.99</td>
<td>15</td>
</tr>
<tr>
<td>45-54</td>
<td>0.97</td>
<td>11</td>
</tr>
<tr>
<td>55-64</td>
<td>1.07</td>
<td>10</td>
</tr>
<tr>
<td>65+</td>
<td>1.25</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2a: Political Engagement in the British and in the US General Elections (%)

British Election Study (BES)

<table>
<thead>
<tr>
<th>Age</th>
<th>FTF (Very interested in the campaign)</th>
<th>Online panel</th>
<th>z</th>
<th>FTF (Civic duty)</th>
<th>Online panel</th>
<th>z</th>
<th>FTF (Attention to political events)</th>
<th>Online panel</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>66.7 (189)</td>
<td>85.8 (395)</td>
<td>5.38**</td>
<td>38.2 (186)</td>
<td>74.8 (424)</td>
<td>8.65**</td>
<td>59.1 (186)</td>
<td>69.5 (420)</td>
<td>2.49*</td>
</tr>
<tr>
<td>25-34</td>
<td>76.6 (410)</td>
<td>89.0 (1707)</td>
<td>6.66*</td>
<td>54.1 (410)</td>
<td>80.7 (1836)</td>
<td>11.34**</td>
<td>69.1 (408)</td>
<td>70.5 (1843)</td>
<td>0.57</td>
</tr>
<tr>
<td>35-44</td>
<td>81.5 (552)</td>
<td>87.4 (2127)</td>
<td>3.57**</td>
<td>61.4 (552)</td>
<td>82.2 (2278)</td>
<td>10.65**</td>
<td>70.3 (552)</td>
<td>66.9 (2284)</td>
<td>-1.51</td>
</tr>
<tr>
<td>45-54</td>
<td>77.7 (528)</td>
<td>86.9 (2478)</td>
<td>5.43**</td>
<td>68.9 (528)</td>
<td>85.5 (2648)</td>
<td>9.20**</td>
<td>65.3 (528)</td>
<td>66.0 (2656)</td>
<td>0.31</td>
</tr>
<tr>
<td>55-64</td>
<td>84.2 (530)</td>
<td>89.0 (3409)</td>
<td>3.26**</td>
<td>76.0 (529)</td>
<td>87.3 (3609)</td>
<td>6.93**</td>
<td>68.6 (529)</td>
<td>66.2 (3615)</td>
<td>-1.12</td>
</tr>
<tr>
<td>65+</td>
<td>77.4 (847)</td>
<td>92.6 (2264)</td>
<td>11.76**</td>
<td>87.2 (844)</td>
<td>92.3 (2414)</td>
<td>4.49**</td>
<td>68.4 (846)</td>
<td>69.1 (2411)</td>
<td>0.38</td>
</tr>
<tr>
<td>Total</td>
<td>78.6 (3072)</td>
<td>88.5 (14565)</td>
<td>14.76**</td>
<td>70.0 (3065)</td>
<td>85.6 (13220)</td>
<td>20.58**</td>
<td>67.8 (3065)</td>
<td>67.5 (13241)</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

American National Election Study (ANES)

<table>
<thead>
<tr>
<th>Age</th>
<th>FTF (Very interested in the campaign)</th>
<th>Online panel</th>
<th>z</th>
<th>FTF (Civic duty)</th>
<th>Online panel</th>
<th>z</th>
<th>FTF (Attention to political events)</th>
<th>Online panel</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>72.4 (261)</td>
<td>74.4 (250)</td>
<td>0.51</td>
<td>27.5 (258)</td>
<td>32.4 (247)</td>
<td>1.19</td>
<td>68.9 (244)</td>
<td>68.8 (224)</td>
<td>-0.02</td>
</tr>
<tr>
<td>25-34</td>
<td>75.9 (394)</td>
<td>80.4 (486)</td>
<td>1.63*</td>
<td>36.0 (392)</td>
<td>40.8 (483)</td>
<td>1.46</td>
<td>79.9 (363)</td>
<td>65.8 (450)</td>
<td>-4.46**</td>
</tr>
<tr>
<td>35-44</td>
<td>82.0 (367)</td>
<td>84.6 (519)</td>
<td>1.02</td>
<td>42.1 (366)</td>
<td>49.3 (517)</td>
<td>2.13*</td>
<td>78.3 (350)</td>
<td>72.7 (480)</td>
<td>-1.83*</td>
</tr>
<tr>
<td>45-54</td>
<td>84.2 (348)</td>
<td>86.6 (759)</td>
<td>1.05</td>
<td>44.9 (345)</td>
<td>53.0 (758)</td>
<td>2.50**</td>
<td>82.2 (331)</td>
<td>76.5 (699)</td>
<td>-2.05*</td>
</tr>
<tr>
<td>55-64</td>
<td>85.5 (325)</td>
<td>90.1 (930)</td>
<td>2.26*</td>
<td>53.9 (323)</td>
<td>53.6 (931)</td>
<td>-0.08</td>
<td>85.9 (305)</td>
<td>79.9 (871)</td>
<td>-2.32*</td>
</tr>
<tr>
<td>65+</td>
<td>87.9 (298)</td>
<td>91.2 (912)</td>
<td>1.68*</td>
<td>55.1 (294)</td>
<td>58.7 (913)</td>
<td>1.09</td>
<td>88.1 (278)</td>
<td>84.5 (857)</td>
<td>-1.50</td>
</tr>
<tr>
<td>Total</td>
<td>81.4 (2053)</td>
<td>86.7 (3856)</td>
<td>5.41**</td>
<td>43.5 (2036)</td>
<td>51.1 (3849)</td>
<td>5.61**</td>
<td>80.7 (1927)</td>
<td>76.9 (3581)</td>
<td>-3.30**</td>
</tr>
</tbody>
</table>

**p<0.01; *p<0.05
Age group n in parentheses.
Table 2b: Reported Turnout in the British and in the US General Elections (%)

<table>
<thead>
<tr>
<th>Age</th>
<th>British Election Study (BES)</th>
<th>American National Election Study (ANES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FTF</td>
<td>Online panel</td>
</tr>
<tr>
<td>18-24</td>
<td>61</td>
<td>(188)</td>
</tr>
<tr>
<td>25-34</td>
<td>67</td>
<td>(410)</td>
</tr>
<tr>
<td>35-44</td>
<td>76</td>
<td>(553)</td>
</tr>
<tr>
<td>45-54</td>
<td>80</td>
<td>(526)</td>
</tr>
<tr>
<td>55-64</td>
<td>82</td>
<td>(530)</td>
</tr>
<tr>
<td>65+</td>
<td>88</td>
<td>(847)</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>(3054)</td>
</tr>
</tbody>
</table>

Difference from actual turnout 11 25 11 14

Sources: British Election Study, 2010 (with weights) and American National Election Study, 2012 (with weights); Actual voter turnout in the UK reported by IDEA is 66% and in the US by the United States Election Project at the University of Florida is 58%.

**p<0.01; *p<0.05

Age group n in parentheses.
Table 3a: Explaining turnout in Britain (All respondents)
(Logistic regression estimates)

<table>
<thead>
<tr>
<th></th>
<th>FTF Coef.</th>
<th>S.E.</th>
<th>Change</th>
<th>Online Coef.</th>
<th>S.E.</th>
<th>Change</th>
<th>Chi²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in 10s)</td>
<td>0.19 **</td>
<td>(0.05)</td>
<td>0.12</td>
<td>0.12 **</td>
<td>(0.04)</td>
<td>0.02</td>
<td>1.39</td>
</tr>
<tr>
<td>Party ID: Labour</td>
<td>-0.11 (0.20)</td>
<td>-0.01</td>
<td>-0.36 *</td>
<td>-0.36 (0.16)</td>
<td>-0.01</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Party ID: Liberal Democrat</td>
<td>0.09 (0.25)</td>
<td>0.01</td>
<td>-0.09 (0.20)</td>
<td>-0.00</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Party ID: other / none</td>
<td>-0.15 (0.26)</td>
<td>-0.01</td>
<td>-0.45 **</td>
<td>-0.14 (0.14)</td>
<td>-0.01</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Campaign interest</td>
<td>0.78 ** (0.10)</td>
<td>0.31</td>
<td>0.33 **</td>
<td>(0.07)</td>
<td>0.04</td>
<td>13.20 **</td>
<td></td>
</tr>
<tr>
<td>Civic Duty</td>
<td>0.69 **</td>
<td>(0.07)</td>
<td>0.38</td>
<td>1.06 **</td>
<td>(0.04)</td>
<td>0.52</td>
<td>19.01 **</td>
</tr>
<tr>
<td>Mobilization: party contact</td>
<td>0.49 ** (0.17)</td>
<td>0.04</td>
<td>0.43 **</td>
<td>(0.10)</td>
<td>0.01</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Follow political events (TV)</td>
<td>0.14 (0.18)</td>
<td>0.01</td>
<td>0.46 **</td>
<td>(0.12)</td>
<td>0.01</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>Efficacy: influence on politics</td>
<td>0.06 (0.04)</td>
<td>0.04</td>
<td>0.04</td>
<td>(0.03)</td>
<td>0.01</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.12 (0.17)</td>
<td>0.01</td>
<td>-0.38 **</td>
<td>(0.10)</td>
<td>-0.01</td>
<td>6.51 **</td>
<td></td>
</tr>
<tr>
<td>Higher education</td>
<td>-0.11 (0.20)</td>
<td>-0.01</td>
<td>0.08</td>
<td>(0.12)</td>
<td>0.00</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>White (ethnicity)</td>
<td>0.85 ** (0.28)</td>
<td>0.09</td>
<td>0.30</td>
<td>(0.26)</td>
<td>0.01</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.23 (0.54)</td>
<td>3.49</td>
<td>(0.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald chi²</td>
<td>246.57</td>
<td></td>
<td>1131.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob > chi²</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.25</td>
<td></td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2321</td>
<td></td>
<td>11893</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**p<0.01; *p<0.05
Standard errors in parentheses
Source: British Election Study, 2010 (with weights)
Change represents the maximum change in probability of the independent variable holding all other variables constant and their means or modes.
Table 3b: Explaining turnout in the US (All respondents)
(Logistic regression estimates)

<table>
<thead>
<tr>
<th></th>
<th>FTF</th>
<th></th>
<th>Online</th>
<th></th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>S.E.</td>
<td>Change</td>
<td>Coef.</td>
<td>S.E.</td>
</tr>
<tr>
<td>Age (in 10s)</td>
<td>0.11</td>
<td>* (0.05)</td>
<td>0.15</td>
<td>0.12</td>
<td>** (0.04)</td>
</tr>
<tr>
<td>Party ID: Democrat</td>
<td>-0.16</td>
<td>(0.23)</td>
<td>-0.03</td>
<td>0.15</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Party ID: other / none</td>
<td>-0.50</td>
<td>* (0.21)</td>
<td>-0.11</td>
<td>-0.39</td>
<td>** (0.14)</td>
</tr>
<tr>
<td>Campaign interest</td>
<td>0.48</td>
<td>** (0.11)</td>
<td>0.20</td>
<td>0.37</td>
<td>** (0.09)</td>
</tr>
<tr>
<td>Civic duty</td>
<td>0.32</td>
<td>** (0.08)</td>
<td>0.13</td>
<td>0.34</td>
<td>** (0.06)</td>
</tr>
<tr>
<td>Mobilization: party contact</td>
<td>0.38</td>
<td>* (0.19)</td>
<td>0.08</td>
<td>0.39</td>
<td>** (0.12)</td>
</tr>
<tr>
<td>Follow political events (TV)</td>
<td>0.22</td>
<td>(0.18)</td>
<td>0.05</td>
<td>0.31</td>
<td>* (0.13)</td>
</tr>
<tr>
<td>Efficacy: influence on politics</td>
<td>0.16</td>
<td>* (0.06)</td>
<td>0.13</td>
<td>0.03</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Female</td>
<td>0.05</td>
<td>(0.15)</td>
<td>0.01</td>
<td>0.14</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Higher education</td>
<td>0.39</td>
<td>* (0.18)</td>
<td>0.08</td>
<td>0.60</td>
<td>** (0.12)</td>
</tr>
<tr>
<td>White (ethnicity)</td>
<td>0.42</td>
<td>** (0.18)</td>
<td>0.09</td>
<td>0.35</td>
<td>* (0.15)</td>
</tr>
<tr>
<td>Black (ethnicity)</td>
<td>0.52</td>
<td>* (0.25)</td>
<td>0.10</td>
<td>0.10</td>
<td>(0.23)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.24</td>
<td>** (0.41)</td>
<td></td>
<td>-1.93</td>
<td>** (0.31)</td>
</tr>
<tr>
<td>Wald chi²</td>
<td>108.60</td>
<td></td>
<td></td>
<td>202.73</td>
<td></td>
</tr>
<tr>
<td>Prob > chi²</td>
<td>0.00</td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.13</td>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1782</td>
<td></td>
<td></td>
<td>3503</td>
<td></td>
</tr>
</tbody>
</table>

*p<0.01; *p<0.05

Standard errors in parentheses

Change represents the maximum change in probability of the independent variable holding all other variables constant and their means or modes.
Table 4a: Explaining turnout in Britain (Young respondents, 18-24)
(Logistic regression estimates)

<table>
<thead>
<tr>
<th></th>
<th>FTF Coef.</th>
<th>S.E.</th>
<th>Change</th>
<th>Online Coef.</th>
<th>S.E.</th>
<th>Change</th>
<th>Chi²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party ID: Labour</td>
<td>0.17</td>
<td>(0.40)</td>
<td>0.03</td>
<td>-0.75 *</td>
<td>(0.34)</td>
<td>-0.04</td>
<td>3.03</td>
</tr>
<tr>
<td>Party ID: Liberal Democrat</td>
<td>0.22</td>
<td>(0.42)</td>
<td>0.03</td>
<td>0.19</td>
<td>(0.37)</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Party ID: other / none</td>
<td>0.16</td>
<td>(0.46)</td>
<td>0.03</td>
<td>-0.66 *</td>
<td>(0.30)</td>
<td>-0.04</td>
<td>2.22</td>
</tr>
<tr>
<td>Campaign interest</td>
<td>1.06 **</td>
<td>(0.22)</td>
<td>0.63</td>
<td>0.34 *</td>
<td>(0.14)</td>
<td>0.07</td>
<td>7.74 **</td>
</tr>
<tr>
<td>Civic Duty</td>
<td>0.65 **</td>
<td>(0.14)</td>
<td>0.47</td>
<td>0.88 **</td>
<td>(0.09)</td>
<td>0.46</td>
<td>2.04</td>
</tr>
<tr>
<td>Mobilization: party contact</td>
<td>0.73</td>
<td>* (0.32)</td>
<td>0.12</td>
<td>0.25</td>
<td>(0.20)</td>
<td>0.01</td>
<td>1.60</td>
</tr>
<tr>
<td>Follow political events (TV)</td>
<td>0.48</td>
<td>(0.37)</td>
<td>0.08</td>
<td>0.73 **</td>
<td>(0.21)</td>
<td>0.04</td>
<td>0.36</td>
</tr>
<tr>
<td>Efficacy: influence on politics</td>
<td>0.06</td>
<td>(0.07)</td>
<td>0.09</td>
<td>0.06</td>
<td>(0.05)</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Female</td>
<td>0.11 (0.32)</td>
<td>0.02</td>
<td>-0.47 *</td>
<td>(0.21)</td>
<td>-0.02</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Higher education</td>
<td>-0.37 (0.39)</td>
<td>-0.06</td>
<td>0.32</td>
<td>(0.21)</td>
<td>0.02</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>White (ethnicity)</td>
<td>0.97 *</td>
<td>(0.45)</td>
<td>0.19</td>
<td>0.41</td>
<td>(0.35)</td>
<td>0.02</td>
<td>0.97</td>
</tr>
<tr>
<td>Constant</td>
<td>6.05 (0.97)</td>
<td>0.00</td>
<td>2.77 (0.63)</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wald chi² 77.20 246.44
Prob > chi² 0.00
Pseudo R² 0.27 0.31
N 407 1932

**p<0.01; *p<0.05

Source: British Election Study, 2010 (with weights)
Change represents the maximum change in probability of the independent variable holding all other variables constant and their means or modes.
Table 4b: Explaining turnout in the US (Young respondents, 18-24)
(Logistic regression estimates)

<table>
<thead>
<tr>
<th></th>
<th>FTF Coef.</th>
<th>FTF S.E.</th>
<th>FTF Change</th>
<th>Online Coef.</th>
<th>Online S.E.</th>
<th>Online Change</th>
<th>Difference Chi²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party ID: Democrat</td>
<td>-0.08</td>
<td>(0.44)</td>
<td>-0.02</td>
<td>0.13</td>
<td>(0.30)</td>
<td>0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>Party ID: other / none</td>
<td>-0.79</td>
<td>* (0.40)</td>
<td>-0.19</td>
<td>-0.41</td>
<td>(0.27)</td>
<td>-0.10</td>
<td>0.63</td>
</tr>
<tr>
<td>Campaign interest</td>
<td>0.66</td>
<td>** (0.21)</td>
<td>0.31</td>
<td>0.50</td>
<td>** (0.17)</td>
<td>0.23</td>
<td>0.37</td>
</tr>
<tr>
<td>Civic duty</td>
<td>0.34</td>
<td>* (0.16)</td>
<td>0.16</td>
<td>0.26</td>
<td>* (0.13)</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>Mobilization: party contact</td>
<td>0.66</td>
<td>(0.46)</td>
<td>0.15</td>
<td>0.01</td>
<td>(0.26)</td>
<td>0.00</td>
<td>1.52</td>
</tr>
<tr>
<td>Follow political events (TV)</td>
<td>0.37</td>
<td>(0.31)</td>
<td>0.09</td>
<td>0.36</td>
<td>(0.23)</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>Efficacy: influence on politics</td>
<td>0.22</td>
<td>* (0.10)</td>
<td>0.21</td>
<td>0.03</td>
<td>(0.10)</td>
<td>0.03</td>
<td>1.69</td>
</tr>
<tr>
<td>Female</td>
<td>0.07</td>
<td>(0.28)</td>
<td>0.02</td>
<td>0.19</td>
<td>(0.22)</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>Higher education</td>
<td>0.77</td>
<td>* (0.34)</td>
<td>0.17</td>
<td>0.75</td>
<td>** (0.24)</td>
<td>0.17</td>
<td>0.00</td>
</tr>
<tr>
<td>White (ethnicity)</td>
<td>0.04</td>
<td>(0.30)</td>
<td>0.01</td>
<td>0.17</td>
<td>(0.27)</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Black (ethnicity)</td>
<td>0.46</td>
<td>(0.38)</td>
<td>0.11</td>
<td>-0.02</td>
<td>(0.40)</td>
<td>-0.01</td>
<td>0.75</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.47</td>
<td>** (0.63)</td>
<td>-1.71</td>
<td></td>
<td>** (0.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald chi²</td>
<td>61.20</td>
<td></td>
<td></td>
<td>48.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob > chi²</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.17</td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>566</td>
<td></td>
<td></td>
<td>654</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** p<0.01; * p<0.05
Source: American National Election Study, 2012 (with weights)
Change represents the maximum change in probability of the independent variable holding all other variables constant at their means or modes