
Copyright:
This is the authors’ manuscript of an abstract that has been published in its final definitive form in Proceedings of the Nutrition Society, Volume 74, Issue OCE1, April 2015. Published by Cambridge University Press.

DOI link to article:
http://dx.doi.org/10.1017/S002966511500124X

Date deposited:
18/08/2017
Effects of beetroot juice on daily and 24-hour ambulatory blood pressure monitoring in older overweight and obese subjects By Jajja A¹, Sutayoko A¹, Lara J¹, Clio Oggioni¹, Rennie K², Brandt K³, Qadir O³, Siervo M¹. ¹Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UK; ²School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK; ³School of Agriculture, Food and Rural Development Newcastle University, Newcastle Upon Tyne, UK.

Background: Inorganic nitrate supplementation has been associated with decreased systolic BP. However, studies examining the BP-lowering effects of inorganic nitrate have been short-term and included mostly healthy young subjects. We studied the effects of beetroot juice supplementation on BP in overweight and obese older participants and we evaluated whether changes in BP were sustained after the interruption of the supplementation.

Methods and Results: Twenty-four participants were randomised to either beetroot or blackcurrant juice supplementation for 3 weeks. After the third week, supplementation was stopped in both groups and participants returned for their final visit after 7 days (week 4, recovery phase). Changes in systolic and diastolic BP were measured during the supplementation and recovery phases. BP measurements were conducted using three different methods: 1) resting clinic BP in sitting position; 2) 24-hr ambulatory BP monitoring (ABMP) and 3) home monitoring of daily resting BP. The first two methods were applied at baseline, week 3 and week 4 whereas daily measurements were performed in duplicate by each participant in the morning and at night (method 3). A linear mixed model adjusted for baseline values was used to assess differences in BP responses between the two interventions. Twenty-one subjects completed the study (Beetroot/Blackcurrant=10/11; Male/Female=12/9; Age=62.0±1.4 years; BMI=30.1±1.2 kg/m²). The two groups were matched for baseline anthropometric and BP measurements. Beetroot juice supplementation was not associated with significant changes in resting clinic BP and 24-hr ABPM (Figure 1) in both phases (supplementation, recovery). A significant effect of beetroot juice on daily systolic BP was observed after 3 weeks but the effect was not maintained after the interruption of the supplementation (Figure 1).

Figure 1: Changes in systolic 24-hr ABPM and daily systolic and diastolic BP in subjects randomised to beetroot and blackcurrant juice.

Conclusions: The effect of beetroot juice supplementation in older overweight subjects appeared to be influenced by the method used to measure BP. The daily monitoring of BP could represent a sensitive method to evaluate the efficacy of nutritional interventions on BP.