
Copyright:

Copyright 2015 AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing

DOI link to article:

http://dx.doi.org/10.1063/1.4938247

Date deposited:

04/01/2016
The pure rotational spectra of the open-shell diatomic molecules PbI and SnI
Corey J. Evans, Lisa-Maria E. Needham, Nicholas R. Walker, Hansjochen Köckert, Daniel P. Zaleski, and Susanna L. Stephens

Citation: The Journal of Chemical Physics 143, 244309 (2015); doi: 10.1063/1.4938247
View online: http://dx.doi.org/10.1063/1.4938247
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/143/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Molecular geometry of OC···AgI determined by broadband rotational spectroscopy and ab initio calculations

Rotational spectrum of jet-cooled HfO 2 and HfO

Intermolecular potential-energy surface for the Ar–SH (2 Π i) complex studied by Fourier-transform microwave spectroscopy

The isocyanopolyynes HC 4 NC and HC 6 NC : Microwave spectra and ab initio calculations

Investigation of the pure rotational spectrum of magnesium monobromide by Fourier transform microwave spectroscopy
The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

Corey J. Evans,1,a) Lisa-Maria E. Needham,1 Nicholas R. Walker,2,a) Hansjochen Kockert,2
Daniel P. Zaleski,2,b) and Susanna L. Stephens2
1Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
2School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

(Received 2 October 2015; accepted 2 December 2015; published online 28 December 2015)

Pure rotational spectra of the ground electronic states of lead monooxidide and tin monooxidide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7–18.5 GHz region for the first time. Each of PbI and SnI has a $^3\Pi_{1/2}$ ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for ω_1, ω_2, ω_3, and ω_4, along with A-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938247]

INTRODUCTION

In recent years, there have been a number of spectroscopic and theoretical studies on heavy relativistic open-shell diatomic molecules such as PbF due to their possibility of possessing a ground state that is particularly sensitive to an electron electric dipole moment (eEDM), d_e, thus making these the molecules of interest in order to study charge parity violation theory.1 The notion of the eEDM was first presented in a wave-equation by Dirac in 1928 and then later Purcell and Ramsey discussed the possibility of the eEDM being evidence for the parity violation theory.2,3 Work by Hudson et al. in 2011 used YbF to determine a value of d_e which set the new upper limit to $|d_e| < 10.5 \times 10^{-28}$ e cm with a 90% confidence and indicates that the electron is spherical and not aspheric as predicted.4,5

The molecule PbF was also of interest due to its small g-factor; a constant which describes the magnetic moment of the molecule. In a molecule with orbital angular momentum this g-factor depends on the type of coupling between different components of angular momenta. To date only PbF and PbCl have been studied using high-resolution spectroscopy allowing information regarding their hyperfine structure to be obtained and examined to find suitable energy levels for the study of charge parity violation.6–8 With the aim of expanding our knowledge of metal halides that have potential to be used for the study of the eEDM, we have carried out a microwave spectroscopy investigation of PbI and SnI.

The electronic structure of the system PbI has been the subject of many spectroscopic studies since the 1940s. More recent studies include the work by Ziebarth et al. which reported vibrational constants (ω_e and $\omega_e\lambda_e$) as well as spin-orbit coupling within the $^2\Sigma$ ground state of the lead monohalides (PbF, PbCl, PbBr, and PbI).9 In this study, PbI was generated by reacting PbI2 with H atoms via a discharge source. The emission signal was then recorded using a Fourier transform infrared spectrometer. Rodriguez et al. reported an absorption and emission UV-spectroscopic study on the A, B, D, and E electronic states of PbI by photodissociation of PbI2.10 They give values for the vibrational constants (ω_e and $\omega_e\lambda_e$) of the ground state and the A electronic state. A number of computational chemistry studies have also been carried out on PbI. Benavides-Garcia and Balasubramanian carried out calculations on the equilibrium structures and the associated potential energy surface of a number of electronic states of PbI,11 while Shimizu and Frenking calculated structures of different lead-halide clusters including PbI.12 Li et al. and Stoll et al. performed a theoretical study on the structures and dissociation energies of all the lead monohalides.13,14 In terms of microwave spectroscopy, no studies on PbI have been reported to date and only investigations on PbF and PbCl have been published.6,8 For the PbF study, rotational, centrifugal distortion, Δ-splitting, and hyperfine constants were obtained for 204PbF, 206PbF, 207PbF, and 208PbF in the ground vibrational state.6 For the PbCl study, only spectroscopic parameters of the 206Pb$^{35/37}$Cl and 208Pb$^{35/37}$Cl isotopologues in their ground vibrational states were obtained.8

For SnI, there have been a number of studies since the first recorded electronic spectrum in 1934 by Howell and Rochester.15 Oldershaw and Robinson reported the B $^2\Sigma^+$ state
within the recorded absorption spectra of SnI which was generated by flash photolysis of SnI\textsubscript{2}.16 Murty\textit{ et al.} observed the A $^3\Sigma^+$ state of SnI in emission band spectra.17,18 Iaconca\textit{ et al.} and Oldershaw and Robinson reported studies on the C, D, E, F, G, and H electronic states from the emission spectra of SnI with Iaconca\textit{ et al.} giving an estimate of the X $^3\Pi_{1/2}$ component of ~ 2684 cm$^{-1}$.19,20 Li\textit{ et al.} also investigated SnI in their computational study on group IV halides.13 Microwave spectra have not been reported for SnI, while SnCl has been studied using both cavity Fourier Transform microwave (FTMW) and chirped pulsed FTMW spectroscopy, with SnCl generated via the laser ablation of tin.206 Transform microwave (FTMW) and chirped pulsed FTMW spectroscopy, with SnCl generated via the laser ablation of tin and Oldershaw and Robinson reported studies on the halides.13 In this investigation, the chirped pulsed Fourier Transform microwave (CP-FTMW) spectra of the open shell molecules PbI and SnI will be analysed in their ground electronic state (X $^3\Pi_{1/2}$) for the first time and rotational, centrifugal distortion, and hyperfine constants will be evaluated and interpreted.

EXPERIMENTAL

Spectra were collected using a CP-FTMW spectrometer which has been described in recent literature.22,23 In order to generate either PbI or SnI, a gas mixture of $\sim 1\%$ CF\textsubscript{3}I in argon at 6 bars pressure is prepared. This sample is introduced into a vacuum chamber using a pulsed valve and undergoes supersonic expansion. The repetition rate of valve pulses is approximately 1.05 Hz. The expanding gas sample passes over the surface of a metal rod from which material is ablated using the focussed pulse (10 ns, 20 mJ/pulse) from a Nd:YAG laser operating on the 2nd harmonic (532 nm). The rod target is composed of the pure (>99.9\%) metal, either Pb or Sn as appropriate.

The target rod is continually rotated to ensure a fresh surface of the metal is exposed to each laser pulse, giving improved shot-to-shot reproducibility. A more detailed description of the nozzle and ablation source can found elsewhere.22 Monohalides of tin and lead as well as many other products from precursor fragmentation and reaction are generated during the ablation process. The expanding gas (rotational temperature ~ 2 K) pulse propagates perpendicular to a chirped microwave pulse introduced from a broadband horn antenna which is timed to coincide with the passage of the gas pulse. Where rotational transitions are resonant with the introduced microwave pulse between 7 and 18.5 GHz, molecules within the expanding jet become rotationally polarised. The subsequent free induction decay (FID) of the molecular emission, 20 μs in duration, is detected by a second horn antenna positioned directly opposite the first.

Multiple FIDs are digitized and recorded on a fast digital oscilloscope (Tektronix, DPO71254) before these time-domain data are averaged and Fourier transformed to obtain the frequency domain spectrum. In order to maximise the duty cycle of the instrument, and given that each gas pulse endures for $\sim 200 \mu$s, the cycle of (i) chirped microwave pulse excitation and (ii) detection and recording of the FID is repeated eight times per gas valve pulse. The frequency domain spectrum was obtained by averaging 600k FIDs for PbI and 1M FIDs for SnI. The baseline resolution was improved by applying a Kaiser-Bessel function during the Fourier transformation with the linewidth (FWHM) after the application of the window function was estimated to be 120 kHz. The current experiment has no Zeeman coils to eliminate the effects from the earth’s magnetic field; the resolution was such that no Zeeman splittings were observed. The dephasing time is about 10 μs (at $v = 12$ GHz). In both the PbI and SnI spectra, the dominant features belong to transitions of CF\textsubscript{3}I which are well known since the first report of its microwave spectrum in 1952 by Sheridan and Gordy.24 To aid in the initial assignment of each spectrum, the transitions of all peaks associated with CF\textsubscript{3}I, its isotopologues and excited vibrational states were removed by recording a spectrum of CF\textsubcript{3}I on its own and subtracting it from the recorded spectra of PbI and SnI.

The spectral analysis program PGOPHER was used to display, simulate, and to fit the recorded spectra.25 The final fits were carried out using the Pickett software, SPFIT. This included carrying out fits of equilibrium parameters in addition to an isotopically invariant analysis of both PbI and SnI.26,27

RESULTS AND DISCUSSION

Spectroscopic analysis of PbI and SnI

Lead has four naturally abundant isotopes, 204Pb (1.4\% natural abundance), 206Pb (24.1\%), 207Pb (22.1\%), and 208Pb (52.4\%), while iodine has only one isotope (127I) so it is assumed that spectral features from 206Pb, 207Pb, and 208Pb will be observed along with lines corresponding to lead monofluoride (PbF). As the frequencies of the PbF transitions are known, these can be easily separated from the spectral features belonging to the different isotopologues of PbI.4 Although the aim of this work is to investigate PbI and SnI, a number of other Pb and Sn containing species will also be present. It will be shown that rotational transitions are present for many different vibrational states and isotopologues of PbI and SnI such that assignment of the observed spectra is a challenging task. One advantage of broadband rotational spectroscopy is that patterns can be readily distinguished in broadband spectra because (i) many transitions can be measured and compared during a single experiment and (ii) the displayed intensities of transitions depend almost entirely on fundamental physical properties of the expanding gas and the detected molecules rather than any frequency-dependent instrumental parameter. This capability will be of high value during the present work.

The ground electronic state of PbI has been shown to be $^3\Pi_{1/2}$.9 The Hamiltonian used to fit the data is given by

$$H = H_{SO} + H_R + H_{LD} + H_{MHF} + H_{Q(1)}$$

where H_{SO} is the electronic spin-orbit interaction, H_R is the rotational Hamiltonian including centrifugal distortion, H_{LD} is the Λ-doubling parameters, H_{MHF} is the magnetic hyperfine interaction terms, and $H_{Q(1)}$ is the nuclear electric quadrupole Hamiltonian due to the iodine nucleus ($I = 5/2$). Each is
defined as

\[H_{SO} = AN_Z S_Z + \frac{1}{2} A_D \left[N_Z S_Z, N^2 \right], \]
(2a)

\[H_R = BN^2 - DN_4, \]
(2b)

\[H_{LD} = -\frac{p}{2} \left[I_5, S_+ + N_+ S_- \right] + \frac{q}{2} \left(N_2^2 + N_4^2 \right), \]
(2c)

\[H_{M HF} = a I_Z N_Z + \frac{d}{2} \left(I_5 S_+ + I_+ S_- \right), \]
(2d)

\[H_{Q(I)} = \frac{\gamma e Q d_i}{2I(2I - 1)} \left[F_2^2 - \frac{1}{3} I^2 \right]. \]
(2e)

The initial rotational constant of PbI was taken from the work of Benavides-Garcia and Balasubramanian, while the values of \(p \) from the work on PbF and PbCl were used to predict a suitable value for the \(\Lambda \)-doubling constant of PbI.\(^{6,8}\) From these initial values a number of spectral features were identified to be belonging to PbI and a fit based on Hund’s case (b) was used throughout. Assignments and fits were first made using PGOPHER, an interactive spectral fitting program developed by Colin Western.\(^{25}\) Subsequently, Pickett’s SPFIT program was used in the final fits since it was able to carry out strong correlation with the model Hamiltonian.

The unresolved hyperfine structure will have a distorting effect on the observed line profiles and slightly reduce the precision with which the line centres are measured. A frequency uncertainty of 20 kHz, slightly greater than 10% of the (FWHM) linewidth and equal to the point spacing in the power spectrum, is therefore assumed for measured transitions in the spectra of PbI and SnI. Assignment and transition frequencies can be found in the supplementary material,\(^{28}\) where each transition is assigned based on the following set of quantum numbers: \(N''', p''', \psi''' \), \(J'''+ \frac{1}{2}, F''+ \frac{1}{2}, F'' \). \(^{28}\) \(\Lambda \)-doubling results in the formation of \(e \) and \(f \) states, where the parity in SPFIT is given by \(p = (-1)^{J+\frac{1}{2}} \) and \(p = (-1)^{J+\frac{1}{2}} \), respectively. For the iodine nucleus, which has a nuclear spin of \(5/2 \), it can couple with \(J \) with the following coupling scheme \(F = J + I_1 \ldots |J - I_1| \), where for rotational transitions \(\Delta F = 0, \pm 1 \). For \(^{207}\)PbI, where the \(^{207}\)Pb nucleus has a spin of \(I = 1/2 \), the coupling scheme changes to \(F_1 = J + I_1 \ldots |J - I_1| \), \(F_{Total} = F_1 + I_{Pb} \ldots |F_1 - I_{Pb}| \).

Transitions from \(J = 3.5 \rightarrow 4.5 \) to \(J = 9.5 \rightarrow 10.5 \) were observed and assigned to \(^{208}\)PbI, \(^{209}\)PbI, and \(^{209}\)PbI. Figures 1(a)-1(c) show different parts of the recorded spectrum of PbI highlighting the different vibrational states, the different isotopologues observed and the hyperfine structure.

For each set of transition frequencies associated with a vibrational state of a given isotopologue of PbI, the rotational constant, \(B \), centrifugal distortion constant \(D_J \), \(\Lambda \)-doubling constant \(p \), magnetic hyperfine constants \(a \) and \(d \) (for the \(^{127}\)I and \(^{207}\)Pb nuclei), and the nuclear electric quadrupole coupling constant (NQCC), \(eQd_i \) were evaluated. Due to strong correlation with \(p \), the \(\Lambda \)-doubling constant \(q \) was fixed to zero in each fit, while the magnetic hyperfine constants \(c \) and \(b_F \) and the higher order NQCC \(eQd_{2i} \) could not be determined and were also fixed to zero. The spin-orbit coupling constant \(A \) and its centrifugal distortion correction term \(A_D \) were also not determined as only the \(^1\Pi_{1/2} \) component was investigated and so \(A \) was held to the literature value for each isotopologue and \(A_D \) fixed to zero.\(^{9}\) In this study, the values of \(A \) and \(A_D \) have no influence on the fits since only the \(^1\Pi_{1/2} \) component was investigated. For each set of transitions, the weighted non-linear least squares fit gave a RMS error less than 1 indicating that the fitted parameters modelled the

FIG. 1. Overview of the \(J = 8.5 \rightarrow 9.5 \) transition of PbI. (a) Different isotopologues observed for PbI (all in \(v = 0 \) state). (b) The vibrational states observed for \(^{208}\)PbI. (c) An expanded section of the \(J = 8.5 \rightarrow 9.5 \) transition of \(^{208}\)PbI showing the hyperfine structure. In each case, the black trace (top half of each panel) is the experimental data while the other coloured traces (bottom half of each panel) are simulations using the model Hamiltonian.
system extremely well. The individual fits for each vibrational state can be found in the supplementary material.28

The fitted spectroscopic constants for 208PbI ($v = 0$ to $v = 5$), 207PbI ($v = 0$ to $v = 1$) and 206PbI ($v = 0$ to $v = 2$) were analysed to obtain equilibrium spectroscopic constants. The transition frequencies associated with each isotopologue of PbI (and SnI—see the section titled “Bond lengths of PbI and SnI”) were fitted to the standard Dunham expression using Pickett’s SPFIT program,

$$E_{v,J} = \sum_{i,j} Y_{ij}(v + \frac{1}{2}) j(j + 1) Y_{ij}(J + 1)^2.$$

In Equation (3), the Y_{ij} parameters are the Dunham parameters. The equilibrium parameters for the different isotopologues of PbI are given in Table I.

A similar analysis was carried out for the isotopologues and excited vibrational states observed for SnI since it also has a $\tilde{2}^3I_1/2$ ground state. Tin has ten naturally abundant isotopes; however, only seven isotopologues of SnI would be observable with the conditions used: ^{118}SnI (14.5% natural abundance), ^{117}SnI (7.7%), ^{116}SnI (24.2%), ^{119}SnI (8.6%), ^{120}SnI (32.6%), ^{122}SnI (4.6%), and ^{124}SnI (5.8%). Spectral features from the isotopologues containing the $I = 0$ tin isotopes ^{116}SnI ($v = 0$ to $v = 5$), ^{118}SnI ($v = 0$ to $v = 7$), ^{120}SnI ($v = 0$ to $v = 9$), ^{122}SnI ($v = 0$), and ^{124}SnI ($v = 0$ to $v = 1$) were observed. Figure 2 shows the different vibrational states observed for ^{120}SnI for the $J = 5.5 \rightarrow 6.5$ transition. No spectral features were observed from the isotopologues containing the $I = 1/2$ tin isotopes, ^{117}SnI and ^{119}SnI. The same Hamiltonian used for PbI was applied to SnI and the individual fits for each vibrational state can be found in the supplementary material.28 As with PbI, the parameters related to spin-orbit coupling, A and A_0, for SnI were not determined as only the $\tilde{2}I_1/2$ component was investigated and so A was held to the literature value for each isotopologue and A_0 fixed to zero.20 The typical RMS error for each of the weighted non-linear least squares fits was less than one indicating that the parameters associated with the Hamiltonian model the observed transition frequencies well. The same equilibrium analysis of the rotational, centrifugal distortion and the $eQq(I)$ constants was carried out as done with PbI and the results are listed in Table II.

Bond lengths of PbI and SnI

This is the first ever experimental determination of the bond lengths associated with a group 4 monoiode species. A computational study by Li et al. at the CCSD(T) level of theory gave estimates of the bond lengths of SiI (243.7 pm), GeI (251.0 pm), SnI (269.7 pm), and PbI (278.0 pm), with the results for SnI and PbI being in good agreement with equilibrium values determined in this study of 270.32 pm and 279.76 pm, respectively (see Tables I and II).13 Other studies on PbI have

Table I. Derived equilibrium parameters for 208PbI, 207Pb, and 206PbI in the $\tilde{2}I_1/2$ electronic state.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>208PbI</th>
<th>207PbI</th>
<th>206PbI</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{01}/MHz</td>
<td>819.301 ± 18(28)</td>
<td>822.319 ± 22(32)</td>
<td>820.802 ± 28(23)</td>
<td></td>
</tr>
<tr>
<td>Y_{11}/MHz</td>
<td>−2.035 ± 19(19)</td>
<td>−2.047 ± 22(44)</td>
<td>−2.040 ± 9.8(12)</td>
<td></td>
</tr>
<tr>
<td>Y_{21}/MHz</td>
<td>0.786(52)</td>
<td>0.38(15)</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Y_{02}/Hz</td>
<td>−94.5(13)</td>
<td>−93.8(13)</td>
<td>−92.5(12)</td>
<td></td>
</tr>
<tr>
<td>p_{00}/MHz</td>
<td>327.188 ± 9(46)</td>
<td>328.427 ± 12(44)</td>
<td>327.808 ± 27(74)</td>
<td></td>
</tr>
<tr>
<td>p_{10}/MHz</td>
<td>1.975 ± 12(18)</td>
<td>2.015 ± 15(32)</td>
<td>2.04(10)</td>
<td></td>
</tr>
<tr>
<td>$a_{00}/$MHz</td>
<td>187.727 ± 37(57)</td>
<td>187.130 ± 72(32)</td>
<td>187.396 ± 96(51)</td>
<td></td>
</tr>
<tr>
<td>$a_{10}/$MHz</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$d_{00}/$MHz</td>
<td>327.188 ± 9(46)</td>
<td>328.427 ± 12(44)</td>
<td>327.808 ± 27(74)</td>
<td></td>
</tr>
<tr>
<td>$d_{10}/$MHz</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$eQq_{00}/$MHz</td>
<td>−700.741 ± 27(52)</td>
<td>−701.460 ± 30(93)</td>
<td>−703.861 ± 37(62)</td>
<td></td>
</tr>
<tr>
<td>$eQq_{10}/$MHz</td>
<td>−1.633(32)</td>
<td>−1.83(13)</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>a_{00}(Pb)/MHz</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>a_{10}(Pb)/MHz</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>d_{00}(Pb)/MHz</td>
<td>4.78(34)</td>
<td>6.322 ± 31.6(64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{10}(Pb)/MHz</td>
<td>...</td>
<td>...</td>
<td>9.4(1.1)</td>
<td></td>
</tr>
<tr>
<td>r_e/pm</td>
<td>279.760 ± 40(48)</td>
<td>279.760 ± 45(54)</td>
<td>279.760 ± 51(39)</td>
<td>288.5</td>
</tr>
<tr>
<td>ω_e/cm$^{-1}$</td>
<td>160.9(11)</td>
<td>162.4(11)</td>
<td>163.1(11)</td>
<td></td>
</tr>
<tr>
<td>ω_a/cm$^{-1}$</td>
<td>0.323 ± 2(31)</td>
<td>0.327 ± 8(32)</td>
<td>0.329 ± 5(30)</td>
<td></td>
</tr>
<tr>
<td>D/cm$^{-1}$</td>
<td>20.036(337)</td>
<td>20.117(342)</td>
<td>20.189(321)</td>
<td>14.518</td>
</tr>
<tr>
<td>No. of lines</td>
<td>464</td>
<td>229</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>RMS error</td>
<td>1.14</td>
<td>0.79</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

aThe numbers in brackets indicate one standard deviation.
bReferences 11–14.
cReferences 9, 10, and 43.
listed bond lengths of 288.5 pm based on a CASSCF study, 282.9 pm calculated at the BP86/QZ4P level of theory, and 277.2 pm using a two-component MRCIS calculation. This latter result clearly showing that high-level calculations are required to model the electronic structure associated with PbI. Apart from the computational study by Li et al., no other work has been reported on the bond length of SnI but it follows the trend expected in going from SnF, SnCl, SnBr to SnI.

Born-Oppenheimer breakdown (BOB)

BOB has been observed in a number of transition metal and rare-earth metal systems via analysis of their spectroscopic constants. Species such as ZrO, ZrS, and PtS have all shown manifestations of BOB via analysis of the equilibrium bond lengths of the different isotopologues. In comparing the \(r_e \) values of \(^{208}\text{PbI} \), \(^{206}\text{PbI} \), and \(^{207}\text{PbI} \), they all agree to be within error which would imply that effects from BOB are most probably not being observed. Bond lengths obtained from the equilibrium parameter analysis of the \(^{120}\text{SnI} \), \(^{118}\text{SnI} \), and \(^{116}\text{SnI} \) isotopologues show that they agree to be within error which also implies the effects of BOB are most probably not being observed.

In an attempt to evaluate if effects from BOB could be observed for PbI or SnI, a multi-isotopologue fit was carried out using the Dunham expression given in Equation (3) where

![FIG. 2. (a) Overview of vibrational states observed for \(^{120}\text{SnI} \) \((J = 5.5 \rightarrow 6.5)\). (b) An expanded section of the \(J = 5.5 \rightarrow 6.5 \) transition of \(^{120}\text{SnI} \) showing the hyperfine structure. The black trace (top half of the figure) is the experimental data while the other coloured trace (bottom half of the figure) is a simulation using the model Hamiltonian.](image-url)

TABLE II. Derived equilibrium parameters for \(^{120}\text{SnI} \), \(^{118}\text{SnI} \), and \(^{116}\text{SnI} \) in the \(X^2\Pi_{1/2} \) electronic state.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(^{120}\text{SnI})</th>
<th>(^{118}\text{SnI})</th>
<th>(^{116}\text{SnI})</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_{01})/MHz</td>
<td>1 121.766 76(38)</td>
<td>1 131.554 27(38)</td>
<td>1 141.675 58(57)</td>
<td></td>
</tr>
<tr>
<td>(Y_{11})/MHz</td>
<td>-2.991 96(12)</td>
<td>-3.031 18(15)</td>
<td>-3.072 74(30)</td>
<td></td>
</tr>
<tr>
<td>(Y_{21})/kHz</td>
<td>1.057(12)</td>
<td>1.080(18)</td>
<td>1.208(52)</td>
<td></td>
</tr>
<tr>
<td>(Y_{02})/Hz</td>
<td>-160.6(31)</td>
<td>-167.7(31)</td>
<td>-159.7(47)</td>
<td></td>
</tr>
<tr>
<td>(p_{00})/MHz</td>
<td>287.530 6(46)</td>
<td>290.064 8(46)</td>
<td>292.681 8(72)</td>
<td></td>
</tr>
<tr>
<td>(p_{10})/MHz</td>
<td>-2.014 6(11)</td>
<td>-2.050 8(12)</td>
<td>2.091 8(26)</td>
<td></td>
</tr>
<tr>
<td>(a_{00})/MHz</td>
<td>225.064 98</td>
<td>225.50 10</td>
<td>224.91 16</td>
<td></td>
</tr>
<tr>
<td>(a_{10})/MHz</td>
<td>-0.940(24)</td>
<td>-1.076(26)</td>
<td>-0.964(64)</td>
<td></td>
</tr>
<tr>
<td>(d_{00})/MHz</td>
<td>100.756(34)</td>
<td>100.620 32</td>
<td>100.520 56</td>
<td></td>
</tr>
<tr>
<td>(d_{10})/MHz</td>
<td>-1.370(10)</td>
<td>-1.3192(92)</td>
<td>1.240 26</td>
<td></td>
</tr>
<tr>
<td>(e_{Q00})/MHz</td>
<td>-696.10(26)</td>
<td>-697.51(27)</td>
<td>-696.15(49)</td>
<td></td>
</tr>
<tr>
<td>(e_{Q10})/MHz</td>
<td>-2.537(66)</td>
<td>-2.158(73)</td>
<td>-2.57(17)</td>
<td></td>
</tr>
<tr>
<td>(r_e)/pm</td>
<td>270.323 453(46)</td>
<td>270.323 424(45)</td>
<td>270.323 434(67)</td>
<td>269.7 b</td>
</tr>
<tr>
<td>(\omega_e)/cm(^{-1})</td>
<td>197.8(19)</td>
<td>196.0(18)</td>
<td>203.6(3.0)</td>
<td>199 c 204 b</td>
</tr>
<tr>
<td>(\omega_{x2})/cm(^{-1})</td>
<td>0.419 8(57)</td>
<td>0.415 9(54)</td>
<td>0.439 91(1)</td>
<td>0.55 a</td>
</tr>
<tr>
<td>(D)/cm(^{-1})</td>
<td>23 293(549)</td>
<td>23 113(521)</td>
<td>23 568(849)</td>
<td>20 018 b 19 550 c</td>
</tr>
<tr>
<td>No. of lines</td>
<td>458</td>
<td>404</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>RMS error</td>
<td>1.05</td>
<td>0.95</td>
<td>1.14</td>
<td></td>
</tr>
</tbody>
</table>

\^The numbers in brackets indicate one standard deviation.

footnote| Reference 13.

footnote| Reference 19.
in the Dunham formalism each \(Y_{ij} = Y_{ij}^{\alpha} \), where
\[
Y_{ij}^{\alpha} = U_{ij} \mu_{ij}^{i+2j}/2,
\]
where \(U_{ij} \) is a Dunham isotope-independent parameter and \(\mu_{ij} \) is the reduced mass of the isotopologue \(\alpha \). At the precision of the current experiment, BOB, if any, will only be observed for \(Y_{01}^{\alpha} \) and so Equation (4) becomes
\[
Y_{01}^{\alpha} = U_{01} \mu_{01}^{\alpha} - \delta_{01}^M - \delta_{01}^I.
\]
The metal (M) correction term is given by Watson\(^{31,32}\) with the relation
\[
\delta_{01}^M = -U_{01} \Delta_{01}^M \mu_e / \mu_M M_M,
\]
where \(\Delta_{01}^M \) is the electronic BOB parameter for Sn or Pb, \(\mu_e \) is the rest mass of an electron, and \(M_M \) is the mass of a given Sn or Pb isotope.

The results of the fits are given in Table III in which the Dunham isotope-independent parameter \(U_{01} \), can easily be derived using Equations (5) and (6). The isotopically independent Born-Oppenheimer (BO) bond lengths have been determined for both SnI and PbI. The BO parameter \(\Delta_{01}^M \) is given in Table III. For SnI, \(\Delta_{01}^{SnI} \) was found to be small and indeterminable indicating that BOB is not being observed for this species which agrees with the previous assessment based on the equilibrium bond lengths of the different isotopologues. In the final fit on SnI, \(\Delta_{01}^{SnI} \) was fixed to zero and it had no effect on the standard deviation of the fit. Looking at the electronic spectra of the other tin monohalide species, no low lying electronic states have been observed except for the \(\Sigma^+ \Pi_{3/2} \) states which are \(~2400 \text{ cm}^{-1} \) higher in energy than the \(\Pi^+ \Pi_{1/2} \) electronic state with the next lowest electronic state being over \(15,000 \text{ cm}^{-1} \) higher in energy so it is unlikely that coupling between electronic states is happening to the degree that would result in BOB.\(^{19,20,33,34}\) It would be worthwhile to make a comparison of the BOB parameter with that obtained from SnCl, which has been studied previously using microwave spectroscopy. Unfortunately only transitions from the ground vibrational states of the different isotopologues were observed making a robust analysis of the BOB parameters impossible.\(^{21}\)

For PbI, because of the additional hyperfine splitting associated with \(^{207}\text{PbI} \), only the \(^{208}\text{PbI} \) and \(^{209}\text{PbI} \) species were included in the initial fit resulting in \(\Delta_{01}^{\text{PbI}} = +18.5 \) which is significantly large and needs further consideration. Since iodine has only one isotope, the BOB parameter for this was not included in the fits for PbI.

To check if the result from the initial fit is valid as only two isotopologues (\(^{208}\text{PbI} \) and \(^{209}\text{PbI} \)) were included in the fit, an alternative multi-isotopologue fit was carried out where the fitted rotational constants from each vibrational state and for each isotopologue (including \(^{207}\text{PbI} \)) were used to calculate a split-free transition. If we treat the species as a \(\Sigma^+ \) state, then this split free transition was then used in a fit involving only six terms, including \(Y_{01}, Y_{11}, Y_{21}, Y_{02} \) and the BOB parameter, \(\Delta_{01}^{\text{PbI}} \). The results from this fit gave the same value for \(\Delta_{01}^{\text{PbI}} \) as calculated in the original fit with just the \(^{208}\text{PbI} \) and \(^{209}\text{PbI} \) species.

It is unlikely that the \(\Delta_{01}^{\text{PbI}} \) value is indicating BOB within PbI since for metal containing species, the value of \(\Delta_{01}^{\text{PbI}} \) usually comes out negative (see Table IV in Ref. 30). Therefore, the fitted BOB parameter for PbI is most likely representing a field-shift effect as noted by Tiemann \textit{et al.} and Giuliano \textit{et al.} and has been seen before in lead containing compounds (e.g., PbSe and PbTe\(^{35,36}\)). As there is only one isotope for iodine, a more robust analysis is not possible. It has been shown that for species MX, \(\Delta_{01}^M \approx Q \chi_2^{X^{-1/2}} \),\(^{32}\) however, given the size of field-shift effects seen in Pb containing species such as PbSe and PbTe, this approximation is not valid unless the field-shift terms (\(V_M \) and \(V_X \)) are incorporated into the fit.

\begin{table}[h]
\centering
\begin{tabular}{lccc}
\hline
Parameter & SnI & PbI & Isotope dependence \\
\hline
\(Y_{01} \) MHz & 1 121 766 97(23) & 819.341(13) & \(\mu^{-1} \) \\
\(Y_{11} \) MHz & \(-2.992 044(78) \) & \(-2.035 80(15) \) & \(\mu^{-3/2} \) \\
\(Y_{21} \) kHz & 1 064 4(88) & 0.282(29) & \(\mu^{-2} \) \\
\(Y_{02} \) Hz & \(-162.0(20) \) & \(-93.2(10) \) & \(\mu^{-2} \) \\
\(\delta_{00}(\text{Sn/Pb})/\text{MHz} \) & \(-0.040(15) \) & \(\mu^{-1} M_{\text{Sn/Pb}}^{-1} \) & \(\mu^{-1} \) \\
\(p_{00} \) MHz & 287 550 6(28) & 327.193 4(34) & \(\mu^{-3/2} \) \\
\(p_{10} \) MHz & 2 021 24(76) & 1 976 76(72) & \(\text{RN} \) \\
\(a_{00} \) MHz & 225.106(64) & 187.179(47) & \(\text{RN} \) \\
\(a_{10} \) MHz & \(-0.967(18) \) & \(-0.630(34) \) & \(\text{RN} \) \\
\(d_{00} \) MHz & 100.690(22) & 239.401(12) & \(\text{RN} \) \\
\(d_{10} \) MHz & 1 337(68) & 0.722(16) & \(Q \) \\
\(e_{Q00} \) MHz & \(-696.62(17) \) & \(-700.592(53) \) & \(Q^{-1/2} \) \\
\(e_{Q10} \) MHz & \(-2.384(49) \) & \(-2.040(67) \) & \\
\(U_{01} \) MHz amu & 69 159.178(14) & 64 575.0(10) & \\
\(\Delta_{01}^{\text{Sn/Pb}} \) & 0 & 18.5(60) & \\
\(r_{BO} \) pm & 270.323 428(27) & 279.753 6(22) & \\
No. of lines & 1 218 & 693 & \\
RMS error & 1.14 & 1.08 & \\
\hline
\end{tabular}
\caption{Isotopic dependent equilibrium parameters for PbI and SnI, in the \(\Sigma^+ \Pi_{1/2} \) electronic state.}
\end{table}

\(^{a}\)The numbers in brackets indicate one standard deviation.
\(^{b}\)Using data from only \(^{208}\text{PbI} \) and \(^{209}\text{PbI} \).
\(^{c}\)\(^{208}\text{SnI} \) and \(^{208}\text{PbI} \) were used as the reference isotopologues.
lack of additional isotopic information for iodine would result in strong correlation between parameters and make evaluation of both the BOB and field-shift effects impossible without prior assumptions. In addition, the level of precision required to do an analysis of this type is probably not obtainable using the CP-FTMW spectrometer used in this study and additional work would need to be done on a cavity-FTMW system in order to improve the precision of the rotational and centrifugal distortion constants. It would also be useful to compare our results with PbCl (or PbBr) in which BOB parameters for both Pb and Cl could be evaluated and field-shift effects could be taken into account. Although work on PbF and PbCl has been carried out using microwave spectroscopy, the BOB parameters associated with both species have yet to be evaluated due to only the ground vibrational state transitions being observed.\(^6,8\)

Vibrational frequencies and dissociation energies of PbI and SnI

The harmonic vibration frequency, \(\omega_e\), and the vibrational anharmonicity constant, \(\omega_e\chi_e\), of PbI were estimated using the relations developed by Kratzer\(^{37}\) and Pekeris,\(^{38}\) respectively. These assume a Morse potential where \(Y_{01} = B_e\), \(Y_{02} \approx -D_e\), and \(Y_{11} = -\alpha_e\) (see Tables I and II).

\[
\omega_e \approx \sqrt{\frac{4B_e^3}{D_e}}, \tag{7}
\]

\[
\omega_e\chi_e \approx B_e \left(\frac{\alpha_e\omega_e}{6D_e} + 1\right)^2. \tag{8}
\]

The dissociation energy, \(D\), can be approximated by the relation\(^{39}\)

\[
D \sim \frac{\omega_e^2}{4\omega_e\chi_e}. \tag{9}
\]

These expressions have been found to provide reasonable estimates of \(\omega_e\), \(\omega_e\chi_e\), and \(D\) for a number of different systems including AuCl, PtCl, and SeCl\(^{40–42}\). For PbI, the harmonic frequency is in good agreement with the result from the electronic study of Rodriguez et al. in 1996 (160.3 ± 0.6 cm\(^{-1}\)).\(^{10\text{a}}\) The value for the anharmonicity constant, \(\omega_e\chi_e\), differs considerably from the value of Rodriguez et al. (0.24 ± 0.03 cm\(^{-1}\)); however, this difference could arise from the low resolution of the earlier study (\(\Delta f = 0.15\) nm). For PbI, there have been several computational chemistry studies carried out; the work of Benavides-Garcia and Balasubramaniam determined the value of \(\omega_e\) to be 153 cm\(^{-1}\), which is on the low side of the experimental value, and a \(D\) value of 20.486 cm\(^{-1}\) which is in good agreement with the values estimated using Equation (9); however, it is significantly different from the experimental value of 16.088 ± 700 cm\(^{-1}\).\(^{11,43}\) The work by Stoll et al. calculated \(\omega_e\) to be 168 or 169 cm\(^{-1}\) and values of \(D\) of 14.598 and 23.954 cm\(^{-1}\) depending on the method used.\(^{14}\) Li et al. calculated \(\omega_e\) to be 174 cm\(^{-1}\) and a \(D\) value of 16.937 cm\(^{-1}\) while including a spin-orbit correction. Ziebarth et al. assigned the upper limit of \(D\) to be 20.405 cm\(^{-1}\).\(^{9,13}\) The varying values of \(D\) indicate further experimental study is required to ascertain with better certainty the value of \(D\) for PbI.

Not much is known about the ground state of SnI except that the constants \(\omega_e\) (199 cm\(^{-1}\)) and \(\omega_e\chi_e\) (0.55 cm\(^{-1}\)) have been determined experimentally and they compare well with results obtained in this work.\(^{19\text{a}}\) If we use the values obtained by Oldershaw and Robinson with Equation (9), a dissociation energy of \(\sim 18,000\) cm\(^{-1}\) is obtained which is lower than that estimated in this study (23.293 cm\(^{-1}\)). Other experimental studies have determined the dissociation energy to be \(\sim 19,650\) cm\(^{-1}\) while the computational study by Li et al. puts the \(D\) for SnI at \(\sim 22,019\) cm\(^{-1}\) which is closer to the result of this study.\(^{13,44}\)

Lambda doubling and hyperfine constants of PbI and SnI

As seen in Tables I and II, the \(\Lambda\)-doubling constant \(p\) has been determined for both PbI and SnI. The constant \(p\) can be expressed as follows:

\[
p_v = 2 \sum (-1)^s \left(\frac{1}{|A_e L_e|} \langle \Sigma^v | A_e L_e | \Pi \rangle \right). \tag{10}\]

In this equation \(s\) is even and odd for \(\Sigma^+\) and \(\Sigma^-\) states, respectively. For \(\text{PbI}, p = 326.2\) MHz which would imply that the interaction is with a \(\Sigma^+\) state. The lowest lying \(\Sigma^+\) state for PbI is at 22.529 cm\(^{-1}\).\(^{10\text{b}}\) Using this value and assuming only one \(\Sigma\) state is contributing, then \(p\) is calculated to be approximately 600 MHz which would imply there is some quenching of the \(\Lambda\)-doubling in PbI. A reason for this quenching has been put forward by Ziebarth et al. in which they suggested that it is probably due to the cancellation of the \(\Lambda^{\Sigma^+}\) state with a nearby \(\Sigma^-\) state arising from the \(3\alpha2\pi^2\) configuration.\(^9\) This hypothesis is supported by the theoretical work of Benavides-Garcia and Balasubramaniam.\(^{11}\)

For \(\text{SnI}, p = 286.6\) MHz, which would imply that the interaction is with a \(\Sigma^-\) state. In the work by Murthy et al. and Oldershaw and Robinson, two bands with \(\Sigma\) symmetry, the \(\Lambda^{\Sigma^-}\) state at 17.917 cm\(^{-1}\) and the \(\Lambda^{\Sigma^+}\) state at 23.173 cm\(^{-1}\) were analysed.\(^{18,19\text{a}}\) If we assume only one \(\Sigma\) state is contributing then \(p\) is calculated to be 301.23 MHz for the \(\Lambda^{\Sigma^-}\) state and 167.6 MHz for the \(\Lambda^{\Sigma^+}\) state. Electronic studies of SnF, SnCl, and SnBr have found that the lowest lying \(\Sigma\) state is actually a \(\Sigma^+\) state and not a \(\Sigma^-\) state.\(^{45–47}\) In the case of SnCl, the \(\Lambda\)-doubling parameter \(p\) is 276.8 MHz which does imply that a \(\Sigma^+\) state is the cause of the interaction. If it were assumed that the interaction within SnI is also with a \(\Sigma^+\) state, as in PbI, this would imply significant quenching resulting from a nearby \(\Sigma^-\) state. For SnCl, the lowest \(\Sigma^-\) state is the \(\alpha^4\Sigma^-\) state at 27.622 cm\(^{-1}\) so this state would need to be much lower in energy in order for it to have significant quenching effects in SnI.\(^3\) Additional electronic spectroscopic work and computational chemistry calculations need to be carried out on SnI in order to investigate this further.

The \(^{127}\text{I}\) hyperfine splitting was modelled with the \(a\) and \(b\) Frosh and Foley parameters,\(^{38}\)

\[
a(\text{MHz}) = \frac{\mu}{4\pi} \times \frac{2g_S g_N \mu_B \mu_N}{h^2} \frac{1}{L}, \tag{11}\]

\[
d(\text{MHz}) = \frac{3\mu}{8\pi} \times \frac{g_S g_N \mu_B \mu_N}{h^2} \times \frac{\alpha^3}{L^2}, \tag{12}\]

where \(\mu\) is the magnetic moment, \(g_S\) and \(g_N\) are the nuclear and electron \(g\) factors, \(\mu_B\) is the Bohr magneton, and \(\mu_N\) is the nuclear magneton.
In Equations (11) and (12), \(\mu \) is the magnetic constant, \(g_N \) is the nuclear magnetic dipole moment divided by the nuclear spin number (nuclear \(g \)-factor), \(\mu_B \) is the Bohr magneton, \(\mu_S \) is the nuclear magneton, and \(g_e \) is the electron spin \(g \)-factor. The Froh and Foley parameters can be used to determine the expectation value of \(\sum_n(1/r^3)_L \), where \(S \) relates to the spin wavefunction and \(L \) the orbital wavefunction. The nuclear spin orbital constant, \(a \), is proportional to \(\langle 1/r^3 \rangle_L \), where \(r \) is the average distance between the orbiting electrons and \(n \) the nucleus possessing the spin \(I \). For the iodine atom, \(\langle 1/r^3 \rangle_L = 162.80 \times 10^{30} \text{ m}^{-3} \), which basically represents the electron-nuclear separation for a \(2p \) electron. The \(\langle 1/r^3 \rangle_L \) value for \(^{208}\text{PbI} \) is \(11.77 \times 10^{30} \text{ m}^{-3} \) which is over an order of magnitude smaller indicating that the unpaired electron contributing to \(a \) is located on average much further away from the iodine nucleus. A similar result is found for \(^{120}\text{SnI} \) with \(\langle 1/r^3 \rangle_L = 14.15 \times 10^{30} \text{ m}^{-3} \). It was found with group 4 monochloride species that there is a decrease in the \(\langle 1/r^3 \rangle_L \) value for the Cl nucleus when going down the group with the unpaired electron being located further away for the heavier elements. Not surprisingly a similar trend is seen here. In terms of the magnetic hyperfine parameter \(d \), as the \(c \) Froh and Foley parameter was not fitted, \(\langle 1/r^3 \rangle_S \) cannot be evaluated on its own but \(\langle \sin^2 \theta/\tau^3 \rangle_S \) can be evaluated. For \(^{208}\text{PbI} \), \(\langle \sin^2 \theta/\tau^3 \rangle_S = 10.03 \times 10^{30} \text{ m}^{-3} \) while for \(^{120}\text{SnI} \), \(\langle \sin^2 \theta/\tau^3 \rangle_S = 4.22 \times 10^{30} \text{ m}^{-3} \). A similar trend in \(\langle \sin^2 \theta/\tau^3 \rangle_S \) was seen in PbCl and SnCl, where it was proposed that relativistic effects associated with Pb could be the reason for the increase in the \(\langle \sin^2 \theta/\tau^3 \rangle_S \) value in going from SnCl to PbCl. This increase in relativistic effects results in a slightly less ionic bond (or less spin density on I) in PbI than SnI.

Nuclear quadrupole coupling constants and ionicity

Very precise NQCCs have been obtained for the iodine nucleus for both PbI and SnI. The NQCCs of the iodine nucleus, as seen with other species, show a significant dependence on the vibrational state. The equilibrium NQCC for PbI and SnI can be found in Tables I and II.

![Graph showing the relationship between eQq(I) and ionic character](image)

FIG. 3. Plot of ionic character vs. \(eQq(I) \) using \(i = 1 + \frac{eQq(I)}{eQq(\text{Sn})} \) for various I containing species. Displayed results include data from this work and Refs. 49–56.

The ionic character of the PbI and SnI bonds can be estimated from the halogen NQCC. If contributions from the \(d \)-orbitals of I are neglected in the bonding orbitals, the ionic character can be related to the coupling constants by

\[
i_c = 1 + \frac{eQq_{\text{Sn}}(X)}{eQq_{\text{Pb}}(X)}\tag{13}
\]

where \(eQq_{\text{Sn}}(X) \) is the NQCC for a singly occupied \(np_\alpha \) \((\alpha = 5) \) orbital for atomic I \(eQq_{\text{Pb}}(X) = 2209.1 \text{ MHz} \).\(^{39}\) For PbI and SnI, the ionic character \(i_c \approx 0.69 \). Figure 3 shows a plot of the predicted ionic character of other I containing molecules. No experimental results are available for \(eQq(I) \) for the other group 4 elements (e.g., ClI, SI, and GeI) and so a look at the trend down this group is not possible. It can be seen that both Pb and Sn have a similar ionic character consistent with studies of SnCl and PbCl.\(^{8,21}\)

CONCLUSION

We report for the first time the pure rotational spectra of PbI and SnI. Spectroscopic parameters including rotational constants, centrifugal distortion constants, \(A \)-doubling constants, magnetic hyperfine constants, and nuclear quadrupole coupling constants have been evaluated for a number of different isotopologues and vibrational excited states for each species. Due to the recording of excited vibrational state data, accurate equilibrium constants have been evaluated. The equilibrium bond lengths agree well with the results from a number of computational studies. Evaluation of harmonic frequencies and dissociation energies has also been carried out with the values of \(\omega_i \) agreeing well with computational studies; however, for PbI, there was some disagreement in the \(D \) evaluated based on the equilibrium parameters compared to the experimental determined value. A multi-isotopologue analysis was carried out in order to investigate if effects from BOB could be observed. For SnI, the BOB parameter proved too small to reach a suitable conclusion, while for PbI the BOB parameter indicated that a nuclear field-shift effect was occurring and not BOB. Analysis of the hyperfine constants showed the bonding for both SnI and PbI was ionic in nature with an ionic character of 69%. It is hoped that this work will help in assessing the potential of PbI and SnI as molecules that could be used in the measurement of the \(e \)EDM.

ACKNOWLEDGMENTS

We thank the European Research Council for postdoctoral fellowships awarded to D.P.Z. and S.L.S., and for project funding (No. CPFTMW-307000). D.P.Z. thanks Newcastle University for the award of a Faculty of SAgE Research Fellowship. Thanks to Bob Le Roy for conversations regarding PbI and SnI.

\(^{1}\)C. P. McRaven et al., J. Mol. Spectrosc. 262, 89 (2010).
\(^{3}\)E. M. Purcell and N. F. Ramsey, Phys. Rev. 78, 807 (1950).
8 C. T. Dewberry et al., *International Symposium on Molecular Spectroscopy* (Ohio State University, 2010).
26 C. M. Western, PGOPHER, a program for rotational, vibrational and electronic spectra, University of Bristol, 2013, http://pgopher.chm.bris.ac.uk.
36 C. M. Western, PGOPHER, a program for rotational, vibrational and electronic spectra, University of Bristol, 2013, http://pgopher.chm.bris.ac.uk.
39 See supplementary data at http://dx.doi.org/10.1063/1.4938247 for observed transition frequencies, assignments and fits.