
Copyright:
© 2016 Published by Elsevier Ltd. under a Creative Commons license

DOI link to article:
http://dx.doi.org/10.1016/j.applthermaleng.2016.02.002

Date deposited:
23/03/2016

This work is licensed under a Creative Commons Attribution 4.0 International License
Research Paper

Performance analysis of ultralow grade waste heat upgrade using absorption heat transformer

Zhiwei Ma *, Huashan Bao, Anthony Paul Roskilly

Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

HIGHLIGHTS

- Upgrade ultralow grade waste heat at 40–60 °C using absorption heat transformers.
- The recirculation flow ratio was found to be the most direct and crucial factor.
- The single stage transformer had medium temperature lift with a medium efficiency.
- The double stage transformer can achieve almost doubled temperature lift.
- The double effect transformer was not suitable for ultralow grade waste heat.

ABSTRACT

The present paper aimed at exploring absorption heat transformer (AHT) to upgrade ultralow grade waste heat in the temperature range of 40–60 °C. The performance of AHTs with different configurations, including single stage, double stage and double effect, were numerically analysed and compared in terms of temperature lift, coefficient of performance (COP) and exergy coefficient of performance (COPe). The most influential and crucial factor for the studied AHTs is the recirculation flow ratio (FR), the increase of which results in an increasing temperature lift but gradually declining COP. The COPe can achieve its maximum value with a certain FR, and such a state can be considered as the optimal working condition. Within the studied waste heat temperature range, the optimal FR in single stage AHT is in the range of 10–12, at which the system can deliver 17.1–34.7 °C temperature lift with COP around 0.471–0.475. The best configuration amid the studied four different double stage AHTs has a temperature lifting capacity of 31.8–68.6 °C with a COP around 0.30. The double effect AHT compromises its temperature lifting capacity for the highest COP among all the AHTs studied, which can reach about 0.65 though necessitates relatively higher waste heat temperature and higher strong solution concentration to drive the cycle; the double effect AHT is not recommended for the upgrading of ultralow grade waste heat.

© 2016 Published by Elsevier Ltd.

1. Introduction

Energy demand in industry sectors accounts for around 17% of the total energy consumption in the UK [1], and the worse thing is that the average industrial thermal waste via radiation, exhausted gas or air, cooling fluids and so on is about one sixth of this total energy demand [2]. In fact, the wasted heat still contains large amount of energy and exergy that can be reused to deliver heating, cooling or work through suitable heat recovery technologies. There has been a great number of promising and interesting technologies emerging to realise the recovery of waste heat prevailingly around 70–250 °C, like power generation via organic Rankine cycle [3] and Kalina cycle [4], refrigeration by absorption [5] and adsorption [6] technologies, and district heating [7], etc. More efforts are encouraged to address the significant though more challenging and less explored cases, the recovery and utilisation of the ultralow grade waste heat, which in the temperature range between 40 and 60 °C is way more ubiquitous and could account for about 30% of the total industrial waste heat [8]. With rational heat recovery and effective heat transformer technologies, these waste heat could play an important role on energy saving and sustainable development. Absorption heat transformer (AHT), operating in the reverse way of absorption refrigeration, can economically upgrade low grade waste heat into useful heat at a higher temperature with only little electrical energy input for pumping work [9,10]. It is reported that a single stage AHT (SAHT) can recover approximately 50% of waste heat with a temperature lift of about 50 °C in principle [10], after which the useful energy can be reused in industrial processes. The SAHT performance of using LiBr–H2O solution and H2O–NH3 solution, as the two most commonly used working solutions,
were compared by Kurem and Horuz [11]. The comparison showed that LiBr–H₂O solution out-performed its rival, though the temperature lift was limited by the crystallisation issue. To further enhance the performance of LiBr–H₂O based SAHT, Rivera et al. [12] used a commercial compound named Carrol, which was a mixture of LiBr and ethylene glycol in the mass ratio of 1:4.5 with water as the working solution. Carrol has higher solubility in water than LiBr does, which makes it a favourable alternative working solution for AHT. Rivera and Cerezo [13] and Rivera et al. [14] added 400 ppm 2-ethyl-1-hexanol into LiBr–H₂O solution as a heat and mass transfer enhancer so that the upgraded temperature and the coefficient of performance (COP) was improved by 5% and 40%, respectively. Barragan et al. [15–18] conducted a series of experimental studies using LiCl–H₂O, CaCl₂–H₂O, MgCl₂–H₂O and also ternary solutions of LiCl–ZnCl₂–H₂O and CaCl₂–ZnCl₂–H₂O in SAHT. The test results showed lower temperature lift by using CaCl₂–H₂O or MgCl₂–H₂O solution than using LiCl–H₂O solution due to the lower solubility of CaCl₂ and MgCl₂ in water. It was also found that the addition of ZnCl₂ in the ternary solution could reduce the solution viscosity and eliminate the solution crystallisation. Yin et al. [19] compared the performance of using LiBr–H₂O, TFE (2, 2, 2-trifluoroethanol)–NMP (N-methyl-2-pyrrolidinone), TFE–E181 (dimethyl ether tetraethylene glycol) and TFE–PYR (2-pyrrolidinone) as working solution in SAHT. It concluded that the LiBr–H₂O based SAHT performed superiorly when the output temperature was below 150 °C, while the other three solutions were more stable at higher temperature, e.g. up to 200 °C. The authors therefore suggested a double stage system using LiBr–H₂O loop in the lower temperature cycle while using one of the other three in the higher temperature cycle to achieve higher temperature lift.

Alternatively, Horuz and Kurt [20] and Parham et al. [21] tried different configurations to improve the performance of SAHT. Three more configurations other than the conventional configuration (named as SAHT-1 in present paper) were introduced and evaluated, including SAHT-2 in which the water carrying waste heat transferred the heat to the evaporator prior to the generator; SAHT-3 in which it had an additional absorber heat exchanger on the basis of SAHT-2; and SAHT-4 in which it was based on SAHT-3 and mounted with another refrigerant heat exchanger at the inlet of evaporator. These three new configurations reduced the crystallisation risk of using LiBr–H₂O as working solution. Both studies concluded the COP value in the order of SAHT-4 > SAHT-3 > SAHT-1 > SAHT-2, and the highest COP value was about 13–14% higher than the lowest one.

Double stage AHT (DAHT) can be applied if larger temperature lift is expected, which was reported to be capable of achieving about 80 °C temperature lift with a COP of 0.35 [10]. Several types of DAHT cycles have been proposed to explore the preferable configuration for optimal efficiency and effective heat transformation. The typical straightforward approach to implement DAHT (named as DAHT-1 in the present paper) is to couple two sets of SAHT units through the heat exchanging between the absorber in the low temperature loop and the evaporator in the high temperature loop [22–26]. Romero et al. [24] experimentally demonstrated that the DAHT-1 could transform the heat from 80 °C to 152 °C with efficiency higher than 30%. Ji and Ishida [26] studied a DAHT-1 system where both the absorber and the generator were peculiarly designed with two or more interior compartments, and found that the temperature lift was improved by around 10.7 °C and the exergy efficiency was elevated from 48.14% to 54.95% due to the usage of these compartments.

Rivera et al. [23] proposed a different DAHT cycle (named as DAHT-2) and claimed it to be technically simpler and competent comparing to DAHT-1. DAHT-2 utilises a portion of the weak solution from the high temperature absorber as the strong solution for the low temperature absorber. Martinez and Rivera [27] conducted theoretical energy and exergy analysis on DAHT-2, and concluded that the system could generate a 74 °C temperature lift. Furthermore, they suggested that the generator was responsible for the highest thermodynamic irreversibility, which was about 40% of the total exergy destruction. Reyes et al. [28] modelled the DAHT-2 system using CaCl₂–H₂O and LiCl–H₂O, which could achieve typical temperature lifts around 35–40 °C.

Based on DAHT-2, Zhao et al. [29] developed a new DAHT (named as DAHT-3) that splits the strong solution from the generator into two streams – one heading for high temperature absorber and the other one for low temperature absorber. This new arrangement introduced 5–10% increase in temperature lift contrasted with DAHT-2, while the COP marginally dropped by 0.01. Similar analytical conclusions were also obtained by Horuz and Kurt [30].

Mostofizadeh and Kulick [31] reported another different configuration of DAHT (named as DAHT-4), which had all the weak solution from high temperature absorber received by the low temperature absorber as the second stage of absorption. Subsequently, the weaker solution exiting the low temperature absorber ended up in the generator. Zhao et al. [32] reported that the DAHT-4 had the largest COP especially when the heat output temperature, namely the absorption temperature, was required higher, as the maximum COP value could reach 0.32 with the temperature lift between 60 and 100 °C.

Double effect absorption heat transformer (DeAHT) was developed to satisfy the desire of higher system efficiency, while the heat upgrading level is inevitably compromised. Zhao et al. [33] investigated the DeAHT system using TFE–E181 and LiBr–H₂O as working solutions, and the analytical results showed a 30 °C temperature lift could be achieved with waste heat temperature at 70 °C; the corresponding COP value was as high as 0.58 and 0.64, respectively for the studied two working solutions. Gomri [34] comparatively applied the SAHT and DeAHT to the seawater desalination with heat input at the temperature of 74–96 °C and 87–96 °C, and obtained 103–158 °C and 103–123 °C upgraded heat, respectively.

Though AHTs have been widely investigated and reported, to the best of the authors’ knowledge, there has been neither endeavour in recovering and upgrading ultralow grade waste heat in the temperature range between 40 and 60 °C nor the comprehensive comparative study on various AHT systems including all aforementioned cycles. Therefore, this work carried out analytical study on six different AHTs using LiBr–H₂O with primary interest in heat transformation of the ultralow grade heat from 40 to 60 °C.

2. Working principles of AHTs and analysis methods

The schematics of each type of AHT systems studied in this work are depicted in this section associated with the details of the predefined temperature, pressure and concentration in P–T–x diagram. All the plotted properties of LiBr–H₂O solution in vapour–liquid equilibrium states were calculated by the formulas provided in Pátek and Klomfar’s work [35].

The following assumptions were predefined to simplify the calculation:

1. The analysis was carried out at steady-state conditions;
2. The solutions at the outlets of generator and absorber were at saturated state;
3. The refrigerants, water, at the outlets of condenser and evaporator were at saturated state;
4. The pumping work was neglected; therefore, the temperature and enthalpy of the fluid before and after the pump remained unchanged;
5. Throttling did not change the enthalpy of the fluid;
6. No heat loss from any well-insulated components.
than the heat source temperature due to the higher pressure. The weak solution from the absorber should be throttled (stream 5–6) after heat recovery to charge the low pressure generator.

According to the predefined assumption, the refrigerant at point 8 and point 10 are saturated liquid and saturated vapour, respectively, so that their enthalpies (h_8 and h_{10}) can be determined solely by the condensation temperature (T_8) and evaporation temperature (T_{10}). The refrigerant enthalpy remains unchanged through the pump, i.e. h_9 is equal to h_8. The enthalpy value of refrigerant at point 7 (h_7) can be calculated by considering both the refrigerant pressure and temperature equal to the generator pressure and temperature, respectively. The waste heat input to the evaporator (Q_e) can be calculated by Eq. (1).

$$Q_e = m_r (h_{10} - h_8)$$

where m_r is the mass flow rate of refrigerant.

Considering the saturated states of refrigerant at point 8 and point 10, the condensing temperature T_8 can be used to determine the low working pressure (P_1) across the generator and the condenser, while the waste heat temperature imposing on the evaporator determines the high working pressure (P_h) that dominates the evaporator and the absorber. Since the solution is saturated at point 1, the strong solution concentration (x_s) is then considered as the saturated solution concentration under the conditions of pressure P_1 and temperature T_{16}. The recirculation flow ratio (FR) as defined in Eq. (2) should be given to determine the weak solution concentration (x_w), the flow rates of the weak solution (m_w) and strong solution (m_s) while combining with mass balance equations, Eqs. (3) and (4), the already attained x and given m_r.

$$FR = \frac{\text{mass flow rate of solution leaving generator}}{\text{mass flow rate of vapour leaving generator}} = \frac{m_s}{m_r}$$

$$m_r x_s = m_w x_w$$

$$m_r + m_s = m_w$$

Thereafter, the upgraded temperature in the absorber (T_s) can be conveniently determined as it is at intersection point of high pressure (P_h) and the weak solution concentration (x_w) as shown in Fig. 1(b).

The enthalpy of the saturated strong solution at the outlet of the generator (h_1) can be determined by its temperature ($T_e = T_{16}$) and the low pressure (P_1); by the same way, the outlet weak solution enthalpy (h_8) from the absorber can be determined by its temperature ($T_8 = T_{16}$) and the high pressure (P_h). For the heat exchanger, the inlet thermal states of the counter-flow solution streams become known because the temperature and enthalpy values at point 2 equal to those of point 1 according to the assumption. With a given performance parameter UA, i.e. the multiplicative product of heat transfer coefficient and heat transfer area of the heat exchanger, the outlet temperature (T_1 and T_s) and enthalpy (h_1 and h_8) of the weak and strong solutions, those that have heat exchanging can be iteratively determined through energy equations, Eq. (5) and Eq. (6), the logarithmic temperature difference ΔT_{LMTD} in Eq. (7) and the correlation of solution enthalpy with temperature and concentration.

$$Q_{HE} = \Delta T_{LMTD} \cdot UA$$

$$Q_{HE} = m_r h_1 - m_s h_2 = m_w h_4 - m_w h_5$$

$$\Delta T_{LMTD} = \frac{T_e - T_1 - (T_s - T_1)}{\ln\left(\frac{T_4 - T_5}{T_4 - T_5}\right)}$$

$$\Delta T_{LMTD} = \frac{T_e - T_1 - (T_s - T_1)}{\ln\left(\frac{T_4 - T_5}{T_4 - T_5}\right)}$$
Then, the enthalpy of the inlet weak solution \(h_b \) to the generator is known as the same with that of point 5 \(h_5 \). With all known variables on the right-hand side of energy balance equations (Eq.\((8) \) and Eq.\((9) \)), the heat input to the generator \(Q_G \) and the heat generated in the absorber \(Q_A \) can be obtained.

\[
Q_A = \dot{m}_h h_b + \dot{m}_w h_0 - \dot{m}_w h_5 \tag{8}
\]

\[
Q_A = \dot{m}_h h_b + \dot{m}_h h_0 - \dot{m}_h h_5 \tag{9}
\]

Finally, the coefficient of performance \(\text{(COP)} \) and exergy \(\text{(COPe)} \) of the SAHT cycle can be calculated by Eq.\((10) \) and Eq.\((11) \), respectively.

\[
\text{COP} = \frac{Q_A}{Q_e + Q_A} \tag{10}
\]

\[
\text{COPe} = \frac{Q_A \left(1 - \frac{T_a}{T_{eg}}\right)}{\left(Q_e + Q_A\right) \left(1 - \frac{T_a}{T_{eg}}\right)} \tag{11}
\]

\[2.2. DAHT-1\]

Based on the design of SAHT, one more heat exchanger and one more absorber are added in to form the DAHT-1 as illustrated in Fig.\(2(a) \), where three pressure levels are established to gradually elevate the temperature of the waste heat. The two absorbers are at different pressures, as tagged low pressure absorber (L-Absorber) and high pressure absorber (H-Absorber), respectively. DAHT-1 basically integrates two single effect cycles by splitting refrigerant stream from the condenser into two sub-streams, one of which is pumped to the evaporator (stream 1-4-15-16-17) before arriving in the L-Absorber while the other sub-stream is directly heading to the H-Absorber (stream 14-18-19-20) through a relatively more powerful pumping. Likewise, the strong solution from the generator is also split, one part of which is less pumped, heated and received by the L-Absorber (stream 7-8-9), while the rest is strongly pumped, heated and received by the H-Absorber (stream 1-2-3). The first sub-stream of the refrigerant evaporates and mixes with partial strong solution in the L-Absorber whereby the absorption heat is released at a temperature higher than the waste heat source; the second sub-stream refrigerant boils by this upgraded heat in the L-Absorber so that the generated vapour is at even a higher pressure, which subsequently thoroughly mixes with the strong solution in the H-Absorber to achieve further heat upgrading.

The low pressure, \(P_1 \), and medium pressure, \(P_m \), can be firstly determined by the condensation temperature and waste heat temperature as shown in Fig.\(2(b) \). Four different solution concentrations are involved in this cycle, including strong solution concentrations at different pressure levels, \(x_{sl} \) and \(x_{sh} \), and weak solution concentrations, \(x_{sl} \) and \(x_{sh} \), at different pressure levels, in the high and low pressure loops, respectively. \(x_{sl} \) and \(x_{sh} \) could have the same value if the generator is heated uniformly, and they can be straightforward determined since they are at the intersection point of \(P_1 \) and \(T_{eg} \); whereas \(x_{sh} \) and \(x_{sl} \) are unnecessarily the same but depend on the recirculation flow ratios of both high pressure loop (\(FR_h \)) and low pressure loop (\(FR_l \)), and another key parameter – the flow fraction \(f_l \) of the refrigerant in high pressure loop to the total refrigerant flow. All the other unknown parameters can be solved through the following steps with an iterated calculation:

1. The value of \(f_l \) is hypothesised at 0.5 (or any other value between 0 and 1), then the flow rates of the two refrigerant streams, \(\dot{m}_{rl} \) and \(\dot{m}_{sl} \), are obtained as \(\dot{m}_1 \) is already given;

2. The \(x_{sh} \), \(x_{sl} \), \(m_{sh} \), \(m_{sl} \), \(m_{1h} \) and \(m_{1l} \) are obtained based on the given \(FR_h \) and \(FR_l \), the already known \(x_{sl} \), \(x_{sh} \) and \(m_{sh} \), \(m_{sl} \), with the aid of mass balance equations in both L-Absorber and H-Absorber (Eqs.\((2) \) to \((4) \));

3. The absorption temperature in L-Absorber \((T_{la} = T_{1a}) \) can be determined from Fig.\(2(b) \) as it is at the intersection point of \(P_m \) and \(x_{sl} \);

4. The high pressure loop of the refrigeration is heated by L-Absorber \((T_{1a} = T_{19}) \) and is ideally assumed to achieve the same temperature of absorption \((T_{20} = T_{la}) \), then the saturation pressure of refrigerant at \(T_{1a} \) is considered as the high pressure \(P_h \) in H-Absorber, as shown in Fig.\(2(b) \);

5. Therefore, the absorption temperature in H-Absorber \((T_{1a} = T_{a}) \) can be decided by \(P_h \) and \(x_{sh} \);

6. The Eqs.\((12) \) and \((13) \) are used to calculate the absorption heat released by L-Absorber \((Q_{Absorption}) \) and the evaporation heat required by the refrigerant evaporation for H-Absorber \((Q_{Evaporation}) \), respectively, and these two should have the same value if luckily the hypothetical \(f_l \) value is equal to the correct \(f_l \) value. If not, a new \(f_l \) should be re-hypothesised by considering the gap between \(Q_{Absorption} \) and \(Q_{Evaporation} \) and steps \((2) \) to \((6) \) should be repeated to calculate new \(Q_{Absorption} \) and \(Q_{Evaporation} \). The iteration will...
stop when reaching the convergence as $Q_{L-Absorption}$ equal to $Q_{H-Evaporation}$.

$$Q_{L-Absorption} = m_1 h_1 + m_2 h_0 - m_1 h_1$$ \(12\)

$$Q_{H-Evaporation} = m_20 (h_20 - h_19)$$ \(13\)

2.3. DAHT-2 and DAHT-3

DAHT-2 and DAHT-3 have similar configuration, as presented in Figs. 3(a) and 4(a). Three different solutions are involved in DAHT-2 and DAHT-3, named as strong solution (x_s), medium solution (x_m), and weak solution (x_w). DAHT-2 and DAHT-3 have only one more L-Absorber compared to the SAHT. In DAHT-2, as shown in Fig. 3(a), part of the medium solution from the H-Absorber feeds into the L-Absorber (stream 4-8-9) as the absorbent that absorbs the refrigerant vapor to form the weak solution; meanwhile, the rest part of the medium solution from the H-Absorber flows back to the generator (stream 3-4). In DAHT-3, as shown in Fig. 4(a), the absorbent in the L-Absorber derives from the part of the strong solution leaving the generator (stream 3-8-9). Their corresponding P–T–x diagrams are shown in Figs. 3(b) and 4(b) respectively.

For both DAHT-2 and DAHT-3, P_l, P_m, and x_s are determined by condensation temperature T_c and waste heat temperature T_h,e. Aside from all the variables defined in the SAHT cycle, the flow fraction f_w of the weak solution leaving the L-Absorber to the total flow rate of solution flowing back to the generator is another indispensable parameter to solve all the puzzles of DAHT-2 and DAHT-3 cycles. The flow rates of the strong solution, the medium solution and the weak solution can be calculated with the given FR, f_w and m_i. Similarly to the calculation steps for DAHT-1, the value of the flow fraction f_{r} is firstly set to be 0.5 to initiate the iterated calculation in this work until the final convergence is reached. The flow rates of two streams of the refrigerant are calculated firstly based on the hypothetical f_{r}, then the concentrations of the medium and the weak solutions can be determined by using the mass balance equations in the H-Absorber and the generator, respectively. The absorption temperature in the L-Absorber, T_{la}, is determined by the intersection point of P_m and x_w; while the high pressure P_h is the saturation pressure of refrigerant at T_{ha} and the absorber temperature in the H-Absorber, T_{ha}, is at the intersection point of P_h and x_m in Figs. 3(b) and 4(b). The value of f_r must be iterated until achieving the thermal balance in L-Absorber using the similar equation as Eqs. (12) and (13).
2.4. DAHT-4

DAHT-4 shown in Fig. 5(a) has simpler configuration in terms of flow control: no splitting of solution is involved as all the medium solution coming from the H-Absorber feeds into the L-Absorber to conduct absorption (stream 5–6–7), afterwards it becomes weak solution and flows back to the generator (stream 8–9–10).

The low pressure (P_l) and medium pressure (P_m) are determined by the equilibrium state of refrigerant at T_c and $T_{g,e}$, then x_s and x_w, m_s and m_w are calculated based on P_l, $T_{g,e}$, predefined FR, m_l and the mass balance in generator. Thereafter, the absorption temperature in L-Absorber (T_{la}) can be determined by P_m and x_w as shown in Fig. 5(b). The high absorption pressure P_h is then the saturation pressure of refrigerant at pressure $T_{g,e}$. With an initial hypothetical value of f, the mass balance equation in H-Absorber is used to calculate x_m and m_m, thus the high absorption temperature T_{ha} becomes known. Eventually, the entire cycle can be established by identifying the f_i through the iteration to achieve the thermal balance in L-Absorber.

2.5. DeAHT

The double effect AHT (DeAHT) shown in Fig. 6(a) has two generators at two different pressure levels instead of two absorbers in DAHTs. The waste heat is used to heat the generator at the high pressure (H-Generator) and herein generate the refrigerant vapour out from the medium solution; then the condensation heat of the vapour is used to heat up the weak solution (stream 11–12) in the low pressure L-Generator to generate low pressure refrigerant vapour. Afterwards, the cooled down refrigerant passes through a throttle device (stream 12–13) and then converges with the refrigerant vapour from L-Generator within the condenser (stream 13,14–15). The weak solution from the only absorber directly heads to the L-Generator (stream 7–8–9–10) that discharges enriched solution (the medium solution) to the H-Generator (stream 1–2–3), while the H-Generator drains the strong solution to the absorber (stream 4–5–6).

The DeAHT cycle cannot operate if the so-called strong solution is not strong enough, neither the waste heat temperature is not high enough. The present study has used a given strong solution concentration, x_s, as a start to solve all the other solution and refrigerant states. The pressures, P_l, P_m and P_h, can be determined by the saturated state of the refrigerant at T_c, the saturated state of the strong solution at $T_{g,e}$ and the saturated state of the refrigerant at $T_{g,e}$, respectively, as shown in Fig. 6(b). The temperature in the L-Generator, T_g, should be the condensing temperature of the refrigerant vapour from the H-Generator, which is the refrigerant saturation temperature at pressure P_{m}. Thereafter, the concentration of the medium solution, x_m, is the saturation solution.
concentration at \(P \) and \(T_{\text{in}} \). Different from aforementioned DAHTs, the recirculation flow ratio, \(FR \) (here is the mass flow rate ratio of the strong solution to refrigerant flowing into the absorber), should be then iteratively approached to satisfy the thermal balance in the L-Generator by the following steps: with a given value of \(m_{\text{in}} \) and an initially assumed \(FR \), the strong and weak solution flow rates in the absorber can be calculated; then the weak solution concentration \(x_w \) is determined by the mass balance in the absorber; a new \(FR \) can be attained by solving the thermal balance in L-Generator; with the precondition of \(x_w < x_0 \) and \(x_0 \) are determined independently, the \(FR \) value is adjusted and iterated until acquiring a correct \(FR \) meeting all the conditions; thereafter all the other states can be worked out.

2.6. Input parameters and optimisation process

The input parameters for all the calculations for different AHTs studied in this work are presented in Table 1. The mass flow rate of refrigerant, \(m_{\text{r}} \), is the essential variable for the full set of calculation on system performance, which was assumed to be 0.005 kg/s in this work as suggested in reference [36] for a 10 kW level absorption refrigeration system. It was found that the temperature lift is insensitive to the changes of \(m_{\text{r}} \); and the impact of the varying \(m_{\text{r}} \) on system \(\text{COP} \) and \(\text{COP}_{\text{e}} \) would be offset if the heat transfer parameter \(UA \) of the heat-recovery heat exchanger increases or reduces at the same ratio as the \(m_{\text{r}} \) does because of the proportional changes of the involved heat in each component. Reference [36] also suggested a typical design value of recirculation flow ratio, \(FR \), as 10.84, and used a \(UA \) value of the heat-recovery heat exchanger as 132 W/K for one of the presented examples. Hence, the \(UA \) analysed in this work ranges from 50 W/K to 450 W/K, while the \(FR \) was set in the range of 2–20 to cover the full potential region of system operation.

The SAHT system performance was fully evaluated by using different input parameter varying in a given range presented in Table 1 so that the most dominant factor for AHT systems could be identified. Thereafter, the influence of this factor on DAHTs and DeAHT were further discussed under the condition of 40–60 °C heat source. The relation of the energy efficiency and upgraded temperature were further discussed under the condition of 40~60°Cheatsource. Thereafter, the influence of this factor on DAHTs and DeAHT was set in the range of 2–20 to cover the full potential region of system operation.

The SAHT system performance was fully evaluated with each input parameter varying in a given range presented in Table 1 so that the most dominant factor for AHT systems could be identified. Thereafter, the influence of this factor on DAHTs and DeAHT were further discussed under the condition of 40–60 °C heat source. The relation of the energy efficiency and upgraded temperature were further discussed under the condition of 40~60°Cheatsource.

3. Results and discussions

The calculation method has been validated with experimental results of SAHT reported in literature [14], as the calculated performance in this work and experimental results are compared in Fig. 7(a). The experiment was conducted under the conditions of \(T_{\text{in}} = 76.5–78.5 \) °C, \(T_{\text{e}} = 53.0–59.8 \) °C and \(T_{\text{c}} = 35.8–37.5 \) °C. \(\text{COP}_{\text{in}} \) was defined as the internal \(\text{COP} \) of which the heat was calculated based on the enthalpy change of the solution and refrigerant, while the external \(\text{COP}, \text{COP}_{\text{e}} \), was calculated based on the heat released or absorbed by the external heat transfer fluids. The present calculation used the same operational conditions as the experiment, and the calculated \(\text{COP} \) shows good agreement with the experimental \(\text{COP}_{\text{in}} \), as can be seen in Fig. 7(a) when the \(FR \) is about 5.4–5.8.

The \(\text{COP} \) value calculated in this work is also compared with other analysis results reported previously in references 11, 12, 19, and 37, as shown in Fig. 7(b), while the generation temperature and the evaporation temperature at 70 °C were used in all compared cases. Kurem and Horuz [11] and Yin et al. [19] obtained almost constant \(\text{COP} \) of around 0.495–0.515 even when the temperature lift was as high as 40–50 °C. The \(\text{COP} \) results in this work show the similar variation profile against the upgraded heat temperature to those reported by Rivera et al. [12] and Zhang and Hu [37], and the \(\text{COP} \) values are almost the same with those in reference 12 when the \(UA \) value is assumed as 250 W/K. The \(\text{COP} \) values have no prominent change if the upgraded heat is at relatively low temperature, as shown in Fig. 7(b) from 80 °C to 95 °C, or to 100 °C, or to 105 °C, depending on different condensing temperature. Once exceeding these ranges, the \(\text{COP} \) values drop steeply afterwards.

3.1. SAHT

The performance of SAHT is dominated by several parameters, including waste heat temperature \(T_{\text{w}} \), condensation temperature \(T_{\text{c}} \), and condensing temperature \(T_{\text{e}} \). The calculation method has been validated with experimental results of SAHT reported in literature [14], as the calculated performance in this work and experimental results are compared in Fig. 7(a). The experiment was conducted under the conditions of \(T_{\text{w}} = 76.5–78.5 \) °C, \(T_{\text{c}} = 53.0–59.8 \) °C and \(T_{\text{e}} = 35.8–37.5 \) °C. \(\text{COP}_{\text{in}} \) was defined as the internal \(\text{COP} \) of which the heat was calculated based on the enthalpy change of the solution and refrigerant, while the external \(\text{COP}, \text{COP}_{\text{e}} \), was calculated based on the heat released or absorbed by the external heat transfer fluids. The present calculation used the same operational conditions as the experiment, and the calculated \(\text{COP} \) shows good agreement with the experimental \(\text{COP}_{\text{in}} \), as can be seen in Fig. 7(a) when the \(FR \) is about 5.4–5.8.

The \(\text{COP} \) value calculated in this work is also compared with other analysis results reported previously in references 11, 12, 19, and 37, as shown in Fig. 7(b), while the generation temperature and the evaporation temperature at 70 °C were used in all compared cases. Kurem and Horuz [11] and Yin et al. [19] obtained almost constant \(\text{COP} \) of around 0.495–0.515 even when the temperature lift was as high as 40–50 °C. The \(\text{COP} \) results in this work show the similar variation profile against the upgraded heat temperature to those reported by Rivera et al. [12] and Zhang and Hu [37], and the \(\text{COP} \) values are almost the same with those in reference 12 when the \(UA \) value is assumed as 250 W/K. The \(\text{COP} \) values have no prominent change if the upgraded heat is at relatively low temperature, as shown in Fig. 7(b) from 80 °C to 95 °C, or to 100 °C, or to 105 °C, depending on different condensing temperature. Once exceeding these ranges, the \(\text{COP} \) values drop steeply afterwards.
T, recirculation flow ratio FR, and the performance of heat exchanger UA.

Fig. 8 shows the calculated temperature lift and COP against the varying condensation temperature Tc from 10 °C to 30 °C at the condition of FR = 10 and UA = 150 W/K. The figure shows a temperature lift of 8.3–24.9 °C with 40 °C heat source, 16.3–34.7 °C with 50 °C heat source and 25.1–45.7 °C with 60 °C heat source. The lower condensation temperature is higher that indicates a larger temperature lift. Unlike the temperature lift, COP value changes in a narrow range of 0.47–0.485 and is hardly affected by the condensation temperature, e.g. the fluctuation of COP value is basically less than 0.01 when the condensation temperature ranges from 10 to 30 °C regardless of waste heat temperature, which can be explained by the following reasons: (1) the flow rates of strong and weak solutions remain unchanged due to the same FR and \(m_c \); (2) the concentration difference between strong and weak solutions hardly change due to the same FR that ensures a constant value of the ratio of \(x_c \) to \(x_w \); (3) therefore both the input heat to the generator and output heat from the absorber change little and have the same changing tendency; (4) the input energy to the evaporator changes little, hence the calculated COP by Eq. (10) is not sensitive to the varying condensation temperature.

The most direct and crucial parameter that simultaneously affects both the temperature lift and COP is the recirculation flow ratio, FR, as illustrated in Fig. 9. A higher FR suggests a smaller concentration difference between the strong solution and the weak solution as can be derived from Eqs. (2) to (4), thus the weak solution concentration is relatively higher given that the strong solution concentration is fixed. Higher concentration of weak solution indicates higher absorption temperature \((T_a) \) in the absorber at the same pressure \((P_h) \), i.e. larger temperature lift. Therefore, as FR increases in the range of 2–20 while the condensation temperature and heat exchanger performance are fixed at 20 °C and 150 W/K, the temperature lifts of the waste heat at 40 °C, 50 °C and 60 °C display increasing curves within the range of 6.9–18.9 °C, 9.7–29.2 °C and 13.1–40.1 °C, respectively. Moreover, the decreasing concentration difference between strong and weak solution causes the reduction of the heat input required by the generator and heat output from the absorber, though flow rates of both solutions increase with increasing FR; nevertheless, the heat input to the evaporator remains constant with increasing FR due to the constant refrigerant flow rate and evaporation temperature. Hence the COP calculated by Eq. (10) reduces as the FR value increases, e.g. the COP is around 0.297 when FR is at 20 and the waste heat is at 60 °C, which is about 20% lower than the maximum COP value (0.494).

The heat exchanger located between generator and absorber is deployed to enhance the system efficiency. The performance parameter of the heat exchanger, UA, has no impact on the temperature lift but is influential on the COP. A higher UA leads to better heat recovery, i.e. more heat input to the generator and heat output from the absorber; with constant heat input to the evaporation, the COP shows upward trend with the increasing UA as shown in Fig. 10, e.g. the COP of using 60 °C waste heat increases from about 0.452 to 0.492 as the UA increases from 50 W/K to 450 W/K when FR is at 10 and the condensation temperature is at 20 °C.

Fig. 11 shows the exergy coefficient, \(COPe \), of SAHT against the upgraded temperature under the conditions of \(T_a = 20 °C \) and \(UA = 150 W/K \). The values of FR are denoted as dash lines in the figure. As can be seen from the calculation equation, Eq. (11), \(COPe \) reflects both COP and temperature lift. Although the COP decreases as increasing FR, the \(COPe \) surges as FR increases until 10 due to the increasing output heat temperature, followed by reaching its vertex and subsequently declining. Based on the value of \(COPe \), the optimal
FR locates between 10 and 12 for SAHT, where the COPe reaches its maximum value of 0.803~0.828 while the corresponding COP is 0.471~0.475 and the temperature lift is 17.1~34.7 °C depending on different waste heat temperature. Of course, one can pursue higher temperature lift by using larger FR if the lower COP is acceptable, vice versa.

3.2. DAHTs

The performance of the four DAHTs are compared in terms of temperature lift, COP and COPe as shown in Fig. 12(a) and (b), which present the calculation results of COP and COPe against the upgraded temperature respectively under the condition of \(T_c = 20 ^\circ C \) and \(UA = 150 \text{ W/K} \). The best performance in terms of the highest COPe of DAHT-2 and DAHT-3 are shown in Fig. 12 with the value of \(f_w \) varying in the range of 0.1~0.7. For all the studied cases, the optimal \(f_w \) was found at around 0.5.

As shown in the figure, the DAHT cycles could produce a temperature lift of 14.1~41.2 °C by 40 °C waste heat, 20.0~62.9 °C by 50 °C waste heat and 27.1~86.1 °C by 60 °C waste heat, which are almost twice as large as that produced by SAHT. However, the larger temperature lift implies the compromised system efficiency, e.g. the maximum COP value is only about 0.322, whereas the minimum one could be as low as less than 0.01 while the temperature lift reaches the maximum potential. Sharing the similar varying tendency with that of SAHT, the COPe of different DAHTs in Fig. 12(b) has the maximum values from 0.614 to 0.708 depending on different waste heat temperature, which is lower than that of SAHT. The comparison shown in the figures, DAHT-4 exhibits the highest values of both COP and COPe among these four different DAHTs, while the DAHT-1 and DAHT-3 have slightly lower efficiencies and the DAHT-2 has the lowest. Additionally, the simplest configuration and solution flow control of the DAHT-4 further strengthens its competitive advantage over the other three.

In Fig. 13, the temperature lift and COP values of the best DAHT, DAHT-4, are plotted against recirculation flow ratio in the range of 2~20. The curves shown in the figure are similar to those shown in Fig. 9 for SAHT. The increase of FR leads to gradually increasing temperature lift but drastic COP reduction, which can be explained by the same reason as that of SAHT. The maximum COP value is around 0.322 regardless of the waste heat temperature. Comparing to SAHT, the impact of FR on the COP is amplified in DAHTs. Since the increase of FR in DAHTs implicates even smaller differences between the concentrations of strong and the medium solutions in the H-Absorber, the output heat from the absorber reduces more steeply than that in SAHT, which sometimes can even drop to null and leads to a COP near 0 as shown in the Fig. 13.

3.3. DeAHT

As foregoing process description in Section 2.5, the operational condition in DeAHT is relatively demanding than other cycles studied in this work. It requires both the strong solution concentration and waste heat source temperature to be high enough to achieve the heat balance in the L-Generator and ensure the cycle implementation. In this work, 10°C condensation temperature and 150 W/K heat transfer performance are applied to the calculation in order to maximise the usage of waste heat in the temperature range. In this instance, the threshold of the strong solution concentration and the waste heat temperature is 0.48 and 44°C, respectively.

Fig. 15 shows the temperature lift and the COP of DeAHT against strong solution concentration. Due to the double effect generation, the maximum COP value of the DeAHT is about 0.65, which is about 35% and 100% higher than those of SAHT and DAHTs respectively; however, the corresponding temperature lift is much lower than those of SAHT and DAHTs. The DeAHT can only achieve a temperature lift of 0.8–13.4°C with 44°C waste heat, 1.8–16.2°C with 50°C waste heat and 5.3–24.3°C with 60°C waste heat. As an input parameter, higher strong solution concentration causes a lower pressure in the L-Absorber as can be seen in Fig. 6(b), thus relatively lower medium and weak solution concentrations are expected that results in a lower output temperature in absorber and then smaller temperature lift. With higher strong solution concentration, the larger concentration difference among the involved three solutions implies a lower value of FR, e.g. FR decreases from about 12.4 to 0.8 when \(x_s \) increases from 0.52 to 0.6 for 60°C waste heat. However, the reducing FR does not lead to an increasing COP of DeAHT as SAHT and DAHT do. The reason of this contradictory result could be possibly explained as DeAHT requires quite large concentration difference when \(x_s \) is high, e.g. \(x_m = 0.27 \) and \(x_w = 0.38 \) when \(x_s = 0.6 \), then the non-linear variation of the LiBr solution enthalpy against solution concentration causes the non-linear changes of input/output heat and generally increasing system COP with \(x_s \).

The COPs of DeAHT shown in Fig. 16 is in the range of 0.664–0.835 and is in function of waste heat temperature, upgraded temperature and strong solution concentration. The graphic information suggests each optimal strong solution concentration to obtain maximum COP value when the waste heat is at 48°C, 52°C, 54°C and 60°C, respectively. The DeAHT with waste heat source at other temperatures in Fig. 16 has untapped potential under the studied condition due to the aforementioned demanding operational requirement.

3.4. Comparison of AHTs

The performance comparison of SAHT, the best DAHT, i.e. DAHT-4, and DeAHT is presented in Fig. 17(a) to (c) in terms of the temperature lift, COP and COPe, respectively, while Table 2 lists the optimal working performances of these AHTs based on the maximum COPe values.

It is noticeable that the SAHT performance is in between the other two systems, with medium temperature lift as well as medium efficiencies. The DAHT-4 has the largest temperature lift, but with the lowest COP and COPe. The DeAHT exhibits the best heat transformation COP with the lowest temperature lift for the ultralow grade waste heat utilisation studied in this work. It should be noticed that the COPe of DeAHT is not better than that of SAHT. Because of the demanding operational conditions, relatively lower temperature lift, modest COPe and relatively complex configuration, the DeAHT is not recommended for heat transformation of 40–60°C ultralow grade heat despite of its highest COP.
4. Conclusions

The present paper investigated the absorption heat transformers to upgrade the ultralow grade waste heat in the temperature range from 40 to 60 °C. The performance of a single stage, four double stage and a double effect absorption heat transformers were numerically analysed and compared while the analytical methods have been validated with experimental data from other studies and also been constructed with other numerical approaches. The conclusions are summarised as follows.

1. The condensation temperature T_c had significant effect on temperature lift but hardly influenced the system efficiency. The recirculation flow ratio, FR, was found to be the most crucial factor for the AHTs performance. The temperature lift increased while COP decreased with the increasing FR value; there was an optimal value of FR to achieve maximum COP, which reflected the temperature lift and the COP simultaneously.

2. SAHT yielded a medium temperature lift with medium system efficiency. The optimal value of FR was in the range of 10–12, depending on different waste heat temperature, and that led to the maximum COP of 0.803–0.828 with the COP value ranging from 0.466 to 0.475 and the temperature lift from 17.1 to 34.7 °C.

3. DAHTs sacrificed the system efficiency to achieve higher temperature lift; DAHT-4 was the best DAHT among those studied in this work, which had the optimal performance of the COP at 0.657–0.708, the COP at 0.292–0.301 and the temperature lift at 31.8–68.6 °C when FR was at 6.

4. The DeAHT application was limited by the requirements of relatively high input temperature and high concentration of the strong solution. It achieved the highest system COP and COPe compared to the other cycles studied; however, its temperature lift was the lowest. Provided with its other limitations, the DeAHT was considered to be not suitable for the upgrading of ultralow temperature waste heat.

Acknowledgements

The authors gratefully acknowledge the support from the IAA project (Impact Acceleration Account) (EP/K503885/1) and IDRIST project (EP/M008088/1), funded by the Engineering and Physical Science Research Council of UK.

Nomenclature

- COP: Coefficient of performance [-]
- COPe: Exergy coefficient of performance [-]
- FR: Recirculation flow ratio [-]
- f: Flow fraction [-]
- h: Enthalpy [J/kg]

Table 2

<table>
<thead>
<tr>
<th></th>
<th>SAHT</th>
<th></th>
<th></th>
<th>DAHT-4</th>
<th></th>
<th></th>
<th>DeAHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 °C</td>
<td>50 °C</td>
<td>60 °C</td>
<td>40 °C</td>
<td>50 °C</td>
<td>60 °C</td>
<td>44 °C</td>
</tr>
<tr>
<td>FR (-)</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5.86</td>
</tr>
<tr>
<td>x_s</td>
<td>0.483</td>
<td>0.542</td>
<td>0.591</td>
<td>0.483</td>
<td>0.542</td>
<td>0.591</td>
<td>0.48</td>
</tr>
<tr>
<td>Temperature lift (°C)</td>
<td>171</td>
<td>25.0</td>
<td>34.7</td>
<td>31.8</td>
<td>49.1</td>
<td>68.6</td>
<td>13.4</td>
</tr>
<tr>
<td>COP (-)</td>
<td>0.471</td>
<td>0.475</td>
<td>0.475</td>
<td>0.301</td>
<td>0.295</td>
<td>0.292</td>
<td>0.625</td>
</tr>
<tr>
<td>COPe (-)</td>
<td>0.828</td>
<td>0.808</td>
<td>0.803</td>
<td>0.708</td>
<td>0.675</td>
<td>0.657</td>
<td>0.835</td>
</tr>
</tbody>
</table>

\(\dot{m} \) Mass flow rate [kg/s]

\(Q \) Heat [J]

\(T \) Temperature [°C]

\(\Delta T \) Temperature lift [°C]

\(\Delta T_{\text{LMTD}} \) Logarithmic mean temperature difference [°C]

\(UA \) Heat exchanger performance [W/K]

\(x \) Solution concentration by weight [-]

\(a \) Absorber

\(e \) Evaporator

\(g \) Generator

\(H, h \) High pressure

\(\text{HE} \) Heat exchanger

\(L, l \) Low pressure

\(m \) Medium solution

\(r \) Refrigerant

\(s \) Strong solution

\(w \) Weak solution

References

