Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol–diesel blends.
Energy Conversion and Management 2015, 106, 748-758.

Copyright:
© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:
http://dx.doi.org/10.1016/j.enconman.2015.10.031

Date deposited:
21/04/2016

Embargo release date:
23 October 2016
Title: Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol-diesel blends

Author names and affiliations:
Haozhong Huang¹, Qingsheng Liu¹, Ruzhi Yang¹, Tianru Zhu¹, Ruiqing Zhao¹, Yaodong Wang²

1. College of Mechanical Engineering, Guangxi University, Nanning 530004, China
2. Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

Corresponding author:
Haozhong Huang, College of Mechanical Engineering, Guangxi University, P.R.China, Daxuedong Road 100, Xixiangtang District, Nanning, China, 530004, Tel./Fax: +86 771 3232294. E-mail:

hhz421@gxu.edu.cn (H. Huang).
Abstract

The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in high-speed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NOx and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NOx emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NOx and soot emissions decreasing. The simulation of the combustion of n-butanol-diesel fuel blends, which was based on the n-heptane-n-butanol-PAH-toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals was able to delay the ignition time.

Keywords: n-butanol-diesel blends, pilot injection, kinetic simulation, Engine performance, Exhaust emission

1. Introduction
The high compression ratio and inherent lean burn of diesel engines allow for highest thermal efficiency, enabling heat dissipation by the excess air. However, diesel engines produce diesel exhaust that contains fine and harmful particles; nowadays researches aim to achieve the highest efficiency and lowest emissions.

For traditional combustion, a reciprocal relationship between NOx and PM (soot) emissions is established, thus the higher the emissions of NOx, the lower the PM emissions, and vice-versa. To reduce both, controlling the combustion temperature of the fuel in the engine cylinder (low temperature combustion), is considered as a promising method. The effects of low temperature combustion on diesel engine performance, combustion, and emissions have been deeply investigated [1-4].

In recent years, the energy consumptions and the depletion of fossil fuels including petroleum are increasing rapidly and the need of an alternative suitable fuel for traditional internal combustion engines is being felt. N-butanol is regarded as one of the most representative of green substitute fuels [5 – 7] and its use was investigated in different engines [8 – 10]. Compared with methanol and ethanol, n-butanol is more soluble in diesel fuel, does not corrode carbon steel and is hydrophilic. Moreover, n-butanol has higher gross calorific value, higher carbon content and higher cetane number, lower evaporating pressure and auto-ignition temperature, it is easy to evaporate, has a wider range of air-fuel ratio, higher flashing point, and it is accessible for current fuel transportation equipment with higher security [11-14]. In addition, as oxygenated fuel, blending n-butanol to diesel could bring in more oxygen in fuel-enriched area, and the oxygen atom could react with the soot precursor to reduce the soot emission [15]. Valentino et al. [16] studied the influence of inlet oxygen concentration on combustion and emission performances of n-butanol/diesel fuel blends in low temperature combustion, conducting tests at constant speed and constant load. The results showed that soot emissions reduce
with the increase of the inlet oxygen concentration.

Although many researchers [17-22] investigated engine performance and exhaust emissions in diesel engines fueled with diesel-n-butanol blends, only a few papers focus on the use of such blends at low temperature combustion and on the effects on engine performance and exhaust emissions. Zheng et al. [23] experimentally investigated the effect of two-stage injection on combustion and emissions under high exhaust gas recirculation (EGR) rate on a diesel engine fueled with n-butanol/diesel fuel blend. Results show that blending n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR).

The fuel injection system remarkably influences combustion and emissions of diesel engines. High-pressure common rail injection system can affect the spray characteristics and combustion process by controlling the injection quality, injection pressure, and injection timing precisely and flexibly. A multiple injection system is regarded as a vital solution to reduce NOx and soot emissions simultaneously [24-28]. Pilot injection can improve the combustion and emission performance by adequate pilot injection fuel mass and timing. Thurnheer [29] conducted his research at constant speed, load, EGR ratio, and air-fuel ratio to study the effect of pilot injection timing and pilot-injection fuel mass on combustion and emissions of a heavy diesel engine. The results reveal that advancing pilot injection timing, the combustion starting point advances and pilot injection delay prolongs. Moreover, timing and mass of pilot injection have a little influence on heat release peak in main-injection, and the smaller pilot injection fuel mass can reduce the soot mass.

Although some studies on the use of butanol on engines have been conducted, nowadays the mechanisms that influence the pilot injection and the emissions of diesel engines fueled with n-butanol-diesel fuel blends remain largely unknown. Besides, compared to conventional combustion
mode, low temperature combustion often adopts large EGR ratio to reduce the in-cylinder temperature, NOx, and soot emissions simultaneously. However, a largest EGR ratio would deteriorate the combustion, increase the fuel consumption, lower down the combustion efficiency, and increase HC emissions. Compared to diesel fuel, n-butanol has a lower cetane number; blending it with diesel may reduce the cetane number of the blend, and prolong the ignition delay period. This may allow the fuels have adequate time to mix with air to reduce in-cylinder temperature. This study aims to investigate the effects of pilot-injection timing and the fuel mass of pilot injection on low temperature combustion and on the performance of combustion and emissions when using n-butanol/diesel blends. The study adopts a high speed, four-cylinder, common-rail diesel engine under the operating condition of medium EGR ratio.

2. Experimental setup and methods

2.1 The experimental setup

Figure 1 shows the sketch of the experimental apparatus, while Table 1 summarizes the technical specifications of test engine. The test system consisted of an engine, a dynamometer and its controller, a fuel supply system (including a fuel tank, a fuel filter, a fuel consumption monitor, a fuel pump and pipe lines); a data acquisition unit, an EGR unit, an exhaust gas analyzer and a smoke meter, sensors dedicated to the measurement of crank angle, temperatures, and in cylinder pressure.
Table 1

Technical specification of test engine

<table>
<thead>
<tr>
<th>Model</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cylinders</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder diameter (mm)</td>
<td>85</td>
</tr>
<tr>
<td>Number of valves</td>
<td>16</td>
</tr>
<tr>
<td>Stroke (mm)</td>
<td>88.1</td>
</tr>
<tr>
<td>Displacement (L)</td>
<td>1.99</td>
</tr>
<tr>
<td>Maximum torque (Nm)</td>
<td>286</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>16.5</td>
</tr>
<tr>
<td>Rated Power (kW)/ Speed(r/min)</td>
<td>100/4000</td>
</tr>
</tbody>
</table>

1: Diesel fuel tank; 2: Fuel filter; 3: Fuel consumption monitor; 4: High pressure fuel pump; 5: ECU; 6: Data acquisition; 7: ECU controller; 8: Dynometer controller;
The testing engine adopted variable-geometry turbocharger (VGT), EGR, direct-injection, and high-pressure common rail fuel injection system. A measurement, calibration and diagnostic software (INCA, by ETAS) and a Bosch open-type ECU (Engine Control Unit) controlled the common rail fuel injection system. Through ECU, users accommodated parameters like injection fuel mass, injection timing, rail pressure, and pilot injection. Besides, INCA adjusted the opening of EGR valve and nozzle flow area to control the EGR ratio and inlet pressure. A piezoelectric transducer (Kistler 6052CU20) installed on the cylinder head at the position of the glow plug measured the in-cylinder pressure; using these data coming from the piezo-transducer, the rate of heat release and that of pressure rise were calculated. The exhaust emissions from diesel combustion and n-butanol-diesel blends fuel combustion were measured and analyzed with a NOx analyzer (AVL DiGas 4000 Light) and a soot analyzer (AVL Dismoke 4000).

2.2 Experimental fuels

The commercially available 0# diesel fuel, which meets the China Stage III standard for diesel
fuels (equivalent to European III standard), was used as the base fuel. \textit{n}-butanol purchased from local commercial representatives certified to a purity of 99.5\% (analytical grade), was chosen as the oxygenated alternative fuel in addition to the base fuel. Blends of 0\%, 20\%, and 30\% by volume fraction of \textit{n}-butanol were tested, expressed as B0, B20, and B30 according to Zheng Chen [30]. B0 represents neat diesel used for all baseline runs; B20, B30 were used to investigate the influence of \textit{n}-butanol ratio (concentration) on combustion performance and emissions of the engine. EGR ratios were set as 0\% and 25\% respectively. According to author’s previous study, as for soot the 25\% EGR rate is a turning point before drastic increase. Due to their different fuel properties, the smoke values of the fuels are quite different at 25\% EGR rate, as would be explained in detail in following sections.

Table 2 summarizes the properties of diesel and \textit{n}-butanol. The \textit{n}-butanol has higher oxygen concentration and lower cetane number than diesel, so the more the butanol is blended, the higher the oxygen concentration and lower cetane number in the blend.

\textbf{Table 2}

<table>
<thead>
<tr>
<th>Fuel properties</th>
<th>Diesel fuel</th>
<th>\textit{n}-Butanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density at 20 °C (g/ml)</td>
<td>0.84</td>
<td>0.81</td>
</tr>
<tr>
<td>Cetane number</td>
<td>50-53</td>
<td>~25</td>
</tr>
<tr>
<td>Lower calorific value (MJ/kg)</td>
<td>43</td>
<td>33.1</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>200-220</td>
<td>385</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>180-230</td>
<td>117.7</td>
</tr>
<tr>
<td>Stoichiometric air fuel ratio</td>
<td>15</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Properties of diesel and n-butanol are from the Ref. [30]

2.3 Experimental tests

Engine performance and exhaust emission tests were performed under the same environmental conditions for each blend. The engine speed was kept at constant speeds of 2000 rpm corresponding to the maximum brake torque conditions. During the engine tests, cooling water temperature was stable at 85±3 °C via PT-100 temperature sensors, the inlet air temperature was 30±2 °C, the inlet air pressure was 0.183 MPa, the main-injection timing of fuel set at -8°CA ATDC (after top dead center), and injection pressure was 120 MPa. The total heat value of each cycle for each fuel was kept constant, which was equal to 30 mg/cycle of diesel according to the lower heating value.

The pilot-injection fuel mass was set at 6 mg. Three different pilot-injection timings (-30 °CA ATDC, -45 °CA ATDC, and -60 °CA ATDC) were designed and tested separately. According to author’s previous study, over advanced pilot injection timings result in unacceptable maximum pressure rise rate, while a deteriorated thermal efficiency and unstable combustion always accompanies with an over late injection timing. Therefore, to ensure thermal efficiency and stable operation to the engine, the pilot injection timing was selected within the range (-30 °CA ATDC, -45 °CA ATDC, and -60 °CA ATDC).

The pilot-injection timing was set at -30 °CA ATDC; the total injection mass controlled the total heat value of each cycle for each fuel was kept constant, equal to 30 mg/cycle of diesel according to the lower heating value. Four different pilot-injection masses (2 mg, 4 mg, 6 mg, and 8 mg respectively)
were designed and tested separately. 2 mg was the minimum value of pilot-injection masses in the engine map tested.

The engine operated with either diesel fuel or diesel/n-butanol blends for 10 min to warm up and then tests on engine performance and exhaust emissions parameters with different fuels were carried out according to ISO 8178-6 standard requirements [31]. To avoid the effects of atmospheric humidity and temperature variations, and to ensure measurement precision, experiments were all performed on the same day. To reduce experimental uncertainty and increase the reliability of test results, tests were repeated three times.

Table 3 summarizes the measurements uncertainty. Total uncertainty = Square root of $\{(\text{uncertainty of NOx})^2 + (\text{uncertainty of Soot})^2 + (\text{uncertainty of load})^2 + (\text{uncertainty of speed})^2 + (\text{uncertainty of temperature})^2 + (\text{uncertainty of air flow rate})^2 + (\text{uncertainty of diesel fuel measurement})^2 + (\text{uncertainty of n-butanol measurement})^2 + (\text{uncertainty of pressure pickup})^2 + (\text{uncertainty of crank angle encoder})^2\}$

$= \text{Square root of } \{(1)^2 + (0.1)^2 + (0.2)^2 + (0.1)^2 + (0.15)^2 + (1)^2 + (1)^2 + (1)^2 + (0.1)^2 + (0.2)^2\}$

$= 4.13\%$.

Table 3. Uncertainties and experimental measurement techniques

<table>
<thead>
<tr>
<th>Measurement</th>
<th>% Uncertainty</th>
<th>Measurement technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>±1</td>
<td>Electrochemical measurement</td>
</tr>
<tr>
<td>Soot</td>
<td>±0.1</td>
<td>Light transmittance method</td>
</tr>
<tr>
<td>Parameter</td>
<td>± Value</td>
<td>Measurement Method</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Load</td>
<td>±0.2</td>
<td>Strain gauge type load cell</td>
</tr>
<tr>
<td>Speed</td>
<td>±0.1</td>
<td>Magnetic pickup principle</td>
</tr>
<tr>
<td>Temperature</td>
<td>±0.15</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>Air flow rate</td>
<td>±1</td>
<td>Orifice meter</td>
</tr>
<tr>
<td>Diesel fuel measurement</td>
<td>±1</td>
<td>Volumetric measurement</td>
</tr>
<tr>
<td>N-butanol measurement</td>
<td>±1</td>
<td>Volumetric measurement</td>
</tr>
<tr>
<td>Pressure pickup</td>
<td>±0.1</td>
<td>Magnetic pickup principle</td>
</tr>
<tr>
<td>Crank angle encoder</td>
<td>±0.2</td>
<td>Magnetic pickup principle</td>
</tr>
</tbody>
</table>

2.4 Numeric setup

To better understand the mechanism by which the increase of n-butanol ratio prolongs the ignition delay, a zero-dimensional combustion model of engine was established by using chemical kinetics software CHEMKIN. To simulate the combustion of n-butanol-diesel fuel blends, Zhou et al. proposed a simplified reaction mechanism for n-heptane-n-butanol-PAHs-toluene mechanism [32]. The parameters of engine simulation are the same as in the experimental engine. All simulations were conducted at engine speed of 2000 rpm, inlet temperature of 300 k, and inlet pressure of 0.183 MPa.

3. Results and discussion

3.1 Effects of pilot injection timing

Figure 2 shows the results of in-cylinder pressure and heat release using the B20 fuel blend (EGR ratio kept at 25%). The curves show two different peaks for heat release rate corresponding to the pilot injection and to the main injection, respectively. With the increase of pilot injection timing, the peak value of heat release rate in pilot injection reduces when pilot injection timing occurs earlier. In fact, when the piston is far from TDC (top dead center) the volume is larger, and temperature and pressure are lower. The longer ignition delay time promotes the formation of lean and even mixture, which
slows down the heat release rate and lowers the peak value.

The advance of pilot injection timing leads the heat release rate peak value in the main injection
ascend slightly because the in-cylinder pressure and temperature are low when fuel is pre-injected. The
ignition delay prolongs to form lean and even mixture; the excessively lean mixture delays the
combustion of the blends backward to the main injection period, increasing the fuel mass in the
combustion related to the main injection, and causing the ascend of heat release rate peak value.
However, the heat release of main injection occurred after TDC and the cylinder volume enlarges
lowering the combustion temperature; thus, the advance of pilot injection timing, leads to decline the
peak value of combustion pressure in main injection period.

When delaying pilot injection time, the higher pressure and temperature in cylinder enable the
pre-injected fuel reaching the ignition point quickly. This causes the increase of the pressure in the
cylinder, as Figure 2 shows. The in-cylinder pressure for the pilot injection timing at ATDC -30 °CA is
higher than that of – 45 °CA and – 60 °CA. Less obviously, the cylinder pressure increases when the
pilot injection time delays from -45 °CA to -60 °CA mainly because the lower initial temperature and
pressure in cylinder affect the subsequent burning, leading the cylinder pressure increase.
Fig. 2 In-cylinder pressure and heat release rate using B20 for different pilot injection timing

![Graph showing in-cylinder pressure and heat release rate](image)

Fig. 3 In-cylinder pressure and heat release rate for different n-butanol ratio at EGR 25%

![Graph showing in-cylinder pressure and heat release rate](image)

Figure 3 shows the in-cylinder pressure and heat release rate using B0, B20, and B30 (settings: EGR ratio 25%, pilot injection fuel mass 6 mg, and pilot injection timing -60 °CA ATDC): with the increase of n-butanol ratio, the ignition delay prolongs and heat release timing postpones.

To investigate the influence of addition of n-butanol on the key chemical reactions that determine the ignition timing, sensitivity analysis of ignition timing for B0 and B20 were conducted at zero EGR...
ratios. Fig.4 and Fig.5 were the analysis consequences for key reactions which determined the ignition time. The pictures demonstrated that adding n-butanol, the key reactions nearly were the same for different fuel; however, in the key reaction that took place in B20 blend the dehydrogenation reaction between n-butanol and OH free radicals damped the ignition. The dehydrogenation reaction first occurred in n-heptane to generate OH free radicals, and the addition of n-butanol consumed OH free radicals, which caused n-heptane lack adequate free radicals to have further reactions. Thus, the addition of n-butanol hindered the combustion and the ignition time delayed.

\[
\begin{align*}
\text{c7h15o2+o2} & = \text{c7ket12+oh} \\
\text{c7ket12} & = \text{c5h11co+ch2o+oh} \\
\text{nc7h16+o2} & = \text{c7h15-2+ho2} \\
\text{nc7h16+oh} & = \text{c7h15-2+h2o} \\
\text{nc7h16+ho2} & = \text{c7h15-2+h2o2} \\
\text{c7h15-2+o2} & = \text{c7h15o2} \\
\text{ch3o2+ho2} & = \text{ch3o2h+o2} \\
\text{h2o2(+m)} & = \text{oh+oh(+m)} \\
\text{ch3+ho2} & = \text{ch3o+oh} \\
\text{c7h15-2} & = \text{c2h5+c2h4+c3h6} \\
\text{ch3o2+oh} & = \text{ch3o+o2}
\end{align*}
\]

Fig.4 Temperature A-factor sensitivities at the time of ignition for n-butanol combustion, B0, EGR0...
Fig. 5 Temperature A-factor sensitivities at the time of ignition for 1-butanol combustion.

B20, EGR0

Fig. 6 shows the mole fraction of n-heptane consumed through reaction R2 of the total n-heptane consumption during the period from the beginning to 20% of fuel quality consumption (zero EGR ratio). The picture shows that the increase of n-butanol ratio continuously decreases the fraction of n-heptane consumed through the reaction between n-heptane and OH. Because the addition of n-butanol consumed OH, the quantity of OH that would react with n-heptane decreases, the mole fraction decreases by preventing the combustion process and delaying the ignition time.

Fig. 6 Mole fraction of n-heptane consumption
Figure 7 demonstrates the effect of pilot injection timing on maximum pressure rise rate for different n-butanol ratios (EGR 25%). The curves show that in all tests the maximum pressure rise rate increases with the advance of pilot injection. In fact, the in-cylinder pressure (see Figure 2) and temperature are lower when fuels are pre-injected and the mixture of fuel and air is too lean to burn. The mixture burns rapidly together with the fuel injected during the main injection period and causes the ascending maximum pressure rise rate.

Figure 7 also shows that the maximum pressure rise rate ascends with the increase of n-butanol. In fact, with the increase of n-butanol, fuel cetane number and lower calorific value decrease. Moreover, extending ignition delay allows more combustible mixture generate. The mixture burns rapidly with the fuel in the main injection period, causing the maximum pressure rise rate ascending.

Figure 8 shows the effect of pilot injection timing on the maximum pressure rise rate in the main injection period using B20 at different EGR rates. The curves show that the maximum pressure rise rate decreases with the increasing of EGR ratios. Thus, EGR reduces the maximum pressure rise rate. In fact, the introduction of EGR prolongs the ignition delay by reducing the oxygen concentration in
cylinder. Due to EGR, the specific heat increases, the main combustion rate slows down and the maximum pressure rise rate reduces, softening the combustion.

Figure 9 shows the effects of pilot injection timing on brake specific fuel consumption (BSFC) at different \(n\)-butanol ratios at EGR ratio 25\%, while Figure 10 shows the same effects using B20 at different EGR ratios.

Curves highlight that the advance of pilot injection timing leads to BSFC increasing; moreover, the brake thermal efficiency decreases because the heat release of pilot injection occurs far away from TDC, increasing heat transfer loss, frictional loss, and negative compression work of air/fuel mixture. These changes decrease brake thermal efficiency, thus BSFC increase.

Figure 12 also shows how the brake specific fuel consumption ascends with the increase of \(n\)-butanol ratios: \(n\)-butanol has a LHV (Low heating value) smaller than diesel, and the increase of \(n\)-butanol ratios and constant injection fuel mass per cycle cause the total heat release decrease. Thus, output work reduces, the brake thermal efficiency descends, and the BSFC ascends, as shown in Figure 11 and 12.

Fig. 9 Effect of pilot injection timing on BSFC at different \(n\)-butanol ratio
Fig. 10 Effect of pilot injection timing on BSFC at different EGR rate
Fig. 11 Effect of pilot injection timing on brake thermal efficiency at different n-butanol ratio

Fig. 12 Effect of pilot injection timing on brake thermal efficiency at different EGR rate

Fig. 13 Effect of pilot injection timing on NO\textsubscript{x} emission at different n-butanol ratio

Fig. 14 Effect of pilot injection timing on NO\textsubscript{x} emission at different EGR rate

Figures 10 and 12 show that with the increase of EGR ratio the brake specific fuel consumption increases and the brake thermal efficiency decreases since the introduction of EGR dilutes the mixture lowering the combustion temperature.

To take the humidity effect on NO\textsubscript{x} formation into account, a dimensionless correction factor was calculated as [33]:
where H_a humidity of the intake air (g H$_2$O/kg dry air) and T_a temperature of the intake air (K). H_a and T_a were measured by AR807 with an accuracy of ± 5 RH% and ± 1 °C. The concentration values of NO$_x$ emissions are converted into mass values using the following relationship:

$$NO_x(\text{mass}) = 0.001587 \times [NO_x]_{\text{wet}} \times k_{h,D} \times G_{EXHW}$$

where NO$_x$(mass) is the corrected emission concentration (g/h), [NO$_x$]$_{\text{wet}}$ is the emission concentration on a wet basis (ppm) and G_{EXHW} are the exhaust gas average molecular weights (g/h) [33,34]. The emission results were expressed on brake specific (g/kW h) basis for each test case examined in below.

Figure 13 shows the effect of pilot injection timing on NO$_x$ emission at different n-butanol ratios, with EGR ratio as 25%. Figure 14 shows the same effects using B20 at different EGR ratios. Figures 13 and 14 show that advancing pilot injection timing allows NO$_x$ emission decrease. It is well known NO$_x$ strongly depends on in-cylinder temperature [35,36]. The in-cylinder pressure and temperature are lower when fuel is pre-injected; the ignition delay prolongs to form the excessively leaner air/fuel mixture, then the combustion temperature reduces, and NO$_x$ emissions reduce.

Figure 13 also shows that with the increase of n-butanol ratio, NO$_x$ emissions decrease because the increasing of n-butanol ratio prolongs the ignition delay and fuel has adequate time to mix with air to form a leaner and even mixture. In addition, the LHV of n-butanol is lower than diesel fuel, causing lower combustion temperature and lower NO$_x$ formation and emissions. Figure 14 shows that with the increase of EGR ratio, the NO$_x$ emission decreases mainly because the introduction of EGR reduces the oxygen concentration, increasing the specific heat and lowering the combustion temperature, which reduce NO$_x$ formation and emission.
Figure 15 shows the effect of pilot injection timing on soot emission at different \(n \)-butanol ratios and EGR ratio 25%. The curves show that the soot emission decreases with the advance of pilot injection timing because it ensures the fuel having adequate time to blend with the air in cylinder to form even combustible mixture; the combustion processes more thoroughly and the soot emission decreases. Figure 15 also demonstrates that the increase of \(n \)-butanol ratio reduces soot emissions because the long ignition delay period of \(n \)-butanol ensures an adequate mixture between fuel and air. Besides, the oxidation of oxygen atom of \(n \)-butanol can reduce the generation of soot.

Figure 16 shows the effect of pilot injection timing on soot emissions for B20 at different EGR ratios. The figure shows that the introduction of a medium EGR ratio causes soot emissions ascending because the addition of EGR lowers combustion temperature leading to the incomplete combustion. Moreover, the high specific heat of EGR lowers the combustion temperature, which has a negative effect on soot oxidation. Besides, when the pilot injection timing delays, the main-injected fuel comes into the combustion process of pilot injection fuel and causes oxygen deficiency, increasing the soot emission.
Table 4 compares different engine performances fueled with B20 and with B0 fixing the pilot-injection timing at -30 °CA ATDC, the pilot injection mass at 6 mg.

Table 4

Relative engine performances under different pilot-injection timing

<table>
<thead>
<tr>
<th>Pilot injection Timing (°CA ATDC)</th>
<th>Relative BSFC (%)</th>
<th>Relative brake thermal efficiency (%)</th>
<th>Relative NOx(%)</th>
<th>Relative soot (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>-10.3%</td>
<td>-6.1%</td>
<td>-14.0%</td>
<td>-35.8%</td>
</tr>
<tr>
<td>-45</td>
<td>-11.3%</td>
<td>-7.0%</td>
<td>-23.6%</td>
<td>-49.3%</td>
</tr>
<tr>
<td>-60</td>
<td>+20.0%</td>
<td>-12.2%</td>
<td>-49.0%</td>
<td>-64.2%</td>
</tr>
</tbody>
</table>

The more advanced the pilot-injection timing, the less the emissions of NOx and soot; however, BSFC increased and thermal efficiency decreased.

3.2 **Effect of the fuel mass on pilot injection**

Figure 17 and Figure 18 show the combustion performance for different fuel mass of pilot injection using different n-butanol ratios when EGR is set to 0 and to 25%; increasing the fuel mass pilot injection, two stages of heat release occur. The first stage takes place in pre-injected fuel, while the second stage in main-injected fuel wherein the instant heat release peak-value descends and combustion pressure peak value ascends. The trend refers to the increase of pilot injection fuel mass, when more heat is released causing the instant heat release peak-value for pre-injected fuel arise. As the pilot injection fuel mass increases, the main-injected fuel mass reduces when the total amount of the fuel injection is fixed. Thus, the instant heat release peak-value for main injected fuel descends. In
addition, the higher heat release from pre-injected fuel leads to pressure and combustion chamber temperature increase, and the main injected fuel intensifies the combustion process.

Fig. 17 Combustion performance for different pilot injection fuel mass at different \(n \)-butanol ratio (EGR = 0)

(a) B20, effect of pilot injection mass on in-cylinder pressure and heat release rate

(b) B30, effect of pilot injection mass on in-cylinder pressure and heat release rate

(a) B20, the effect of pilot injection mass on in-cylinder pressure and heat release rate

(b) B30, the effect of pilot injection mass on in-cylinder pressure and heat release rate

Fig. 18 Combustion performance for different pilot injection fuel mass at different \(n \)-butanol ratio
Figure 19 shows the effect of pilot injection fuel mass on CA50 (for a single cylinder CA50 is defined as the crank angle corresponding to 50% of the maximum apparent heat release) at different n-butanol ratios, when EGR ratio is 25%. The curves show that with the increase of pilot injection fuel mass, CA50 advances because the higher heat released and the ignition delay of main injection fuel shortened. Therefore, the heat release rate of main injection phase is faster, and advances the CA50. Figure 19 also shows that CA50 advances with the increase of n-butanol ratio because lower cetane number of n-butanol prolongs the ignition delay. Thus, the extension increases the pre-mixture of air/fuel, and oxygen atoms of n-butanol promote fuel oxidation to release heat. Besides, the higher volatility of n-butanol mixes it with air quickly to form additional air/fuel mixture.

Figure 20 shows the effects of pilot injection fuel mass on CA50 at different EGR rates using B20: with the increase of EGR, CA50 postponed And EGR reduces the mixture oxygen concentrations. Then, combustion rate slows down and temperature decreases, delaying the CA50.

![Fig. 19 Effect of pilot injection fuel mass on CA50 at different n-butanol ratios](image1)

![Fig. 20 Effect of pilot injection fuel mass on CA50 at different EGR rate](image2)
Figure 21 and Figure 22 show the effects of pilot injection fuel mass on brake specific fuel consumption and brake thermal efficiency at different n-butanol ratios; in both cases, EGR ratio is set at 25%. Figure 21 highlights that increasing pilot injection fuel mass increases brake specific fuel consumption because the pre-injected fuel burns far away from TDC, thus the negative compression work increases and lowers down the brake thermal efficiency.

Figure 21 also shows that increasing the n-butanol ratio while keeping the total injection fuel mass constant causes the brake specific fuel consumption increase. In fact, n-butanol has a lower Lower calorific value than diesel. Increasing of n-butanol ratio and keeping the total injection fuel mass constant, the total heat release of mixture decreases reducing the effective power. Thus, the brake thermal efficiency decreases and brake specific fuel consumption increases.

Figure 23 and Figure 24 shows the effect of pilot injection fuel mass on brake specific fuel consumption and brake thermal efficiency using B20 with different EGR rates. Figure 23 also shows that with the increase of pilot injection fuel mass, brake specific fuel consumption increases. Moreover, the figure shows how the EGR rate increases increasing the brake specific fuel consumption because the introduction of EGR reduces the oxygen concentration, making the combustion process incomplete.

Fig. 21 Effect of pilot injection fuel mass on BSFC at different n-butanol ratios

Fig. 22 Effect of pilot injection fuel mass on brake thermal efficiency at different n-butanol
Figure 25 shows the effect of pilot injection fuel mass on NO$_x$ emissions at different n-butanol ratios when EGR rate is 25%, while Figure 26 shows the same effects using B20 with different EGR rates. The figures show that with the increase of pilot injection fuel mass, NO$_x$ emissions increase because increasing the pilot injection fuel mass causes the air/fuel mixture in cylinder increase, and the temperature of the gases increases when the main injection fuel burns. The higher temperature in cylinder increases NO$_x$ emissions.

Figure 25 also shows that increasing n-butanol ratio NO$_x$ emissions decrease because the increasing of n-butanol ratio prolongs the ignition delay, giving fuel an adequate time to blend with air to form leaner and even mixture. In addition, the heating value of n-butanol is lower than diesel, thus combustion temperature is lower, and NO$_x$ formation and emissions reduces.

Figure 26 demonstrates that the NO$_x$ emissions decrease with the increase of EGR rate because increasing the EGR reduces the fresh air concentration and dilutes the air/fuel mixture. The combustion
rate slows down and the decrease of combustion temperature causes the reduction of NO\textsubscript{x} emissions.

Figure 25 shows the effect of pilot injection fuel mass on NO\textsubscript{x} emission at different n-butanol ratios when EGR rate was 25%, while Figure 28 shows the same effects using B20 at different EGR rates. Increasing the pilot injection fuel mass causes soot emissions decreasing at first. Then, they increase because the increase of pilot injection fuel mass promotes the evaporation and atomization of the main-injected fuel to form the even mixture, promoting soot emissions reduction.

In addition, the increase of pilot injection fuel promotes the formation of air/fuel pre-mixture. The main-injected fuel mass decreases and shortens the diffusive combustion stage. Since the soot generation process is mainly concentrated during the diffusive combustion stage, increasing the pilot injection fuel would reduce the soot emission. However, when pilot injection fuel increases further, the heat release increased further too shortening the main injection ignition delay. Thus, the mixing time for fuel and air also reduces and the mixture of air/fuel uneven, increasing soot emissions. Besides, when pilot injection fuel mass increases, the collision of atoms with walls takes place and this part of fuel evaporated too slowly to mix with air. The local formation of an excessive fuel-rich area avoids the
complete fuel combustion and increases soot emissions.

Fig. 27 Effect of pilot injection fuel mass on soot emission at different n-butanol ratios

Fig. 28 Effect of pilot injection fuel mass on soot emission at different EGR rate

Figure 27 also demonstrates that with the increase of n-butanol ratio, soot emissions decrease because the increase of n-butanol ratio prolongs the ignition delay, and fuel adequately blends with air reducing the local excessively fuel rich area and soot emissions. Besides, the n-butanol oxygen atoms oxidize soot decreasing further soot emissions. Figure 28 shows that a 25% EGR rate increases soot emissions because the addition of a certain amount of EGR decreases oxygen concentration causing the incomplete combustion. Moreover, the EGR higher specific heat capacity may decrease the combustion temperature and decreases further soot oxidation.

Table 5 compares engine performances in terms of relative differences considering an engine fueled with B20 compared to B0 fixing pilot-injection timing at -30 °CA ATDC, and pilot injection mass at 6 mg.
Table 5

Engine performances: comparison between B20 with B0 under different pilot-injection fuel mass

<table>
<thead>
<tr>
<th>Pilot injection fuel mass (mg)</th>
<th>Relative BSFC (%)</th>
<th>Relative brake thermal efficiency (%)</th>
<th>Relative NOₓ (%)</th>
<th>Relative soot (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>+6.3%</td>
<td>-2.6%</td>
<td>-29.9%</td>
<td>-64.2%</td>
</tr>
<tr>
<td>4</td>
<td>+7.9%</td>
<td>-4.1%</td>
<td>-25.5%</td>
<td>-76.1%</td>
</tr>
<tr>
<td>6</td>
<td>+10.3%</td>
<td>-6.1%</td>
<td>-14.0%</td>
<td>-35.8%</td>
</tr>
<tr>
<td>8</td>
<td>+11.7%</td>
<td>-7.3%</td>
<td>-9.8%</td>
<td>-32.8%</td>
</tr>
</tbody>
</table>

The table shows that when the pilot-injection mass of B20 fuel increases from 2 to 8, the BSFC increases gradually from 6.3% to 11.7% and the brake thermal efficiency decreases from 2.6% to 7.3%, the emissions of NOₓ reduce by 29.9%, 25.5%, 14.0% and 9.8% respectively, while soot reduces by 64.2%, 76.1%, 35.8% and 32.8% respectively. The table shows that when B20 fuel mass is 4 mg, a strong reduction of emissions of NOₓ and soot occurs, which does not affect BSFC and the thermal efficiency.

4. Conclusions

In this study, engine performance, combustion and exhaust emissions of turbocharged direct injection diesel engine were evaluated using n-butanol-diesel blends in low temperature combustion at medium EGR ratio; engine speed was constant at 2000 rpm and various pilot injection timing and pilot injection mass investigated. Effects of n-butanol properties of blends, and the effects of pilot injection
timing and pilot injection mass on engine performance and exhaust emissions were discussed in detail.

The main conclusions can be drawn:

- Addition of n-butanol to diesel leads to increase the maximum pressure rise rate and BSFC, advance CA50, while decrease NOx and soot emissions.

- The use of EGR delays CA50, increases BSFC and soot emissions, decreases NOx emissions.

Advancing the pilot injection timing decreases the heat release rate peak value of the pre-injected fuel, increases the peak value of heat release rate of the main-injected fuel slightly, decreases the combustion pressure peak value in the main injection period, increases the maximum pressure rise rate and BSFC while it decreases NOx and soot emissions.

- The more advanced the pilot-injection timing, the less NOx and soot emissions and thermal efficiency, while the more increasing BSFC.

- Increasing the pilot injection fuel mass increases the heat release peak value of pre-injected fuel, decreases the heat release peak value of main-injected fuel, increases the combustion pressure peak value, the BSFC and NOx emission, while soot emission decreases at first and then increases.

- When the injection mass of B20 is 4 mg, there is a strong reduction of emissions of NOx and soot, which affect little engine BSFC and its thermal efficiency.

Acknowledgement

The research is sponsored by projects of Natural Science Foundation of China (Grant No.51076033), and Natural Science Foundation of Guangxi (project Outstanding Young Scholarship Award, Grant No.2014GXNSFGA118005). This research is financially supported by the project of
outstanding young teachers' training in higher education institutions of Guangxi. This research outcome is also partly from a joint UK–China research project in Bio-fuel Micro-Tri generation with Cryogenic Energy Storage System funded by the Engineering and Physical Sciences Research Council of the UK.

452 References

[24] Badami M, Mallamo F, Millo F, Rossi EE. Influence of multiple injection strategies on emissions,
combustion noise and BSFC of a DI common rail diesel engine. SAE Tech Paper 2002; SAE
2002-01-0503.

by adjustment of injection parameters, boost pressure and EGR. SAE Tech Paper 2003; SAE
2003-01-0343.

[26] Hotta Y, Inayoshi M, Nakakita K, Fujiwara K, Sakata I. Achieving lower exhaust emissions and
better performance in an HSDI diesel engine with multiple injections. SAE Tech Paper 2005; SAE
2005-01-0928.

[27] Cheolwoong P, Sanghoon K, Choongsik B. Effects of multiple injections in a HSDI diesel engine

[28] Beatrice C, Belardini P, Bertoli C, Del Giacomo N. Downsizing of common rail D.I. engines:
influence of different injection strategies on combustion evolution. SAE Tech Paper 2003; SAE
2003-01-1784.

investigation on different injection strategies in a heavy-duty diesel engine: Emissions and loss

[31] EN ISO 8178-6. Reciprocating internal combustion engines-exhaust emission measurement-Part 6:
Report of measuring results and test. European Committee for Standardization, Brussels, Belgium;
2000.

Table captions:

Table 1 Technical specification of test engine.

Table 2 Fuel properties.

Table 3 Uncertainties and experimental measurement techniques.

Table 4 Relative engine performances under different pilot-injection timing.

Table 5 Engine performances: comparison between B20 with B0 under different pilot-injection fuel mass.

Figure captions:

Fig. 1 Schematic diagram of the experimental system.

Fig. 2 In-cylinder pressure and heat release rate using B20 for different pilot injection timing.

Fig. 3 In-cylinder pressure and heat release rate for different n-butanol ratio at EGR 25%.

Fig. 4 Temperature A-factor sensitivities at the time of ignition for n-butanol combustion, B0, EGR0.

Fig. 5 Temperature A-factor sensitivities at the time of ignition for 1-butanol combustion, B20, EGR0.

Fig. 6 Mole fraction of n-heptane consumption.

Fig. 7 Effect of pilot injection timing on the maximum pressure rise rate (different n-butanol ratio).

Fig. 8 Effect of pilot injection timing on the maximum pressure rise rate (different EGR rates).

Fig. 9 Effect of pilot injection timing on BSFC at different n-butanol ratio.

Fig. 10 Effect of pilot injection timing on BSFC at different EGR rate.

Fig. 11 Effect of pilot injection timing on brake thermal efficiency at different n-butanol ratio.

Fig. 12 Effect of pilot injection timing on brake thermal efficiency at different EGR rate.

Fig. 13 Effect of pilot injection timing on NOx emission at different n-butanol ratio.
Fig. 14 Effect of pilot injection timing on NOx emission at different EGR rate.

Fig. 15 Effect of pilot injection timing on soot emission (different n-butanol ratio).

Fig. 16 Effect of pilot injection timing on soot emission (different EGR rate).

Fig. 17 Combustion performance for different pilot injection fuel mass at different n-butanol ratio (EGR = 0).

Fig. 18 Combustion performance for different pilot injection fuel mass at different n-butanol ratio (EGR=25%).

Fig. 19 Effect of pilot injection fuel mass on CA50 at different n-butanol ratios.

Fig. 20 Effect of pilot injection fuel mass on CA50 at different EGR rate.

Fig. 21 Effect of pilot injection fuel mass on BSFC at different n-butanol ratios.

Fig. 22 Effect of pilot injection fuel mass on brake thermal efficiency at different n-butanol ratios.

Fig. 23 Effect of pilot injection fuel mass on BSFC at different EGR rate.

Fig. 24 Effect of pilot injection fuel mass on brake thermal efficiency at different EGR rate.

Fig. 25 Effect of pilot injection fuel mass on NOx emission at different n-butanol ratios.

Fig. 26 Effect of pilot injection fuel mass on NOx emission at different EGR rate.

Fig. 27 Effect of pilot injection fuel mass on soot emission at different n-butanol ratios.

Fig. 28 Effect of pilot injection fuel mass on soot emission at different EGR rate.