
HLA-DRB1*16:01-DQB1*05:02 is a novel genetic risk factor for flupirtine-induced liver injury.

Copyright:

This is a non-final version of an article published in final form in Pharmacogenetics and Genomics: May 2016, Volume 26, Issue 5, pp. 218-224, doi: 10.1097/FPC.0000000000000209

DOI link to article:

http://dx.doi.org/10.1097/FPC.0000000000000209

Date deposited:

01/06/2016

Embargo release date:

01 May 2017

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
HLA-DRB1*16:01-DQB1*05:02 is a novel genetic risk factor for flupirtine-induced liver injury

Running title: HLA and flupirtine-induced liver injury

Paola Nicolettia, Anneke Nina Werkb, Ashley Sawlec, Yufeng Shena,d, Thomas J. Urbane, Sally A. Coulthardf, Einar S. Bjornssong, Ingolf Cascorbib, Aris Floratosa,d, Thomas Stammschulteh, Ursula Gundert-Remyh, Matthew R. Nelsoni, Guruprasad P. Aithalj* and Ann K. Dalyf* for the International Drug-induced Liver Injury consortium (iDILIC)**

aDepartment of Systems Biology, Columbia University, New York, USA

bInstitute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany

cThe Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA

dDepartment of Biomedical Informatics, Columbia University, New York, USA

eUNC Eshelman School of Pharmacy, Chapel Hill, NC, USA

fInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK

gDivision of Gastroenterology and Hepatology, Department of Internal Medicine, The National University Hospital of Iceland, Reykjavik, Iceland

hDrug Commission of the German Medical Association (DCGMA), Berlin, Germany

iTarget Sciences, GSK, King of Prussia, PA, USA

jNational Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
The complete list of iDILIC investigators is shown in the acknowledgements

Conflict of interest

There are no conflicts of interest

Correspondence to: Ann K. Daly, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK, email a.k.daly@ncl.ac.uk, Tel: +44 191 208 7031

*These authors contributed equally to the study

Abbreviations: DILI drug-induced liver injury, GWAS genome-wide association study, HLA human leukocyte antigen, RUCAM Roussel Uclaf Causality Assessment Method, SNP single nucleotide polymorphism, OR odds ratio, CI confidence interval
Abstract

Objective Flupirtine is a non-opioid analgesic with regulatory approval in a number of European countries. Because of risk of serious liver injury, its use is now limited to short-term pain management. We sought to identify genetic risk factors for flupirtine-related drug-induced liver injury (DILI) as these are unknown.

Materials and Methods Six flupirtine–related DILI patients from Germany were included in a genome-wide association study (GWAS) involving a further 614 European cases of DILI due to other drugs and 10588 population controls. DILI was diagnosed by causality assessment and expert review. HLA and SNP genotypes were imputed from the GWAS data, with direct HLA typing performed on selected cases to validate HLA predictions. Four replication cases which were unavailable for the GWAS were genotyped by direct HLA typing, giving an overall total of 10 flupirtine DILI cases.

Results In the six flupirtine DILI cases included in the GWAS, we found a significant enrichment of the \textit{DRB1*16:01-DQB1*05:02} haplotype compared to controls (minor allele frequency (MAF) cases 0.25 and MAF controls 0.013; p-value=1.4x10⁻⁵). We estimated an odds ratio for haplotype carriers of 18.7 (95% confidence interval (CI) 2.5-140.5, p-value=0.002) using population-specific HLA control data. The result was replicated in four additional cases, with a haplotype frequency of 0.25 also. In the combined cohort (six GWAS plus four replication cases), the haplotype was also significant (odds ratio 18.7; 95%CI 4.31-81.42; p-value=6.7x10⁻⁵).

Conclusion We identified a novel HLA class II association for DILI confirming the important contribution of HLA genotype to DILI risk generally.

Keywords: Hepatotoxicity; Genome-Wide Association Study; Pharmacogenomics; Flupirtine; HLA allele, adverse drug reaction
Introduction

Flupirtine is a non-opioid analgesic which appears to act as a selective neuronal potassium channel opening agent [1]. It was approved for use in Germany and Austria in 1984 and subsequently in a further 10 European Union countries but it has been used particularly widely in Germany [2, 3]. Flupirtine has been implicated in a number of cases of serious liver injury including those leading to acute liver failure and fatality reported through spontaneous adverse drug reaction (ADR) reporting in Germany [3]; in consequence of a review by European Medicines Agency’s Pharmacovigilance Risk Assessment Committee (PRAC), the drug is now recommended by German regulators for short-term use only in cases if other analgesics such as non-steroidal anti-inflammatory drugs are contraindicated [4]. The precise incidence of liver injury in those treated with the drug remains slightly unclear with estimates ranging from 31% of patients exposed to at least 6 weeks of treatment in a clinical trial showing some elevation of liver enzymes [5] down to 0.8 in 10,000 based on adverse drug reaction reports in the German health authority (BfArM) database [3]. In a hospital-based case-control study from Berlin, flupirtine was the drug with the strongest association with acute DILI with an odds ratio of 40 (95% confidence interval (CI) 5.5–856.9) [6]. The liver injury pattern seen is predominantly hepatocellular and liver biopsies have shown perivenular necrosis with mild to moderate lymphocytic infiltration [2]. In addition, cases of acute liver failure and death from flupirtine have been included in the German spontaneous reporting system [4].

The metabolism of flupirtine is complex but does not involve the cytochromes P450 to any significant extent. The parent drug is subject to N-glucuronidation and may also be hydrolysed by esterases, followed by N-acetylation to form an active metabolite D13223 [7]. Flupirtine and D13223 are also oxidised by peroxidases, generating reactive quinone imines which can be conjugated with glutathione [7]. In a recent in vivo study, NAT2, UGT1A1 and GSTP1 genotype did not affect metabolic profile, but, some evidence was obtained that GSTP1 genotype for rs1695 and
the rarer rs1138272, which are both associated with amino acid changes, affected oral bioavailability [8].

To gain further insights into genetic factors affecting susceptibility to flupirtine-induced liver injury, we analysed six cases that were recruited as part of a larger multi-drug genome-wide association study (GWAS) on drug induced liver injury (DILI) due to a variety of different drugs. We report an association for flupirtine-related injury with a specific class II HLA haplotype and describe the confirmation and replication of this finding in four additional cases.

Materials and Methods

DILI cases

Recruitment was performed as part of the larger International DILI Consortium (iDILIC) study. We recruited 11 individuals (10 female and 1 male, mean age at date of DILI 55 years) who were suspected of having suffered flupirtine-related DILI, but had recovered following drug withdrawal. The cases were identified by the German spontaneous reporting database. All participants gave written informed consent and the study was approved by the Ethics Committee of the Medical Faculty, University of Kiel. All cases provided a 10 ml blood sample for DNA preparation. Clinical data was collected from hospital or medical practice records. Only 10 cases who were classified on causality assessment as having at least possible flupiritine related DILI were included in the study [9]. Causality assessment was performed by application of the Council for International Organizations of Medical Science (CIOMS) scale, also called the Roussel Uclaf Causality Assessment Method (RUCAM) [10] and by an expert review from two hepatologists. The pattern of liver injury was classified according to the International Consensus Meeting Criteria [10]. The discovery portion of the analysis was a GWAS which utilized the six initially available flupirtine DILI cases together with an additional 614 DILI cases which had also passed expert adjudication but related to other drugs, with genotyping performed on the Illumina Infinium HumanCoreExome
BeadChip. Imputed HLA genotypes were later confirmed where possible by direct HLA typing. A further four flupirtine DILI cases became available later and were HLA-typed using a sequence-based assay. These served as the replication cohort to confirm the HLA association for flupirtine-related DILI identified in the discovery phase.

European controls

Since DILI has a very low prevalence, we used general population samples as study controls. The validity of this approach in studies on adverse drug reactions has been discussed in detail previously [11, 12]. We selected 10588 ethnicity-matched Caucasian controls from several available sources: the Welcome Trust Case Control Consortium (WTCCC) (http://www.wtccc.org.uk), POPulation REference Sample collection (POPRES) [11], the PGX40001 clinical study [13], the dbGAP study phs000346.v1 [14], the Hypergenes cohort (http://www.hypergenes.eu), the National Spanish DNA Bank cohort (http://www.bancoadn.org/), the Swedish Twin Registry cohort (http://ki.se/en/research/the-swedish-twin-registry) and the Italian Penicillin Tolerant Cohort (IPTC). Since the Hypergenes dataset contains only autonomic chromosomes, the sex chromosomes were not considered in the analysis. Information about the genotyping platform used by each of the control cohorts is reported in Table S1. The number of controls chosen was based on the power calculations reported in a previous study [12] but also to ensure appropriate ethnic matching for the entire DILI cohort of 620 cases who were recruited from a range of both Northern and Southern European countries.

Quality checks for each genotyped cohort

QC was conducted at both single marker and subject levels before performing the SNP imputation. Any marker that did not pass the following criteria was excluded from analysis: (i) genotype call rate in the batch of subjects greater than 95%, (ii) missing genotype rate greater than 5%, (ii) p-value for Hardy-Weinberg equilibrium greater than 10^{-7} in controls (if applicable). Any subject that
did not pass the following criteria was excluded from analysis: (i) missing genotype rate < 0.05 among the SNPs that passed QC; (ii) not a sample duplicate or closely related based on estimated identity-by-descent (IBD) using PLINK v 1.07.

HLA genotyping

DNA was prepared as described previously [15]. High resolution genotyping of HLA-A, B, C, DRB1, DQA1 and DQB1 was performed on all cases by Histogenetics (Ossining, New York). Sequencing data files were analyzed using Histogenetics’ proprietary analysis software for HLA genotype calling (Histomatcher and HistoMagic). Allele assignments are based on the IMGT/HLA Database release version 2.21.0, dated April 2008 (http://www.ebi.ac.uk/imgt/hla/).

SNP Imputation

For each control cohort, SNPs and samples with poor quality data were pruned before the imputation to avoid false positives (See Supplementary Material). The imputation was performed in batches dividing the cohorts according to genotyping platform. For each batch we first phased the data by SHAPEIT (version v2.r727), to increase the accuracy of the imputation [16]. Then, imputation was carried out using IMPUTE2 (version 3) [17] with data from the 1000 Genomes Project (release v3) [16] as the reference panel. We used an ethnic mixed panel to improve the quality of the imputation [18]. We retained imputed genotypes with: (a) posterior probability > 0.9 in each genotyping batch, (b) no significant difference in missingness between cases and controls (χ^2 test, p-value > 0.0001), (c) no significant deviation from Hardy-Weinberg equilibrium (p-value > 0.0001), (d) no missing data at a frequency greater than 5% in each single genotyping batch, (e) info score greater than 0.8 in each genotyping batch, (f) minor allele frequency (MAF) in the 1000 Genomes Project greater or equal to 0.01. Batch effects for imputed SNPs were corrected by testing
for association between ethnically-matched controls typed by different platforms (using logistic regression). SNPs with association p-values less than 0.005 were excluded from the analysis.

HLA imputation

For each cohort, HLA alleles were inferred using HIBAG [19] using the reference predictor panels specific for the genotyping chip.

Statistical analysis

The effect of population structure was assessed through principal components analysis (PCA) using the smartPCA program from the EIGENSTRAT package (version 3.0) [20]. The statistical association of each genomic variant was determined by logistic regression using the first seven significant principal components as covariates under an additive model. Association analyses were carried out by PLINK 1.07 [21]. We set the GWAS genome-wide significance p-value threshold to 5×10^{-8} to correct for multiple testing. In total, we imputed 217 HLA alleles in the overall European cohort. We set the MHC-region-wide significance p-value threshold for the HLA allele association to 2.3×10^{-4} to correct for multiple testing (Bonferroni correction). Fisher's exact test was used to test the HLA association when data from the Allele Frequencies repository (http://www.allelefrequencies.net) was analyzed. The number of carriers was estimated based on the reported HLA allele frequency assuming Hardy-Weinberg equilibrium. The analyses were performed with R (Version 3.0.2) [22].

Results

Clinical characteristics of the cases

A summary of the clinical characteristics is provided in Table 1. The six cases used in the discovery GWAS analysis were recruited first and passed adjudication with RUCAM scores of between 3 and 8 (indicating a “possible” or “probable” causal relationship). For one of these cases the causal drug
was ambiguous, with identical RUCAM scores for flupirtine and diclofenac. For the other 5 cases
flupirtine was found to be the sole cause of DILI. An additional 5 cases became available later. The
RUCAM scores for these varied between 2 and 7. A single case showing a score of 2 was
eliminated from the study, leaving 4 cases available for replication genotyping.

GWAS findings and HLA allele assignment by imputation

Principal component analysis confirmed the self-reported ethnicity for the cases and divided the
controls into four major clusters (Figure S1). No genome-wide significant signal for flupirtine cases
was detected in the GWAS (Figure S2). Findings for other cases have been described elsewhere
[23]. Table 2 summarises the imputed DRBI and DQBI genotypes for all the flupirtine cases that
passed adjudication. Three out of the six cases included in the GWAS were predicted to be
heterozygous for two class II HLA alleles DRBI*16:01 and DQBI*05:02, showing higher allele
frequency in cases (0.25) compared with controls (0.013 for DRBI*16:01 and 0.017 for
DQBI*05:02). These two HLA alleles have a similar frequency in the controls and are in linkage
disequilibrium ($r^2 = 0.8$). Their combination forms a well-known haplotype observed in a range of
populations worldwide (http://www.allelefrequencies.net). It was therefore probable that all three
cases would be heterozygous for the HLA class II haplotype DRBI*16:01-DQBI*05:02, giving a
frequency of 0.25 for the haplotype. Interestingly, the single DILI case (case 5) for which causal
drug assignment was ambiguous was predicted to be negative for the haplotype.

The odds ratio of the haplotype DRBI*16:01-DQBI*05:02 in cases versus controls was 45 (95%
CI 8.0-251.3, p-value= 1.4x10^{-5}). rs137931178 was the SNP with the lowest p value in the MHC
region (OR = 79, 95%CI 11.72-533.7, p-value = 7.2x10^{-6}) and correlated with these HLA alleles in
the controls (r^2 of 0.7 with DRBI*16:01). The frequency of the imputed haplotype DRBI*16:01-
DQBI*05:02 in 616 European non-flupirtine DILI cases from the iDILIC cohort was found to be
0.015, which was comparable with the frequency of this haplotype in the overall controls (0.013), suggesting that the apparent association is specific to flupirtine-related DILI.

Haplotype frequency data are not available for any large general European or German cohorts but there are detailed data on individual allele frequencies available (http://www.allelefrequencies.net). The frequency of \textit{DRB1*16:01} in the largest European group (\textit{USA NMDP European Caucasian cohort}, n=1,242,890 individuals) was 0.014 and confirmed our estimate of 0.013 for European controls. To further assess the significance of the candidate association with \textit{DRB1*16:01}, we used population specific frequency data for \textit{DRB1*16:01} only in Germans (\textit{German pop 8}, n=39,689) where \textit{DRB1*16:01} occurred at a frequency of 0.026. Based on carriage of the \textit{DRB1*16:01} allele, the population corrected OR for flupirtine DILI was 18.7 (95%CI 2.5-140.5; p-value=0.002).

Confirmation of the imputed HLA genotypes and replication of the association

We used sequence-based HLA typing to profile the four replication cases along with two of the six cases from the discovery GWAS phase. The imputed HLA genotypes were confirmed for two of the three GWAS cases predicted to carry \textit{DRB1*16:01-DQB1*05:02}. No DNA from the third positive case and the cases predicted to be negative for \textit{DRB1*16:01} haplotype was available for the additional typing. As summarised in Table 2, two of the four replication cases were heterozygous for \textit{DRB1*16:01} and \textit{DQB1*05:02}, giving an allele frequency of 0.25 for both alleles in line with the GWAS findings. This suggested an overall frequency of 0.25 for the haplotype among the 10 confirmed DILI cases, with 50% of all cases heterozygous carriers of the risk haplotype. In the combined cohort, we estimated the German-specific odds ratio for carriage of \textit{DRB1*16:01} to be 18.74 (95% CI 4.31 to 81.42). After correction for multiple comparisons for the entire MHC region, the association remained statistically significant (uncorrected p-value 6.7x10^{-5}).
Genotypes for polymorphisms relevant to flupirtine metabolism

NAT2, *UGT1A1* and *GSTP1* are involved in flupirtine metabolism [8] and these genes are also subject to common polymorphisms with well-established phenotypic effects. *NAT2* (rs1801280, rs1799930, rs1799931) and *GSTP1* (rs1695) genotypes relevant to phenotype were available from the GWAS data. Three cases (50% of the group) were predicted to be NAT2 slow acetylators with genotypes of *5/*6 (2 cases) and *5/*5 (1 case). The other three samples were fast acetylators with genotypes of *4/*5 (2 samples) and *4/*4 (1 sample). This frequency of *NAT2* slow acetylators is not significantly different to that in Europeans generally which has been estimated to be 57% from genome sequencing [24]. Three cases were heterozygous for *GSTP1* rs1695 with the other three homozygous wild-type for this allele. The frequency of this polymorphism in our Europeans controls (0.34) was higher than in cases (0.25), but it was not significantly different (OR=0.7, 95%CI 0.2-2.7, p-value = 0.6). For UGT1A1, genotype data for the well-characterised TA repeat polymorphism which can be used to predict the decreased UGT1A1 expression which gives rise to Gilbert's syndrome was not available in our cases. However, genotypes for rs4124874 which is a tag SNP for the most common haplotype associated with normal UGT1A1 activity [25] were available. We found that the frequency of this SNP in the cases was not significantly different to the controls (OR=0.64, 95%CI 0.18-2.24, p-value=0.49).

Discussion

We found an association of *DRB1*16:01-*DQB1*05:02 with flupirtine-related DILI, with carriers of this haplotype being at 19-fold higher risk of developing a clinically significant adverse drug reaction. The finding that HLA alleles confer elevated risk is consistent with previous reports on DILI due to a number of other drugs [26] as well as previous clinical and histological reports of immune-mediated toxicity with moderate lymphocytic infiltration and extensive perivenular necrosis seen on liver biopsy in some flupirtine DILI cases [2, 5]. This indicates that the increased
risk of DILI due to flupirtine in DRB1*16:01-DQB1*05:02 carriers is likely to involve an inappropriate T cell response within the liver. Both HLA class I and II associations with DILI due to other drugs have been reported previously, though the current study is the first report of an association with DRB1*16:01-DQB1*05:02. A class II haplotype which includes DRB1*15:01 has been shown to be associated with both co-amoxiclav and lumiracoxib DILI in previous studies [27, 28]. There is homology between DRB1*15:01 and DRB1*16:01, with both being members of the DR2 serotype group. However, despite showing sequence homology, the alleles have distinct disease associations. For example, DRB1*15:01 is protective against type I diabetes but this protective effect does not extend to DRB1*16:01 [29] while DRB1*15:01 is a well-established susceptibility factor for multiple sclerosis but DRB1*16:01 is not a risk factor [30].

So far, HLA associations for DILI with a predominantly hepatocellular phenotype have been with class II but not class I alleles (e.g. lapatinib [31], ximelagatran [32], lumiracoxib [28]) and the new findings for flupirtine are in line with this. On the other hand, certain cholestatic/mixed reactions to single drugs such as flucloxacillin [33] and ticlopidine [34] involve HLA class I alleles. The risk of DILI involving the antimicrobial co-amoxiclav appears higher in individuals expressing particular HLA class I and/or class II alleles but this more complex association appears to involve inappropriate T cell responses to both drugs [35] and the phenotype, though most frequently cholestatic or mixed, is sometimes hepatocellular [36]. The underlying mechanism by which inappropriate T cell reactions are triggered in DILI reactions remains unclear but recent in vitro studies on T cell responses in DILI cases due to flucloxacillin and co-amoxiclav [35, 37] suggest a hapten mechanism is more likely than a direct interaction by the drug with the HLA protein of the type that appears to occur in abacavir hypersensitivity [38]. Further similar investigations on the mechanism involved in the apparently exclusively HLA class II-associated flupirtine DILI would be interesting.
Specific HLA alleles have been identified as strong risk factors for the development of adverse drug reactions in studies involving small numbers of cases but the current study appears have involved the smallest discovery cohort up to the present with only 6 cases. Some previous studies showing HLA associations with DILI involved only slightly larger numbers of cases, for example 22 cases for the ticlopidine DILI association with $HLA-A^*33:03$ [34] and 35 cases in the original report of the association of $HLA-DRB1^*15:01$ with co-amoxiclav DILI [39]. These associations were also with relatively rare HLA alleles. In the current study, the very low population frequency of the "at risk" haplotype combined with the relatively large effect size were important factors in our ability to detect a significant genetic association when only a small number of cases were available. The subsequent availability of replication cases was a further advantage. It remains possible that HLA associations relevant to other adverse drug reactions may be detectable when similarly small numbers of cases are available.

No other genetic risk factors with high odds ratios were detected in the GWAS. The metabolic pathway of flupirtine is now well understood and it has been suggested that quinone imine intermediates could contribute to the liver toxicity [8]. In particular, it was suggested previously that the well-established polymorphisms in NAT2, UGT1A1 and GSTP1 could influence levels of toxic metabolites but a study in healthy volunteers failed to detect statistically significant differences in pharmacokinetics between the various genotype groups except for a small difference for GSTP1 [8]. Our study confirmed that the frequencies of relevant polymorphisms from the GWAS data were similar to those seen in European populations generally so these genotypes do not appear to be risk factors. However, in view of the small numbers of cases studied, the findings need to be treated with caution.

It should be noted that only a very small proportion of the total risk of DILI will relate to the HLA genotype described in the current study, but factors such as age above 60 and female gender also appear to contribute to risk. The age and gender distribution of the cases in the current study
together with the DILI phenotype are in agreement with previous reports on DILI due to other drugs [40]. Age over 60 years has been described as a risk factor for flucloxacillin DILI where there is also a strong association with HLA genotype [33]. Flupirtine DILI appears to manifest relatively early in the course of therapy with 31% of patients treated for at least 6 weeks showing ALT and/or AST elevation in excess of 3 fold above ULN [5]. Another study, however, reported elevated "liver enzymes/bilirubin" in 3 of 105 patients treated with the drug for 5 to 7 days [41]. In line with some patients showing toxicity after relatively short exposures, the mean length of exposure in the current study was 65 days but overall exposure length ranged from 15 to 180 days. However, this time was above the recommended maximum treatment period of 14 days [4] in all cases.

In summary, we have demonstrated a strong association between flupirtine DILI and the DRB1*16:01-DQB1*05:02 haplotype adding further evidence to the involvement of the adaptive immune system in the pathogenesis of DILI.
Acknowledgements

The genome-wide association study, HLA genotyping and iDILIC sample collection was funded by the International Serious Adverse Events Consortium with support from Abbott, Amgen, Daiichi-Sankyo, GlaxoSmithKline, Merck, Novartis, Pfizer, Roche, Sanofi-Aventis, Takeda and the Wellcome Trust. Additional support was provided by the National Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Unit at the Nottingham University Hospitals NHS Trust and University of Nottingham. We are very grateful to Arthur Holden and the International Serious Adverse Events consortium for scientific, operational and financial support. Special thanks to Mark Daly and colleagues for their contribution to the GWAS genotyping. We also acknowledge the contribution of all our clinical collaborators and the study participants. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the UK Department of Health.

iDILIC investigators (alphabetical order): Guruprasad P. Aithal, National Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK; Raul J. Andrade, IBIMA Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain and CIBERRehd, Madrid, Spain; Fernando Bessone, Universidad Nacional de Rosario, Rosario, Argentina; Einar Bjornsson, Division of Gastroenterology and Hepatology, Department of Internal Medicine, The National University Hospital of Iceland, Reykjavik, Iceland; Ingolf Cascorbi, Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany; Ann K. Daly, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; John F. Dillon, Ninewells Hospital and Medical School, Dundee, UK; Christopher P. Day, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Par Hallberg, Uppsala University, Uppsala, Sweden; Nelia Hernández, Universidad de la Republica,
Montevideo, Uruguay; Luisa Ibanez, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Gerd A. Kullak-Ublick, University of Zurich, Zurich, Switzerland; Tarja Laitinen, Helsinki University Central Hospital, Helsinki, Finland; Dominique Larrey, Hôpital Saint Eloi, Montpellier, France; M. Isabel Lucena, IBIMA Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain and CIBERehd, Madrid, Spain; Anke Maitland-van der Zee, Utrecht University, Utrecht, Netherlands; Jennifer H. Martin, University of Queensland School of Medicine and Princess Alexandra Hospital, Brisbane, Australia; Dick Menzies, MUHC and McGill University, Montreal Chest Institute, Montreal, Canada; Mariam Molokhia, King's College, London, UK; Munir Pirmohamed, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Shengying Qin, Shanghai Jiao Tong University, Shanghai, China; Mia Wadelius, Uppsala University, Uppsala, Sweden
<table>
<thead>
<tr>
<th>Number</th>
<th>Study Phase</th>
<th>Age/sex</th>
<th>DILI phenotype</th>
<th>RUCAM score</th>
<th>Time on flupirtine prior DILI</th>
<th>Exposure to other hepatotoxic drugs</th>
<th>Peak ALT (units/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discovery phase (GWAS)</td>
<td>57/F</td>
<td>Hepatocellular</td>
<td>5 (possible)</td>
<td>180</td>
<td>No</td>
<td>2460</td>
</tr>
<tr>
<td>2</td>
<td>Discovery phase (GWAS)</td>
<td>49/F</td>
<td>Hepatocellular</td>
<td>7 (probable)</td>
<td>43</td>
<td>No</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>Discovery phase (GWAS)</td>
<td>40/F</td>
<td>Hepatocellular</td>
<td>3 (possible)</td>
<td>164</td>
<td>No</td>
<td>868</td>
</tr>
<tr>
<td>4</td>
<td>Discovery phase (GWAS)</td>
<td>70/F</td>
<td>Hepatocellular</td>
<td>6 (probable)</td>
<td>30</td>
<td>No</td>
<td>725</td>
</tr>
<tr>
<td>5</td>
<td>Discovery phase (GWAS)</td>
<td>77/M</td>
<td>Hepatocellular</td>
<td>8 (probable)</td>
<td>15</td>
<td>diclofenac</td>
<td>1856</td>
</tr>
<tr>
<td>6</td>
<td>Discovery phase (GWAS)</td>
<td>43/F</td>
<td>Hepatocellular</td>
<td>7 (probable)</td>
<td>25</td>
<td>No</td>
<td>955</td>
</tr>
<tr>
<td>7</td>
<td>Replication phase</td>
<td>57/F</td>
<td>Hepatocellular</td>
<td>4 (possible)</td>
<td>41</td>
<td>No</td>
<td>834</td>
</tr>
<tr>
<td>8</td>
<td>Replication phase</td>
<td>78/F</td>
<td>Hepatocellular</td>
<td>4 (possible)</td>
<td>40</td>
<td>metamizole</td>
<td>591</td>
</tr>
<tr>
<td>9</td>
<td>Not included</td>
<td>29/F</td>
<td>Hepatocellular</td>
<td>2 (unlikely)</td>
<td>92</td>
<td>oxycodon</td>
<td>477</td>
</tr>
<tr>
<td>10</td>
<td>Replication phase</td>
<td>52/F</td>
<td>Hepatocellular</td>
<td>3 (possible)</td>
<td>20</td>
<td>No</td>
<td>2042</td>
</tr>
<tr>
<td>11</td>
<td>Replication phase</td>
<td>55/F</td>
<td>Hepatocellular</td>
<td>7 (probable)</td>
<td>60</td>
<td>No</td>
<td>2190</td>
</tr>
</tbody>
</table>
Table 2 HLA DRB1 and DQB1 genotypes in cases showing possible or higher causality

<table>
<thead>
<tr>
<th>Number</th>
<th>Type of case</th>
<th>Genotyping method</th>
<th>DRB1 genotype</th>
<th>DQB1 genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GWAS</td>
<td>Imputation and direct typing</td>
<td>11:04:01</td>
<td>16:01:01</td>
</tr>
<tr>
<td>2</td>
<td>GWAS</td>
<td>Imputation</td>
<td>01:01</td>
<td>03:01</td>
</tr>
<tr>
<td>3</td>
<td>GWAS</td>
<td>Imputation and direct typing</td>
<td>04:04:01</td>
<td>16:01:01</td>
</tr>
<tr>
<td>4</td>
<td>GWAS</td>
<td>Imputation</td>
<td>11:01</td>
<td>16:01</td>
</tr>
<tr>
<td>5</td>
<td>GWAS</td>
<td>Imputation</td>
<td>14:01</td>
<td>15:01</td>
</tr>
<tr>
<td>6</td>
<td>GWAS</td>
<td>Imputation</td>
<td>07:01</td>
<td>13:01</td>
</tr>
<tr>
<td>7</td>
<td>Replication</td>
<td>Direct typing</td>
<td>04:04:01</td>
<td>07:01:01G</td>
</tr>
<tr>
<td>8</td>
<td>Replication</td>
<td>Direct typing</td>
<td>07:01:01G</td>
<td>16:01:01</td>
</tr>
<tr>
<td>10</td>
<td>Replication</td>
<td>Direct typing</td>
<td>03:01:01G</td>
<td>04:08:01</td>
</tr>
<tr>
<td>11</td>
<td>Replication</td>
<td>Direct typing</td>
<td>04:01:01</td>
<td>16:01:01</td>
</tr>
</tbody>
</table>

Where direct typing was performed, 6 digit genotypes are shown if available. Imputed genotypes were to 4 digits only.
References

