
Copyright:

©2016 American Association for Cancer Research. This final version can be found here: http://dx.doi.org/10.1158/1055-9965.EPI-15-0949

Date deposited:

08/06/2016

Embargo release date:

08 April 2017

This work is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence](http://creativecommons.org/licenses/by-nc-nd/4.0/)
Changes in Epidermal Growth Factor Receptor Gene Copy Number During Oral Carcinogenesis

Running title: EGFR Gene Copy Number Changes in Oral Carcinogenesis

Timothy Batesa, b, g, Matthew Kennedyc, g, Ameena Diajie, Michaela Goodsona, d, Peter Thomsona,c, Emma Doranb, Heather Farrimondb, Selvam Thavarajf, Philip Sloana,b, Ralf Kista, Max Robinsona,b

aCentre for Oral Health Research, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.

bDepartment of Cellular Pathology, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK.

cDepartment of Oral and Maxillofacial Surgery, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK.

dNewcastle University Medicine Malaysia, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.

eOral Diagnosis Department, College of Dentistry, University of Baghdad, Iraq

fOral Pathology, King’s College London Dental Institute, London, SE1 7EH, UK.

gThese authors contributed equally to this work.

Corresponding author: Dr Timothy Bates, Centre for Oral Health Research, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE1 7RU, United Kingdom

Telephone: +44 191 208 8391. Email: timothy.bates@ncl.ac.uk
Conflicts of Interest

Dr M. Robinson accepted reagents from Ventana Roche Tissue Diagnostics free of charge for the study and is a Consultant for Leica Biosysems Ltd. The other authors have no conflicts of interest to declare.
Abstract

Background
Oral squamous cell carcinoma (OSCC) is a global healthcare problem associated with poor patient outcomes. Early detection is key to improving patient survival. OSCC may be preceded by clinically-recognisable lesions, termed oral potentially malignant disorders (OPMD). As histological assessment of OPMD does not accurately predict their clinical behaviour, biomarkers are required to detect cases at risk of malignant transformation. Epidermal growth factor receptor gene copy number (EGFR GCN) is a validated biomarker in lung non-small cell carcinoma. We examined EGFR GCN in OPMD and OSCC to determine its potential as a biomarker in oral carcinogenesis.

Methods
EGFR GCN was examined by in situ hybridisation (ISH) in biopsies from 78 patients with OPMD and 92 patients with early-stage (stages I and II) OSCC. EGFR ISH signals were scored by two pathologists and a category assigned by consensus. The data were correlated with patient demographics and clinical outcomes.

Results
OPMD with abnormal EGFR GCN were more likely to undergo malignant transformation than diploid cases. EGFR genomic gain was detected in a quarter of early-stage OSCC, but did not correlate with clinical outcomes.

Conclusion
These data suggest that abnormal EGFR GCN has clinical utility as a biomarker for the detection of OPMD destined to undergo malignant transformation. Prospective studies are required to verify this finding. It remains to be determined if EGFR GCN could be used to select patients for EGFR-targeted therapies.
Impact

Abnormal EGFR GCN is a potential biomarker for identifying OPMD that are at risk of malignant transformation.

(Word count – 248/250)
Keywords

Epidermal growth factor receptor; gene copy number; oral squamous cell carcinoma; oral potentially malignant disorders; oral epithelial dysplasia.
Introduction

Oral squamous cell carcinoma (OSCC) is a major healthcare problem and is associated with poor clinical outcomes. Approximately 50% of patients diagnosed with OSCC die prematurely as a consequence of the disease (1, 2). Outcomes for patients with OSCC may be improved if the disease is identified in its earliest stages (3). OSCC formation occurs through the stepwise accumulation of genetic damage (4, 5). OSCC may be preceded by clinically-recognisable lesions termed oral potentially malignant disorders (OPMD) (6). However, the histological features of OPMD do not reliably predict their clinical behaviour (7, 8). There is consequently a need to develop biomarkers that enhance prognostication and direct treatment (9).

Epidermal growth factor receptor (EGFR) gene copy number (GCN) is used in the prognostication of non-small cell lung carcinoma (10, 11) and the prediction of its response to EGFR-targeted chemotherapeutic agents (12). The potential of EGFR as a biomarker in OSCC was first highlighted in the early 1990s (13). EGFR is a cell surface tyrosine kinase receptor, one of four proteins in the ErbB family, and is expressed in most epithelial tissues (14). Binding of growth factors (e.g. epidermal growth factor and transforming growth factor-α) to the extracellular domain induces a conformational change in the internal receptor (15, 16). Subsequent phosphorylation of intracellular substrates triggers a myriad of downstream signalling cascades (17). In OSCC, these contribute to an increase in cell proliferation, angiogenesis, invasion, and metastasis, which are the hallmarks of cancer (18, 19).

EGFR genomic gain is associated with poor clinical outcomes in OSCC (20-22). The prevalence of EGFR genomic gain in OSCC ranges from 9% to 56% (23-26) and is more frequent in Stage III/IV disease, suggesting that EGFR genomic gain is a late event in oral carcinogenesis. By contrast, data from two OPMD studies show that cases with low polysomy are more likely to progress to OSCC (27, 28). These data suggest that EGFR GCN starts to increase in the early stages of oral carcinogenesis and raise the possibility that it could be used as a biomarker of malignant transformation. However, both studies were limited by small samples sizes and analysis of tissue microarrays rather than whole sections. Furthermore, low polysomy is not regarded as EGFR genomic gain in the criteria currently validated.
for interpretation of non-small cell lung carcinoma as only high polysomy/clustered EGFR GCN signals are reported to correlate significantly with clinical outcome and response to EGFR-targeted therapy (10, 11). Consequently, the biological significance of EGFR low polysomy is uncertain, particularly given the complexity of the EGFR signalling pathway (29, 30).

The aims of this study were:

- to determine the frequency of EGFR GCN abnormalities in patients with OPMD and early-stage OSCC.
- to correlate EGFR GCN abnormalities with clinico-pathological data and patients’ clinical outcomes.
- to determine EGFR protein expression in OPMD and early-stage OSCC in order to gauge the likely functional significance of EGFR GCN changes.

Materials and Methods

Patients

Cases of OPMD that did not transform to OSCC were identified from a group of patients attending a hospital-based OPMD clinic. These cases had a minimum of 24 months’ follow up.

Cases of OPMD that underwent malignant transformation were identified using a systematic search of the electronic archives using SNOMED codes. The search spanned a 12-year period (1997 - 2009). The subsequent OSCC was also identified and retrieved for analysis. Clinical follow-up data were obtained from medical records.

Consecutive local cases of early-stage (pStage I/II) OSCC were identified by searching hospital databases and latterly the DAHNO (DAta on Head and Neck Oncology) UK database. The search spanned an 8-year period (2000 - 2008).

Cases with the following characteristics were excluded: 1) previous upper aero-digestive tract cancer; 2) previous radiotherapy to the head and neck region; 3) index lesions arising on the lip or in the oropharynx; 4) <24 months’ follow-up; 5) <6
months between index OPMD biopsy and OSCC diagnosis; 6) proliferative verrucous leukoplakia; 7) non-dysplastic OPMD diagnosed with specific clinico-pathological entities, e.g. chronic hyperplastic candidosis and lichen planus.

For each case, patient demographic data (sex, age at first biopsy) and mucosal subsite of the OPMD/OSCC were recorded. For OPMD, the clinical outcome (i.e. whether or not the lesion underwent malignant transformation to OSCC) was recorded. For OPMD that underwent malignant transformation, time from diagnosis of OPMD to developing OSCC was calculated. For early-stage OSCC, the histological grade of differentiation (Broders’ classification) was determined and clinical outcomes (disease-free survival, overall survival) were calculated.

Pathology methods

Haematoxylin and eosin (H&E) stained sections and formalin-fixed paraffin-embedded tissue blocks were retrieved for each case to confirm the presence of disease and adequacy of material for subsequent analysis. For OPMD epithelial dysplasia was graded independently by two pathologists (MR & PS) using a binary system (low-grade vs. high-grade) (7, 8). Discordant cases were reviewed and a grade was assigned by consensus.

EGFR in situ hybridisation

EGFR GCN was assessed by a dual-colour in situ hybridisation (ISH) technique using proprietary reagents (INFORM EGFR-Chromosome 7 dual colour assay, Ventana Medical Systems Inc, USA). This detects the EGFR gene (using silver ISH, seen as black nuclear dots) and chromosome 7 centromeres (using Ultraview Alkaline Phosphatase Red ISH, seen as red nuclear dots) on the same section. 4 µm sections were stained using the Ventana Benchmark Autostainer according to the manufacturer’s instructions. Negative controls (with DNA probes omitted) were performed for each staining batch.

Dual-stained ISH sections were examined by two pathologists (TB & MR) and a category was assigned by consensus. According to the predominant nuclear signal, each case was assigned to one of the six categories described and validated by the manufacturers for the interpretation of non-small cell lung carcinoma (Figure 1) (31). Dividing cells and overlapping cells were not assessed. During analyses, the six
descriptive categories were reduced to three groups for comparison: normal, low polysomy, and genomic gain (Figure 1) and also analysed in a binary classification: normal vs. abnormal EGFR GCN.

EGFR immunohistochemistry

EGFR protein expression was detected using a proprietary antibody (anti-EGFR 5B7 clone, Ventana Medical Systems Inc, USA). 4 µm sections were stained using a Ventana Benchmark Autostainer according to the manufacturer’s instructions. Morphologically normal epithelium provided an internal control for each section. Negative controls (primary antibody omitted) were performed for each staining batch.

EGFR-stained slides and corresponding H&E sections were scanned using the Aperio Scanscope platform (x400 magnification). Files were uploaded to and analysed using the Aperio Spectrum image analysis system (Spectrum Version 11.1.0.751, Aperio Technologies, Inc.). H&E sections were used to map areas of normal epithelium, epithelial dysplasia and OSCC on corresponding EGFR-stained section. Representative areas were annotated and analysed using the Aperio cellular algorithm. The algorithm generated data for a range of parameters including the number of cells analysed, the proportion of positive cells, and the proportion of strongly-positive cells. Data were collated in an Excel file prior to statistical analysis.

Statistical analysis

Statistical analysis was performed using SPSS for Windows (version 21.0; SPSS Inc., Chicago, Illinois, USA). Following a test of normality, parametric data were analysed using one-way ANOVA/independent sample T-tests, and non-parametric data using Kruskal–Wallis/Mann-Whitney U-tests. A Bonferroni correction was applied to multiple comparisons. Time-to-event analyses were plotted using Kaplan-Meier curves and assessed using Log Rank (Mantel-Cox) calculations. Receiver-operator curves (ROC) were generated by plotting true positive rates against the false positive rates. Prior to analysis, cases were classified into binary groups depending on the variable of interest (e.g. high/low-grade epithelial dysplasia; normal/abnormal EGFR GCN; high/low EGFR protein expression (i.e. above or below mean proportion of positive cells for the normal epithelium). Ordinal data were
analysed using Pearson’s Chi-squared test. Results were considered significant at p<0.05.

Ethical approval

The study had a favourable ethical opinion from the National Research Ethics Service (NRES) Committee North East, Sunderland (REC reference: 11/NE/0118).

Results

Patient characteristics and clinical outcomes

A total of 78 OPMD and 92 OSCC cases satisfied the study inclusion criteria. Mean ages for these two groups were 58.6 (range 30 - 94) and 61.8 years-old (range: 33 - 93) respectively. Both had a male predominance (overall M:F - 1.54:1). Clinical outcomes and other characteristics are summarised in Supplementary Table 1 (see Supplementary Data). There was no correlation between the clinical outcome of OPMD/OSCC and either patient demographics (age, sex) or mucosal subsite (data not shown).

For OPMD, the histological grade of epithelial dysplasia showed a significant correlation with clinical outcome. Cases with high-grade epithelial dysplasia were more likely to undergo malignant transformation than cases with low-grade epithelial dysplasia (p<0.05, Figure 2A).

EGFR in situ hybridisation

Nuclei in normal epithelium adjacent to OPMD or OSCC consistently showed disomy, the normal EGFR ISH signal (Figure 3 C).

OPMD

Low polysomy was detected in 15 OPMD cases (Figure 3 I). Eight of these cases underwent malignant transformation. One OPMD case displayed clustered signals consistent with EGFR genomic gain (Figure 3L). This case underwent malignant transformation after 17 months.
For statistical analysis, the 15 OPMD with low polysomy were combined with the one case of EGFR genomic gain to form a single ‘abnormal EGFR GCN’ group \((n = 16)\). Kaplan-Meier time-to-event analysis demonstrated a statistically significant correlation between abnormal EGFR GCN and malignant transformation \((p<0.0001, \text{Figure 2B})\). Comparison using receiver-operator curve (ROC) analysis confirmed that abnormal EGFR GCN was a more reliable predictor of malignant transformation than high-grade epithelial dysplasia \((\text{Figure 4})\). A combined category (cases with both abnormal EGFR GCN and high-grade epithelial dysplasia) showed similar Kaplan-Meier curves to EGFR GCN alone \((\text{Figure 2C})\) and the ROC profile was identical \((\text{data not shown})\).

OSCC arising from OPMD cases

Twenty-two OPMD cases underwent malignant transformation to OSCC. Biopsy material was available for 21 of these cases. EGFR genomic gain was detected in nearly one-quarter of the associated OSCC \((5 \text{ cases, } 24.0\%)\). One-third of the associated OSCC showed low polysomy \((7 \text{ cases, } 33.3\%)\). The associated OSCC generally either maintained the low polysomy of the OPMD, or showed progression to EGFR genomic gain. The EGFR GCN categories of the transforming OPMD and associated OSCC are shown in Figure 5.

Early-stage OSCC

EGFR genomic gain was identified in 23 \((24.7\%)\) early-stage OSCC \((11 \text{ showed high polysomy and } 12 \text{ showed clusters})\). EGFR genomic gain was associated with a reduction in mean overall survival time \((50.2 \text{ months vs. } 57.7 \text{ months for cases with no genomic gain})\) and disease-free survival \((45.6 \text{ months vs. } 47.7 \text{ months for cases with no genomic gain})\); however, neither trend was statistically significant \((p=0.201 \text{ and } p=0.472, \text{respectively})\). EGFR genomic gain did not correlate with tumour grade, recurrence or lymph node metastasis \((\text{data not shown})\).

EGFR protein expression

OPMD

Areas of epithelial dysplasia showed significantly higher mean EGFR protein expression than normal epithelium \((\text{Figure 6})\). There was also a correlation between
EGFR protein expression and grade of epithelial dysplasia: OPMD with high-grade epithelial dysplasia had significantly higher levels of EGFR-positive cells than OPMD with low-grade epithelial dysplasia (Figure 6). However, the level of EGFR protein expression did not correlate with malignant transformation (Figures 2D and 6).

OSCC arising from OPMD cases

The OSCC associated with the transformed group of OPMD showed significantly higher mean EGFR protein expression than normal epithelium (p<0.0001, Independent T-test).

Early-stage OSCC

Early-stage OSCC had significantly higher mean EGFR protein expression than normal epithelium (Figure 6); however, EGFR expression did not correlate with tumour grade, stage, or clinical outcome (data not shown).

Correlation between EGFR gene copy number and protein expression

EGFR protein expression was significantly higher in OPMD with an abnormal EGFR GCN than cases with normal EGFR GCN (abnormal EGFR GCN mean - 49.9%, s.d. 12.1 vs. normal EGFR GCN mean - 29.3%, s.d. 15.7; p<0.0001). EGFR protein expression was significantly higher in OSCC with EGFR genomic gain relative to cases with no genomic gain (EGFR genomic gain mean - 51.2%, s.d. 21.9 vs. no genomic gain mean - 35.9%, s.d. 22.5; p<0.01).
Discussion

There is a continuing need for biomarkers that refine morphological diagnoses and inform clinical decisions for patients with OPMD and OSCC (9). EGFR GCN is used in the prognostication of non-small cell lung carcinoma (10, 11) and to predict response to EGFR-targeted chemotherapeutic agents (12). Over recent years, EGFR GCN has emerged as a potential biomarker for OPMD and OSCC (30, 32). However, the prevalence and clinical significance of EGFR GCN abnormalities in OPMD and OSCC are not well defined (20, 21, 33, 34). Furthermore, it is unclear how criteria validated for interpretation of EGFR GCN signals in non-small cell lung carcinoma should be applied to oral cancer. It is well-documented that detection of high-risk human papillomavirus (HPV) by p16 immunohistochemistry (IHC) and in situ hybridisation (ISH) is significant in the prognostication of oropharyngeal squamous cell carcinoma (35-37). The current study was restricted to the examination of potentially malignant disorders/squamous cell carcinoma of the oral cavity and excluded oropharyngeal subsites. Consequently, we would only expect a very small number of cases to harbour oncogenic HPV infection, less than 5% (38, 39). HPV status was therefore unlikely to influence the results of our study.

One-fifth of OPMD in the present study showed an abnormal EGFR GCN, but only one case showed evidence of EGFR genomic gain according to the criteria validated for non-small cell lung cancer. This is consistent with data from studies of EGFR GCN in OSCC, which indicate that EGFR genomic gain is a late event in oral carcinogenesis (23-25). It is striking, however, that the majority of OPMD with low polysomy progressed to OSCC. This finding is consistent with two recent studies that suggest low polysomy is an early feature of OPMD destined to undergo malignant transformation, one which heralds EGFR genomic gain later in oral carcinogenesis (27, 28). Both studies used fluorescence ISH (FISH) rather than the chromogenic ISH (CISH) technique used in the current study. Benchekroun et al (27) studied EGFR FISH in a subset of 49 OPMD, applying a definition of FISH positivity that encompassed all EGFR GCN abnormalities, including trisomy and low polysomy. While only one case showed evidence of EGFR genomic gain, a further 41% of cases showed FISH positivity using their modified classification. FISH-positive OPMD had significantly higher rates of malignant transformation compared to diploid
cases. A recent study of 20 OPMD by Poh et al (28) also supports the application of a lower threshold for classifying EGFR GCN as abnormal: although only one case showed EGFR genomic gain, any increase in EGFR GCN was strongly associated with an increased risk of malignant transformation, irrespective of whether the EGFR GCN increase was low or high; increased EGFR GCN was also associated with a reduced time to malignant transformation (28). Together, these studies suggest that EGFR GCN may have some clinical utility in the risk management of OPMD, but is not sufficiently predictive to be used as a standalone biomarker.

Although the frequency of EGFR mutations documented in OSCC is low (40-42), it is a limitation of the current study that neither EGFR mutation status nor downstream EGFR targets were evaluated. It is possible that EGFR GCN represents a ‘surrogate’ marker for other genetic and molecular abnormalities and simply reflect chromosomal instability; nevertheless, the positive correlation between EGFR GCN and protein over-expression suggests that increased EGFR GCN may be functionally relevant. Data from the group of OSCC that transformed from OPMD provide some evidence to support this hypothesis: the majority of these OSCC either maintained the abnormal EGFR GCN of the index OPMD or progressed to EGFR genomic gain, suggesting that EGFR genetic abnormalities accumulate during oral carcinogenesis. Interestingly, however, two cases of OPMD with abnormal EGFR GCN produced OSCC with a normal EGFR ISH signal. This may reflect clonal evolution of carcinoma from malignant cells with normal EGFR GCN; alternatively, it may simply represent tumour heterogeneity and the consequent limitations of sampling.

A quarter of OSCC in the present study showed EGFR genomic gain. This finding was consistent across both the early-stage and transformed OSCC groups. It is higher than the 9% rate reported in a tissue-microarray study by Rössle et al (24). This earlier study also focused on early-stage (stage I/II) OSCC; however, it was limited by assessment of 0.6mm diameter tissue cores. It is our experience that the EGFR ISH pattern in OSCC is heterogeneous; tissue microarray sampling may therefore not correlate with measurements taken from whole sections. Notwithstanding these issues, however, the proportion of cases with EGFR genomic gain in the current study is towards the lower end of the range of values reported to date (range 9% to 56%) (23-26).
Our study did not identify a significant correlation between EGFR genomic gain and clinical outcome in OSCC, which is similar to two recent studies (24, 43). By contrast, Temam et al (20) reported a 9% 5-year survival rate for patients with EGFR genomic gain compared with 71% 5-year survival rate for patients with no genomic gain. Although the study used quantitative real-time PCR, its findings have been corroborated by other studies using FISH (21, 23). This apparent discrepancy may reflect the inclusion of late-stage OSCC in these previous studies; our study differed in its focus on the transition from OPMD to OSCC and assessment of early-stage OSCC.

Our data confirm that EGFR protein expression is increased in the majority of OPMD and OSCC (44-46). The ubiquity of EGFR over-expression highlights a likely important role in oral carcinogenesis, but limits its clinical utility as a biomarker for stratifying patient management. In OPMD, EGFR protein expression was less predictive of clinical outcome than grade of epithelial dysplasia. It is possible that increased EGFR protein expression represents a bystander change, reflecting but not driving tumour progression, which may account for the lack of correlation with disease-specific clinical outcomes (29, 30, 47).

There is evidence to suggest that EGFR GCN may help to predict the response of head and neck cancers to EGFR-targeted agents. For example, EGFR genomic gain has been shown to predict which patients have an increased likelihood of response to erlotinib therapy (33). The present study was not designed to investigate response to EGFR-targeted agents or other clinical interventions. None of the patients received EGFR-targeted therapy and the OPMD group was heterogeneous, including cases managed by surveillance and laser excision (48). Despite these limitations, our data support the view that a subgroup of OPMD and OSCC harbour EGFR GCN abnormalities and have increased EGFR protein expression; however, whether these lesions have a differential response to EGFR-targeted agents or other therapies remains to be tested.
Conclusion

This study highlights the potential clinical utility of EGFR GCN assessment for predicting malignant transformation in OPMD. EGFR GCN abnormalities are more reliably predictive of malignant transformation than the histological grade of epithelial dysplasia. EGFR genomic gain is present in a quarter of early-stage OSCC, but does not correlate with their clinical outcomes. OSCC derived from OPMD generally either maintained the abnormal EGFR GCN of the index OPMD, or progressed to EGFR genomic gain. This suggests that, in a subset of cases, EGFR has an oncogenic function during oral carcinogenesis. Further studies are required to verify these findings and to determine whether EGFR GCN predicts the response of OPMD and OSCC to EGFR-targeted therapies.

Acknowledgements

CONFIRM EGFR (5B7) rabbit monoclonal primary antibody, ultraView Universal DAB detection kit, chromosome 7 DIG probe, EGFR DNP probe, ultraView Red ISH DIG detection kit and ultraView SISH DNP detection kit (Ventana Medical Systems, Inc. Tucson, Arizona) were provided Dr Paul Douglas (Ventana Roche Tissue Diagnostics). The statistical analysis was carried out in collaboration with Dr Simon Kometa (Research Computing Specialist, Statistics, Newcastle University).
References

Figure 1 Interpretation of dual EGFR gene and chromosome 7 in situ hybridisation signal

Adapted from ‘Interpretation Guide, Ventana Inform EGFR DNA Probe: DNA Probe Staining of Non-Small-Cell Lung Carcinoma’ (31). (Used with manufacturer’s permission. Full copyright © 2015 Ventana Medical Systems, Inc.)

Figure 2 Kaplan-Meier time-to-event analysis showing malignant transformation in OPMD stratified according to grade of epithelial dysplasia, EGFR gene copy number, and EGFR protein expression

Blue line: A) Low-grade epithelial dysplasia; B) Normal EGFR GCN; C) Low-grade epithelial dysplasia & normal EGFR GCN combined; D) Low EGFR protein expression

Green line: A) High-grade epithelial dysplasia; B) Abnormal EGFR GCN; C) High-grade epithelial dysplasia & abnormal EGFR GCN combined; D) High EGFR protein expression

A) There was a significant correlation between high-grade epithelial dysplasia and malignant transformation (p<0.05, Chi2 value = 4.974, 1 d.f.).

B) There was a significant correlation between abnormal EGFR GCN and malignant transformation (p<0.0001; Chi2 value = 13.929, 1d.f.).

C) A similar correlation was identified when epithelial dysplasia and EGFR GCN categories were combined (p<0.0001; Chi2 value = 16.069, 1d.f.).

D) There was no correlation between EGFR protein expression and malignant transformation (p=0.356).
Figure 3 EGFR protein expression and EGFR in situ hybridisation for normal mucosa and OPMD with low-grade and high-grade epithelial dysplasia

A) Normal mucosa. B) In normal squamous epithelium, EGFR protein is expressed most strongly in the basal and parabasal layers, but is lost towards the surface. C) Nuclei of keratinocytes show disomy by in situ hybridisation. D) OPMD with low-grade epithelial dysplasia. E) EGFR protein expression is increased in low-grade epithelial dysplasia relative to normal squamous epithelium. Expression is most noticeably stronger in the prickle layer. F) However, nuclei of keratinocytes still show disomy by in situ hybridisation. G) OPMD with high-grade epithelial dysplasia. H) EGFR protein expression is increased in high-grade epithelial dysplasia relative to both normal squamous epithelium (B) and low-grade epithelial dysplasia (E). Expression is strong throughout the full thickness of the epithelium. I) In this example of high-grade epithelial dysplasia nuclei of keratinocytes show an abnormal signal, low polysomy, by in situ hybridisation. J) OPMD with high-grade epithelial dysplasia. K) There is strong full-thickness expression of EGFR protein. L) This example of high-grade epithelial dysplasia shows a clustered nuclear signal by in situ hybridisation.

H&E and EGFR IHC x100 magnification; EGFR ISH x400 original magnification.
Figure 4 Receiver-operator curve analysis of malignant transformation for high-grade epithelial dysplasia and abnormal EGFR gene copy number

The table beneath the chart summarises the differences between the two curves. The greater the area beneath the curve, the greater the predictive reliability of the marker. The area beneath the curve for abnormal EGFR GCN was greater than the area for high-grade epithelial dysplasia. This indicates that abnormal EGFR GCN was more reliably predictive of malignant transformation than high-grade epithelial dysplasia. This is further borne out by comparison of the asymptotic significance of the two tests: only abnormal EGFR GCN is significant at p<0.05.

Figure 5 EGFR GCN of OPMD that underwent malignant transformation and their associated OSCC

Green – normal GCN; amber – low polysomy; red – genomic gain.

Figure 6 Comparison of EGFR protein expression for normal epithelium, OPMD and early stage OSCC

Areas of epithelial dysplasia and early-stage OSCC had significantly higher EGFR expression than normal epithelium (p<0.001 and p<0.0001 respectively). OPMD with high-grade epithelial dysplasia had significantly higher levels of EGFR than OPMD with low-grade epithelial dysplasia (p<0.0001). There were no significant differences in the EGFR protein expression of OPMD that underwent malignant transformation and those which did not (p>0.05). The error bars show the standard error of the mean.
<table>
<thead>
<tr>
<th>EGFR GCN</th>
<th>Cellular appearance</th>
<th>Diagnostic category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disomy</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Trisomy</td>
<td></td>
<td>Low polysomy</td>
</tr>
<tr>
<td>Low polysomy ≥4 copy < 40% cells</td>
<td></td>
<td>Low polysomy</td>
</tr>
<tr>
<td>High polysomy ≥4 copy ≥ 40% cells</td>
<td></td>
<td>Genomic gain</td>
</tr>
<tr>
<td>EGFR ≥ 15 copies ≥ 10% cells</td>
<td></td>
<td>Genomic gain</td>
</tr>
<tr>
<td>Clusters</td>
<td></td>
<td>Genomic gain</td>
</tr>
</tbody>
</table>

Figure 1.
Figure 2.

A. Grade of epithelial dysplasia

B. EGFR gene copy number

C. Combined: high-grade epithelial dysplasia & abnormal EGFR GCN

D. EGFR protein expression

Time to Malignant Transformation (months)
Figure 3.

- **Normal mucosa**
 - H & E (A)
 - EGFR IHC (B)
 - EGFR ISH (C)

- **Low-grade dysplasia**
 - H & E (D)
 - EGFR IHC (E)
 - EGFR ISH (F)

- **High-grade dysplasia**
 - H & E (G)
 - EGFR IHC (H)
 - EGFR ISH (I)

- **High-grade dysplasia**
 - H & E (J)
 - EGFR IHC (K)
 - EGFR ISH (L)
Figure 4.

<table>
<thead>
<tr>
<th>Test Variable</th>
<th>Area beneath curve</th>
<th>Standard error</th>
<th>Asymptotic Significance</th>
<th>Asymptotic 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>High-grade epithelial dysplasia</td>
<td>0.61</td>
<td>0.069</td>
<td>p>0.10</td>
<td>0.48</td>
</tr>
<tr>
<td>Abnormal EGFR GCN</td>
<td>0.64</td>
<td>0.074</td>
<td>p<0.05*</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Figure 5.
Figure 6.

- Normal mucosa
- OPMD
- Early-stage OSCC
- Low-grade
- High-grade
- No malignant transformation
- Malignant transformation

Significance levels:
- p<0.0001
- p<0.001
- n.s.
Changes in Epidermal Growth Factor Receptor Gene Copy Number During Oral Carcinogenesis

Cancer Epidemiol Biomarkers Prev Published OnlineFirst April 8, 2016.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-15-0949

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2016/04/08/1055-9965.EPI-15-0949.DC1.html

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
Supplementary Table 1 Characteristics of OPMD and early-stage OSCC groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral potentially malignant disorders (n = 78)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucosal Subsite:</td>
<td></td>
</tr>
<tr>
<td>Tongue</td>
<td>36 (46.1)</td>
</tr>
<tr>
<td>Floor of mouth</td>
<td>29 (37.2)</td>
</tr>
<tr>
<td>Buccal mucosa</td>
<td>5 (6.4)</td>
</tr>
<tr>
<td>Masticatory mucosa</td>
<td>8 (10.3)</td>
</tr>
<tr>
<td>Histological Grade of Dysplasia:</td>
<td></td>
</tr>
<tr>
<td>High-grade</td>
<td>44 (56.4)</td>
</tr>
<tr>
<td>Low-grade</td>
<td>34 (43.6)</td>
</tr>
<tr>
<td>Clinical Outcome:</td>
<td></td>
</tr>
<tr>
<td>No malignant transformation</td>
<td>56 (71.8)</td>
</tr>
<tr>
<td>Malignant transformation to OSCC</td>
<td>22 (28.2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-stage oral squamous cell carcinomas (n = 92)</td>
<td></td>
</tr>
<tr>
<td>Mucosal Subsite</td>
<td></td>
</tr>
<tr>
<td>Tongue</td>
<td>49 (53.3)</td>
</tr>
<tr>
<td>Floor of mouth</td>
<td>20 (21.7)</td>
</tr>
<tr>
<td>Buccal mucosa</td>
<td>9 (9.8)</td>
</tr>
<tr>
<td>Masticatory mucosa</td>
<td>14 (15.2)</td>
</tr>
<tr>
<td>pStage</td>
<td></td>
</tr>
<tr>
<td>pStage I</td>
<td>75 (81.5)</td>
</tr>
<tr>
<td>pStage II</td>
<td>17 (18.5)</td>
</tr>
<tr>
<td>Histological Grade of Differentiation</td>
<td></td>
</tr>
<tr>
<td>Well differentiated</td>
<td>20 (21.6)</td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>63 (68.5)</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>9 (9.9)</td>
</tr>
<tr>
<td>Overall Survival</td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Free from disease</td>
<td>66 (71.7)</td>
</tr>
<tr>
<td>With disease</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Deceased</td>
<td></td>
</tr>
<tr>
<td>Free from disease</td>
<td>15 (16.3)</td>
</tr>
<tr>
<td>With disease</td>
<td>10 (10.9)</td>
</tr>
</tbody>
</table>