Abualnaja M, Waddell PG, Clegg W, Hall MJ.

Synthesis of pentacyclic pyrrolo[3,4-a]carbazole-1,3(2H)-diones via an intermolecular Diels-Alder, intramolecular carbonyl-ene reaction strategy.

Tetrahedron 2016

DOI: http://dx.doi.org/10.1016/j.tet.2016.08.008

Copyright:

© 2016. This manuscript version is made available under the [CC-BY-NC-ND 4.0 license](http://creativecommons.org/licenses/by-nc-nd/4.0/)

DOI link to article:

http://dx.doi.org/10.1016/j.tet.2016.08.008

Date deposited:

03/08/2016

Embargo release date:

03 August 2017

This work is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence](http://creativecommons.org/licenses/by-nc-nd/4.0/)

Newcastle University ePrints - eprint.ncl.ac.uk
Synthesis of pentacyclic pyrrolo[3,4-a]carbazole-1,3(2H)-diones via an intermolecular Diels-Alder, intramolecular carbonyl-ene reaction strategy

Matokah Abualnaja, Paul G. Waddell, William Clegg and Michael J. Hall*

School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Email: michael.hall@ncl.ac.uk
Telephone: +44 (0) 191 208 7321
Fax: +44 (0) 191 208 6929

Abstract
Pentacyclic pyrrolo[3,4-a]carbazole-1,3(2H)-diones are accessed via two key synthetic steps, an intermolecular Diels-Alder (D-A) reaction between an N-protected 3-vinyl-1H-indole and N-methyl-maleimide, and a Lewis acid-catalysed intramolecular carbonyl-ene cyclisation reaction. Cyclopentyl- or cyclohexyl-containing scaffolds can be formed through variation in the length of the alkyl tether, whilst the observed stereospecificity of carbonyl-ene cyclisation supports a concerted mechanism.

Introduction
Pentacyclic tetrahydrocarbazoles are common scaffolds in a wide range of synthetic and naturally occurring bioactive molecules, which has led to the development of a number of synthetic strategies for the derivatisation of indoles towards these targets. In particular the D-A reactions of alkenyl-substituted heteroaromatics have been used extensively in synthesis of saturated carbazoles and related molecules, with recent examples including enantioselective and multicomponent variants. In this work we report a diastereoselective approach to the synthesis of polycyclic saturated carbazoles through an intermolecular Diels-Alder (D-A)/intramolecular carbonyl-ene reaction strategy. We envisaged that an intermolecular D-A reaction of a substituted 3-alkenyl-1H-indole 1 would result in a reactive 2,3,9,9a-tetrahydro-1H-carbazole intermediate 2 capable of undergoing a further cyclisation, via a facially selective intramolecular carbonyl-ene reaction. Variation of the length of the alkyl chain bearing the aldehyde 2 would allow access to either cyclopentyl or cyclohexyl...
rings 3, whilst the stereochemistry of the alkene in the initial D-A reaction would determine the facial selectivity of the final cyclisation (Figure 1).

Figure 1. Proposed intermolecular Diels-Alder (D-A)/intramolecular carbonyl-ene reaction strategy for the diastereoselective synthesis of pentacyclic saturated carbazoles.

Results and discussion
We commenced our investigation with the synthesis of a number of (E)- and (Z)-3-alkenyl-1H-indoles as precursors for our planned intermolecular D-A/intramolecular carbonyl ene reactions. Thus protected indole-3-carbaldehyde 5 was reacted with ethyl 4-(triphenyl-λ5-phosphanylidene)butanoate (generated in situ via the deprotonation of (4-ethoxy-4-oxobutyl)triphenylphosphonium bromide 4 by NaHMDS) to give, after chromatography, a 60% yield of (Z)-ethyl 5-(1-tosyl-1H-indol-3-yl)pent-4-enoate 6. Subsequent DIBAL-H mediated reduction then gave the corresponding alcohol 7 in 87% yield. To access the corresponding E-isomer a Julia–Kocienski olefination was employed,8 reacting the sodium salt of phenyltetrazolysulfonyl ester 88 with protected indole-3-carbaldehyde 5 to give ethyl 5-(1-tosyl-1H-indol-3-yl)pent-4-enoate 6 with excellent (E)-selectivity. Finally, reduction of ester with DIBAL-H gave the alcohol 7 as the (E)-isomer in a 96% isolated yield (Scheme 1).
Scheme 1. Reagents and conditions: (i) 4, NaHMDS, -78 °C to 0 °C, 2 h, THF then 5, r.t., 48 h, 60%; (ii) DIBAL-H, toluene, -78 °C, 3 h, 87%; (iii) 8, NaHMDS, -78 °C to 0 °C, 2 h, THF then 5, r.t. 14 h, 71%; (iv) DIBAL-H, toluene, -78 °C, 3 h, 96%.

Preliminary examination of the proposed D-A reaction between (Z)-7 or (E)-7 and N-methylmaleimide gave no D-A cycloadducts under thermal conditions (DCM, i-PrOH or toluene at reflux for up to 5 days) or through thiourea-mediated organocatalysis (Schreiner’s cat. 20% mol, DCM).10 However the use of aluminium-based Lewis acids proved promising, with the corresponding D-A cycloadducts being formed in the presence of Me\textsubscript{2}AlCl in refluxing DCM without the appearance of undesirable rearomatisation products. Thus we envisaged that a “one-pot” intermolecular D-A/intramolecular ene reaction might be feasible, employing Me\textsubscript{2}AlCl to catalyse both steps. Therefore (Z)-7 was oxidised under Swern conditions to give the corresponding aldehyde 9 and subsequently reacted with N-methylmaleimide in the presence of Me\textsubscript{2}AlCl in refluxing DCM. Unfortunately, rather that the desired D-A/ene product we instead obtained alcohol 10 as a 3:2 mixture of diastereoisomers, resulting from a D-A reaction followed by an undesired preferential alkylation of the aldehyde by Me\textsubscript{2}AlCl (Scheme 2).11
Scheme 2. Reagents and conditions: (i) DMSO, C$_2$O$_2$Cl$_2$, DCM, -78 °C to r.t., 3 h, 70%; (ii) 2 eq. Me$_2$AlCl, N-methylmaleimide, DCM, -78 °C to 40 °C, 48 h, 52%.

Since the aldehyde functionality was not well tolerated under the D-A reaction conditions, we decided to pursue a stepwise strategy in which the aldehyde would be masked as the corresponding primary alcohol during the D-A step and then revealed in a subsequent oxidation step. Thus 3-alkenyl-1H-indoles (Z)-7 and (E)-7 were reacted with N-methylmaleimide, in the presence of two equivalents of Me$_2$AlCl in refluxing DCM, to give high yields of the corresponding diastereomeric D-A cycloadducts 11 and 12, followed by Swern oxidation to give aldehydes 13 and 14 in 69% and 75% respectively (Scheme 3).

Scheme 3. Reagents and conditions: (i) 2 eq. Me$_2$AlCl, N-methylmaleimide, DCM, (11, 48 h, reflux, 75%; 12, 5 h, reflux, 89%); (ii) DMSO, C$_2$O$_2$Cl$_2$, DCM, -78 °C to r.t. (13, 69%; 14, 75%).

Single-crystal X-ray analysis was performed for D-A cycloadducts 11 and 12, confirming that the relative stereochemistry was consistent with an endo-selective D-A reaction in both cases (Figure 2).
Figure 2. Crystallographically determined structures of D-A cycloadducts 11 and 12 (50% displacement ellipsoids; H atoms omitted for clarity).

When 2,3,9,9a-tetrahydro-1H-carbazole 13 was exposed to Me$_2$AlCl at low temperature (DCM, -78 °C, 30 min) a rapid carbonyl-ene cyclisation reaction occurred, with concurrent rearomatisation of the indole, to give the target pentacyclic carbazole 15 in 89% yield and as a single diastereomer, the endo-selectivity of the carbonyl-ene reaction being confirmed by single-crystal X-ray analysis (Scheme 3, Figure 3). Interestingly, exposure of the epimeric 2,3,9,9a-tetrahydro-1H-carbazole 14 to Me$_2$AlCl under a range of conditions, including refluxing in DCM for 3 days, showed no formation of carbonyl-ene cyclisation products, with only starting material recovered (Scheme 3).
Scheme 3. Reagents and conditions: (i) Me$_2$AlCl, DCM, -78 °C, 30 min, 89%; (ii) Me$_2$AlCl, DCM, reflux, 72 hr.

Figure 3. Crystallographically determined structure of pentacyclic carbazole 15 (50% displacement ellipsoids; H atoms omitted for clarity).

This large difference in reactivity between the two epimeric substrates 13 and 14 indicates a high degree of facial selectivity in the cyclisation, supporting a concerted carbonyl-ene reaction mechanism rather than a potentially more facially promiscuous stepwise addition/elimination mechanism. This hypothesis is further supported by the observed *endo*-selectivity in the cyclisation of 2,3,9,9a-tetrahydro-1H-carbazole 13 to the desired pentacyclic carbazole 15 (Figure 4).

Figure 4. Proposed *endo*-transition state for the concerted intramolecular ene-reaction of 13.

Finally we examined the possibility of forming pentacyclic carbazoles containing a cyclohexyl ring, through elongation of the alkyl tether. Thus treatment of indole-3-carbaldehyde 5 with the ylide prepared by reaction of (4-carboxybutyl)triphenylphosphonium bromide 1613 with NaHMDS gave an inseparable 4:1, (Z):(E) mixture of 6-(1-tosyl-1H-indol-3-yI)hex-5-enoic acid. Acid-catalysed esterification to the ethyl ester subsequently allowed the isolation of (Z)-3-alkenyl-
$1H$-indole 17 as a single geometrical isomer. DIBAL-H reduction then gave target alcohol 18, which underwent a D-A reaction with N-methylmaleimide in the presence of Me$_2$AlCl to give the endo-D-A cycloadduct 19, followed by Swern oxidation to access aldehyde 20 in good overall yield. Treatment of 20 with Me$_2$AlCl at low temperatures gave no reaction; however, warming the reaction to room temperature resulted in the formation of the target cyclohexyl-containing pentacyclic tetrahydrocarbazole 21 as a single diastereomer arising from an endo-carbonyl ene reaction, as confirmed by single crystal X-ray analysis (Scheme 4, Figure 5).

Scheme 4. Reagents and conditions: (i) 16, 2 eq. NaHMDS, -78 to 0 °C, 1h, THF then 5 -78 to 0 °C, 4 h, 64%; (ii) H$_2$SO$_4$, EtOH, reflux, 1.5 h, 56%; (iii) DIBAL-H, toluene, -78 °C, 3 h, 94%; (iv) 2 eq. Me$_2$AlCl, N-methylmaleimide, DCM, reflux, 48 h, 78%; (v) DMSO, C$_2$O$_2$Cl$_2$, DCM, -78 °C to r.t., 3 h, 79%; (vi) Me$_2$AlCl, DCM, r.t., 3 h, 54%.

Figure 5. Crystallographically determined structure of pentacyclic carbazole 21 (50% displacement ellipsoids; H atoms omitted for clarity).
Conclusions
In conclusion we have demonstrated an intermolecular D-A/intramolecular carbonyl-ene reaction strategy for the diastereoselective synthesis of pentacyclic saturated carbazoles and have confirmed the concerted nature of the ene reaction under these conditions. Future work will include focus on the introduction of enantioselective D-A and ene-reaction steps to direct the formation of enantio-enriched bioactive pentacyclic carbazoles.

Acknowledgments
The authors thank Newcastle University and EPSRC (EP/I033959/1) for funding, Umm al-Qura University for a PhD scholarship (MA), EPSRC for X-ray crystallography facilities at Newcastle (EP/F03637X/1), Diamond Light Source for access to beamline I19, and Prof. W. McFarlane and Dr C. Wills (Newcastle) for NMR support. Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Experimental
1H and 13C NMR spectra were recorded directly with a Jeol Lambda 500 MHz, Jeol ECS-400 MHz or Bruker Avance 300 MHz. HRMS data were provided by the EPSRC National Mass Spectrometry Service (University of Swansea). X-ray diffraction data for compounds 11, 12 and 15 were obtained on an Oxford Diffraction Gemini, whilst data for compound 21 were collected on the I19 beamline at Diamond Light Source. IR spectra were obtained from neat samples using a Varian 800 FTIR Scimitar Series spectrometer scanning from 4000 to 600 cm$^{-1}$. Melting points were obtained using a Stuart SMP3 melting point machine. THF was distilled from sodium/benzophenone and used directly. DCM was distilled from calcium hydride and used directly. Compounds 4, 5, (Z)-6, 8 and 16 were prepared according to literature procedures.

Ethyl (E)-5-(1-tosyl-1H-indol-3-yl) pent-4-enoate ((E)-6)
NaHMDS (1.0 M in THF, 1.48 mL, 1.48 mmol) was added to a solution of ethyl 4-((2-phenyl-2H-tetrazol-5-yl)sulfonyl)butanoate (0.49 g, 0.34 mmol) in THF (10 mL) at -78 °C. The mixture was stirred at -78 °C for 30 min. In a separate round-bottomed flask, 1-(toluene-4-sulfonyl)-1H-indol-3-carboxaldehyde (0.3 g, 1.30 mmol) was dissolved
in dry THF (5 mL) and transferred via cannula into the reaction solution. The reaction mixture was warmed slowly to r.t. over 4 h and stirred for a further 14 h. The solution was quenched into saturated NH₄Cl(aq) (5 mL), extracted with EtOAc (2 x 80 mL), washed with brine, dried over MgSO₄, filtered and the solvent removed under reduced pressure. The resulting colourless oil was purified by flash chromatography (petrol/ethyl acetate 10:1) to give ethyl (E)-5-(1-tosyl-1H-indol-3-yl) pent-4-enoate in (0.198 g, 0.49 mmol, 39%) as colourless oil and a further fraction containing a 5:1 mixture of ethyl (E) and (Z)-5-(1-tosyl-1H-indol-3-yl) pent-4-enoate in (0.17 g, 0.42 mmol, 33%).

Rf: 0.65 (petrol/ethyl acetate 7:3). ¹H NMR (400 MHz, CDCl₃): δH 7.99 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 7.9 Hz, 1H), 7.53 (s, 1H), 7.31 (dd, J = 8.2, 1.3 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.49 (d, J = 16.0 Hz, 1H), 6.27 (dt, J = 16.0, 6.3 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 2.62 – 2.46 (m, 4H), 2.31 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δC 173.0, 145.0, 135.5, 135.2, 130.2, 130.0, 129.2, 126.9, 124.9, 123.5, 123.2, 121.5, 120.7, 120.4, 113.8, 77.2, 60.5, 34.2, 28.9, 21.6, 14.4. IR (neat): νmax/cm⁻¹ 1727, 1597. MS (pNSI): 398.1 (100%, [M+H]⁺), 415.2 (98%, [M+NH₄]⁺), 812.3 (26%, [2M+NH₄]⁺). HRMS (pNSI): calcd C₂₂H₂₄NO₄S [M+H⁺]: 398.1421; observed: 398.1417.

(Z)-(1-tosyl-1H-indol-3-yl)pent-4-en-1-ol ((Z)-7)

DIBAL-H (1.0 M in toluene, 11.45 mL, 11.45 mmol) was added to a solution of ethyl (Z)-5-(1-tosyl-1H-indol-3-yl) pent-4-enoate (1.300 g, 3.27 mmol) in dry toluene (20 mL) at -78 °C under nitrogen. The reaction mixture was stirred at room temperature for 3 h and then quenched into HCl(aq) (1.0 M, 20 mL). The organic layer was extracted with EtOAc (2 x 100 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give a crude oil which was purified by column chromatography (petrol/ethyl acetate 2:1) to give the product as a clear colourless oil (1.009 g, 2.83 mmol, 87%).

Rf: 0.26 (petrol/ethyl acetate 2:1). ¹H NMR (400 MHz, CDCl₃): δH 7.99 (dt, J = 8.3, 0.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.61 (s, 1H), 7.55 – 7.48 (m, 1H), 7.33 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.24 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.43 (dq, J = 11.3, 1.7 Hz, 1H), 5.83 (dt, J = 11.4, 7.1 Hz, 1H), 3.70 (t, J = 6.4 Hz, 2H), 2.43 (qd, J = 7.3, 1.9 Hz, 2H), 2.30 (s, 3H), 1.77 (pt, J = 6.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δC 145.1, 135.1, 134.6, 133.8, 130.9, 130.0, 126.9, 125.0, 123.6,

(E)-5-(1-tosyl-1H-indol-3-yl)pent-4-en-1-ol ((E)-7)

DIBAL-H (1.0 M in toluene, 1.5 mL, 1.5 mmol) was added to a solution of ethyl (E)-5-(1-tosyl-1H-indol-3-yl) pent-4-en-1-oate (0.170 g, 0.43 mmol) in dry toluene (10 mL) at -78 °C under nitrogen. The reaction mixture was stirred at room temperature for 3 h and quenched into HCl(aq) (1.0 M, 20 mL). The organic layer was extracted with EtOAc (2 x 100 mL), washed with brine, dried over MgSO$_4$ and filtered. The solvent was removed under reduced pressure to give a colourless oil which was purified by column chromatography (petrol/ ethyl acetate 1:1) to give the product as a colourless oil (0.1461 g, 0.41 mmol, 96%).

R: 0.3 (petrol/ethyl acetate 1:1). 1H NMR (300 MHz, CDCl$_3$): δH 7.99 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 7.9 Hz, 1H), 7.52 (s, 1H), 7.35 – 7.28 (m, 1H), 7.28 – 7.21 (m, 1H), 7.19 (d, J = 8.2 Hz, 2H), 6.47 (d, J = 16.0 Hz, 1H), 6.28 (dt, J = 16.0, 6.6 Hz, 1H), 3.72 (t, J = 6.6 Hz, 2H), 2.38 – 2.29 (m, 2H), 2.31 (s, 3H), 1.81 – 1.72 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δc 145.0, 135.6, 135.3, 131.9, 130.0, 129.4, 126.9, 124.9, 123.5, 123.0, 121.0, 120.9, 120.4, 113.9, 62.5, 32.4, 29.9, 21.7. IR (neat): ν_{max}/cm$^{-1}$ 3335, 2972. MS (p NSI): 356.1 (54%, [M+H]$^+$), 373.2 (100 %, [M+NH$_4$]$^+$). HRMS (p NSI): calcd C$_{20}$H$_{25}$N$_2$O$_3$S [M+NH$_4$]$^+$: 373.1580; observed: 373.1580.

(3aS,4R*,10aS*,10bS*)-4-(3-hydroxypropyl)-2-methyl-10-tosyl-4,10,10a,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)*-dione (11)*

Dimethyl aluminium chloride (1.0 M in hexane, 1.8 mL, 1.8 mmol) was added dropwise at -78 °C to a solution of N-methylmaleimide (0.100 g, 0.90 mmol) in dry DCM (10 mL). The mixture was stirred for 10 min followed by the addition of (Z)-5-(1-tosyl-1H-indol-3-yl) pent-4-en-1-ol (0.32 g, 0.90 mmol) in dry DCM (10 mL). The reaction mixture was refluxed for 48 h and then quenched with saturated NaHCO$_3$ (aq) (25 mL). The organic layer was extracted with DCM (1 X 50 mL), washed with brine, dried over MgSO$_4$ and filtered. The solvent was removed under reduced pressure to give the crude white solid which purified by column chromatography (gradient elution
from petrol/ethyl acetate 1:1 to 100% ethyl acetate) to give the product as a colourless crystalline solid in (0.313 g, 0.67 mmol, 75%).

Mp. 112 – 114 °C. Rf: 0.3 (petrol/ethyl acetate 2:1). 1H NMR (400 MHz, CDCl₃): δH 7.80 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.29 – 7.17 (m, 4H), 6.97 (td, J = 7.5, 0.9 Hz, 1H), 6.15 (dd, J = 7.4, 3.3 Hz, 1H), 4.86 (dd, J = 7.5, 3.4 Hz, 1H), 4.15 (dd, J = 8.7, 7.5 Hz, 1H), 3.66 (t, J = 5.9 Hz, 2H), 3.16 – 3.10 (m, 1H), 3.07 (d, J = 8.8 Hz, 1H), 2.83 (s, 3H), 2.36 (s, 3H), 1.76 – 1.49 (m, 4H). 13C NMR (101 MHz, CDCl₃): δC 179.0, 174.2, 144.7, 144.2, 135.9, 134.2, 130.5, 130.0, 127.7, 127.0, 124.0, 121.0, 117.6, 115.5, 62.4, 60.0, 44.3, 43.2, 37.6, 31.6, 29.9, 25.3, 21.7. IR (neat): νmax/cm⁻¹: 3657, 1639. MS (pNSI): 467.16 (100%, [M+H]⁺), 484.18 (50%, [M+Na]+). HRMS (p NSI): calcd C₂₅H₂₇N₂O₅S [M+H]⁺: 467.1635; observed: 467.1628.

(3aS*,4S*,10aS*,10bS*)-4-(3-hydroxypropyl)-2-methyl-10-tosyl-4,10,10a,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (12)

Dimethyl aluminium chloride (1.0 M in hexane, 0.82 mL, 0.82 mmol) was added dropwise to a solution of N-ethylmaleimide (0.046 g, 0.41 mmol) in dry DCM (5 mL) at -78 °C. The mixture was stirred for 30 min followed by the addition of (E)-5-(1-tosyl-1H-indol-3-yl)pent-4-en-1-ol (0.146 g, 0.41 mmol) in DCM (7 mL). The reaction mixture was warmed to reflux for 5 h, quenched with saturated NaHCO₃ (aq) (25 mL), extracted with DCM (2 x 50 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give the crude product which was purified by column chromatography (gradient elution from petrol/ethyl acetate 1:1 to 100% ethyl acetate) to give the product as a white solid in (0.1699 g, 0.36 mmol, 89 %). Mp. 207 – 209 °C. Rf: 0.33 (petrol/ethyl acetate 1:1). 1H NMR (300 MHz, CDCl₃): δH 7.78 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.8 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.99 (td, J = 7.5, 0.8 Hz, 1H), 5.88 (t, J = 3.7 Hz, 1H), 4.55 (ddd, J = 7.2, 3.3, 1.8 Hz, 1H), 4.02 (dd, J = 8.4, 7.3 Hz, 1H), 3.76 (t, J = 6.3 Hz, 2H), 3.19 (dd, J = 8.5, 6.5 Hz, 1H), 2.77 (s, 3H), 2.36 (s, 3H), 2.30 – 2.21 (m, 1H), 2.16 – 2.07 (m, 1H), 2.03 – 1.93 (m, 1H), 1.87 – 1.74 (m, 2H), 1.69 (s, 1H). 13C NMR (75 MHz, CDCl₃): δC 176.5, 173.8, 144.5, 136.8, 134.4, 133.9, 130.4, 129.9, 127.3, 126.0, 123.8, 121.0, 118.0, 115.3, 62.64, 61.79, 43.98, 40.39, 37.96, 31.24, 27.53, 24.88, 21.60. IR (neat): νmax/cm⁻¹ 3553, 1659. MS (p NSI): 484.18 (100%, [M+NH₄]⁺), 467.16 (90%,
3-((3aS*,4R*,10aS*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-y1)propanal (13)
DMSO (0.04 mL, 0.69 mmol) was added dropwise at -78 °C to a stirred solution of oxalyl chloride (0.02 mL, 0.33 mmol) in dry DCM (2 mL). After 30 min, a solution of 3-((3aS*,4R*,10aS*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-y1)propanal (0.130 g, 0.27 mmol) in dry DCM (8 mL) was added. The reaction mixture was stirred for 30 min at -78 °C followed by the addition of triethylamine (0.15 mL, 1.11 mmol). The reaction mixture was warmed to room temperature, stirred for 2 h and quenched with saturated NaHCO$_3$ (aq) (10 mL). The organic layer was extracted with DCM (1 x 50 mL), washed with brine, dried over MgSO$_4$ and filtered. The solvent was removed under reduced pressure to give the crude product as a yellow solid which was purified by column chromatography (petrol/ethyl acetate 1:1) to give the product as a white solid in (0.086 g, 0.185 mmol, 69 %).

Mp. 135 – 137 °C. Rf: 0.30 (petrol/ethyl acetate 1:1). 1H NMR (400 MHz, CDCl$_3$): δ$_H$ 9.76 (s, 1H), 7.79 (d, $J = 8.4$ Hz, 2H), 7.64 (d, $J = 8.8$ Hz, 1H), 7.25 – 7.22 (m, 4H), 6.97 (td, $J = 7.6$, 0.8 Hz, 1H), 6.09 (dd, $J = 7.4$, 3.3 Hz, 1H), 4.86 (dd, $J = 7.6$, 3.4 Hz, 1H), 4.17 (dd, $J = 8.4$, 8.0 Hz, 1H), 3.11 (dt, $J = 9.9$, 7.0 Hz, 1H), 3.05 (d, $J = 8.7$ Hz, 1H), 2.82 (s, 3H), 2.74 – 2.45 (m, 2H), 2.35 (s, 3H), 1.98 – 1.68 (m, 2H). 13C NMR (101 MHz, CDCl$_3$): δ$_C$ 201.1, 178.5, 174.0, 144.7, 144.3, 136.8, 133.9, 130.7, 130.0, 127.6, 126.7, 123.9, 121.1, 116.3, 115.5, 59.9, 44.2, 43.0, 42.7, 37.1, 25.3, 25.2, 21.7. IR (neat): ν_{max}/cm$^{-1}$: 2925, 1697. MS (p NSI): 465.1 (16%, [M+H]$^+$), 497.2 (100%, [M+MeOH+H]$^+$), 514.2 (80%, [M+MeOH+NH$_4$]$^+$), 519.2 (100%, [M+MeOH+Na]$^+$). HRMS (p NSI): calcd C$_{25}$H$_{25}$N$_2$O$_5$S [M+H]$^+$: 465.1479; observed: 465.1486.

3-((3aS*,4S*,10aS*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-y1)propanal (14)
DMSO (0.02 mL, 0.33 mmol) was added dropwise at -78 °C to a stirred solution of oxalyl chloride (0.01 mL, 0.15 mmol) in dry DCM (2 mL). After 30 min, a solution of (3aS*,4S*,10aS*,10bS*)-4-(3-hydroxypropyl)-2-methyl-10-tosyl-4,10,10a,10b-
tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (0.062 g, 0.13 mmol) in dry DCM (5 mL) was added. The reaction mixture was stirred for 30 min at -78 °C followed by the addition of triethylamine (0.10 mL, 0.53 mmol). The reaction mixture was warmed to r.t. and stirred for 2 h, quenched with saturated NaHCO₃ (aq) (10 mL), extracted with DCM (1 x 50 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give the crude product as a yellow solid which was purified by column chromatography (petrol/ethyl acetate 1:1) to give the product as a white solid in (0.045 g, 0.097 mmol, 75 %).

Mp: 139 – 141 °C. Rf: 0.2 (petrol/ethyl acetate 1:1). ¹H NMR (300 MHz, CDCl₃): δH 9.86 (s, 1H), 7.77 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.9 Hz, 1H), 7.31 – 7.21 (m, 4H), 6.99 (td, J = 7.6, 0.9 Hz, 1H), 5.83 (t, J = 3.4 Hz, 1H), 4.51 (ddd, J = 7.2, 3.2, 1.4 Hz, 1H), 4.03 (dd, J = 8.5, 7.3 Hz, 1H), 3.17 (dd, J = 8.6, 5.5 Hz, 1H), 2.85 – 2.72 (m, 2H), 2.78 (s, 3H), 2.36 (s, 3H), 2.40 – 2.23 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δC δ 201.7, 176.2, 173.4, 145.0, 144.6, 137.3, 134.3, 130.6, 129.9, 127.3, 125.8, 123.9, 121.0, 117.0, 115.3, 61.7, 43.9, 42.1, 40.0, 37.0, 24.9, 23.7, 21.6. IR (neat): νmax/cm⁻¹ 2925, 1697. MS (p APCI): 279.1 (100%), 293.1 (41%), 300.1 (15%), 465.1 (65%), [M+H]⁺. HRMS (p APCI): calcd C₂₅H₂₅N₂O₅S [M+H]⁺: 465.1479; observed: 465.1485.

(3aR,3bS,6R,6aS,11bR)-6-hydroxy-2-methyl-11-tosyl-3a,3b,4,5,6,6a,11,11b-octahydropyrrolo[3,4-a]carbazole-1,3(2H)-dione (15)
Dimethyl aluminum chloride (1.0 M in hexane, 0.09 mL, 0.09 mmol) was added dropwise at -78 °C to a solution of 3- (3aR,4S*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-yl)propanal (0.045 g, 0.09 mmol) in dry DCM (5 mL). The reaction mixture was stirred for 30 min, quenched with saturated NaHCO₃ (aq) (5mL). The organic layer was extracted with DCM (1 x 20 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give the crude product as a white solid which was purified by column chromatography (petrol/ethyl acetate 1:1) to give the product as a white solid (0.038 g, 0.08 mmol, 89 %).

Mp. 240 – 242 °C. Rf: 0.6 (petrol/ethyl acetate 1:1). ¹H NMR (400 MHz, CDCl₃): δH 7.92 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.27 – 7.18 (m, 3H), 4.95 (d, J = 7.2 Hz, 1H), 4.51 (t, J = 3.8 Hz, 1H), 3.31 (dd, J = 11.2, 7.2 Hz, 1H), 3.18 (dd, J = 7.3, 4.1 Hz, 1H), 3.03 (s, 3H), 2.41 –
2.35 (m, 1H), 2.34 (s, 3H), 2.25 – 2.03 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δc 178.5, 174.1, 145.1, 137.4, 135.5, 130.7, 129.9, 128.6, 127.2, 125.5, 124.0, 118.9, 117.4, 115.5, 77.5, 77.2, 76.8, 73.6, 46.5, 44.3, 41.9, 38.9, 33.4, 27.7, 25.2, 21.8. IR (neat): νmax/cm⁻¹ 3655, 2980. MS (p NSI): 465.1 (100 %, [M+H]+), 482.2 (75 %, [M+NH₄]+). HRMS (p NSI): calcd C₂₅H₂₅N₂O₅S [M+H]+: 465.1479; observed: 465.1484.

Ethyl (Z)-6-(1-tosyl-1H-indol-3-yl)hex-5-enoate (17)

In a Schlenk flask, (4-carboxybutyl)triphenylphosphonium bromide (3.60 g, 8.12 mmol) was dissolved in dry THF (20 mL) and cooled to -78 °C. Sodium bis(trimethylsilyl)amide (1.0 M in THF, 16.24 mL, 16.24 mmol) was added dropwise over 10 min. The reaction mixture was warmed to 0 °C and stirred for 1 h. In a separate round-bottomed flask, 1-(toluene-4-sulfonyl)-1H-indol-3-carboxaldehyde (1.69 g, 7.38 mmol) was dissolved in dry THF (10 mL) and transferred via cannula to the reaction solution. The resulting reaction mixture was stirred at room temperature for 4 h, quenched with water (20 mL). The aqueous layer was acidified to pH 1 with HCl(aq) (2.0 M, 20 mL) and was extracted with EtOAc (3 x 100 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give an oil which was purified by column chromatography (petrol/ethyl acetate 7:3) to give a 4:1 mixture of (Z) and (E)-6-(1-tosyl-1H-indol-3-yl)hex-5-enoic acid as a colourless oil in (1.8122 g, 4.72 mmol, 64 %).

A 4:1 mixture of (Z) and (E)-6-(1-tosyl-1H-indol-3-yl)hex-5-enoic acid (0.516 g, 1.34 mmol) was dissolved in anhydrous EtOH (35 mL). Concentrated H₂SO₄(aq) (0.2 mL) was added, the solution was refluxed for 1.5 h, quenched into saturated NaHCO₃(aq) (15 mL) and extracted with EtOAc (2 x 75 mL). The combined organic layers were washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give an orange solid which was purified by column chromatography in (petrol/ethyl acetate 10:1) to give the product as yield as a colourless oil in (0.308 g, 0.82 mmol, 56 %).

Rf: 0.7 (petrol / ethyl acetate 7:3). ¹H NMR (300 MHz, CDCl₃): δH 7.90 (dt, J = 8.3, 0.9 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 7.43 – 7.39 (m, 1H), 7.23 (ddd, J = 8.4, 7.2, 1.4 Hz, 1H), 7.19 – 7.14 (m, 1H), 7.11 (d, J = 7.9 Hz, 2H), 6.34 (dq, J = 11.4, 1.8 Hz, 1H), 5.70 (dt, J = 11.4, 7.0 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 2.29 (qd, J = 7.3, 1.8 Hz, 2H), 2.26 (t, J = 7.4 Hz, 2H), 2.22 (s, 3H), 1.74 (p, J = 7.5 Hz, 2H),
1.14 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$): δc 173.5, 145.0, 135.2, 134.7, 133.4, 130.9, 130.0, 126.9, 125.0, 123.5, 123.4, 119.6, 119.1, 118.5, 113.7, 60.4, 33.8, 29.1, 24.8, 21.6, 14.3. MS (p NSI): 412.2 (63%, [M+H]$^+$), 429.2 (100%, [M+NH$_4$]$^+$), 840.3 (15%, [2M+NH$_4$]$^+$); HRMS (p NSI): calcd C$_{23}$H$_{28}$NO$_4$S [M+H]$^+$: 412.1577; observed: 412.1575.

(Z)-6-(1-Tosyl-1H-indol-3-yl)hex-5-en-1-ol (18)

DIBAL-H (1.0 M in toluene, 3.40 mL, 3.40 mmol) was added under nitrogen to a solution of ethyl (Z)-6-(1-tosyl-1H-indol-3-yl)hex-5-enoate (0.400 g, 0.97 mmol) in dry toluene (20 mL) at -78 °C. The reaction mixture warmed to rt and stirred for 3 h, quenched with HCl$_{\text{aq}}$ (1.0 M, 5 mL), extracted with EtOAc (2 x 100 mL), washed with brine, dried over MgSO$_4$ and filtered. The solvent was removed under reduced pressure to give the product as a colourless oil in (0.1533 g, 0.41 mmol, 94 %) with no further purification required.

Rf: 0.27 (petrol/ethyl acetate 1:1). 1H NMR (300 MHz, CDCl$_3$): δh 7.99 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.54 (s, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.26 – 7.20 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.41 (dq, J = 11.4, 1.8 Hz, 1H), 5.82 (dt, J = 11.4, 7.1 Hz, 1H), 3.66 (t, J = 6.2 Hz, 2H), 2.35 (qd, J = 7.3, 1.7 Hz, 2H), 2.30 (s, 3H), 1.69 (br s, 1H), 1.69 – 1.52 (m, 4H). 13C NMR (75 MHz, CDCl$_3$): δc 145.0, 135.1, 134.6, 134.3, 130.9, 129.9, 126.8, 124.9, 123.4, 123.3, 119.6, 119.2, 117.8, 113.6, 62.5, 32.3, 29.4, 25.6, 21.5. IR (neat) $\nu$$_{\text{max}}$/cm$^{-1}$ 3435, 2972. MS (p NSI): 370.1 (28%, [M+H]$^+$), 387.2 (100%, [M+NH$_4$]$^+$), 392.1 (18%, [M+Na]$^+$), 756.3 (45%, [2M+NH$_4$]$^+$). HRMS (p NSI): calcd C$_{21}$H$_{27}$N$_2$O$_3$S [M+NH$_4$]$^+$: 387.1737; observed: 387.1738.

(3aS*,4R*,10aS*,10bS*)-4-(4-hydroxybutyl)-2-methyl-10-tosyl-4,10,10a,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (19)

Dimethyl aluminium chloride (1.0 M in hexane, 0.58 mL, 0.58 mmol) was added dropwise at -78 °C to a solution of N-methylmaleimide (0.0325 g, 0.29 mmol,) in dry DCM (5 mL). The mixture was stirred for 10 min followed by the addition of (Z)-6-(1-tosyl-1H-indol-3-yl)hex-5-en-1-ol (0.108 g, 0.29 mmol) in dry DCM (5 mL). The reaction mixture was heated to reflux for 48 h, quenched with saturated NaHCO$_3$ (aq) (10 mL), extracted with DCM (2 x 25 mL), washed with brine, dried over MgSO$_4$ and filtered. The solvent was removed under reduced pressure to give a white solid
which was purified by column chromatography (gradient elution from petrol/ethyl acetate 1:1 to 100% ethyl acetate) to give the product as a white solid yield in (0.1093 g, 0.23 mmol, 78%).

Mp. 189 – 201 °C. Rf: 0.26 (petrol/ethyl acetate 1:1). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta_H\) 7.79 (d, \(J = 8.3\) Hz, 2H), 7.60 (d, \(J = 8.0\) Hz, 1H), 7.30 – 7.18 (m, 3H), 7.01 – 6.92 (m, 1H), 6.14 (dd, \(J = 7.4, 3.3\) Hz, 1H), 4.84 (dd, \(J = 7.5, 3.3\) Hz, 1H), 4.13 (dd, \(J = 8.5, 7.6\) Hz, 1H), 3.63 (t, \(J = 6.0\) Hz, 2H), 3.17 – 3.08 (m, 1H), 3.06 (d, \(J = 8.7\) Hz, 1H), 2.83 (s, 3H), 2.36 (s, 3H), 1.64 – 1.40 (m, 6H). \(^13\)C NMR (75 MHz, CDCl\(_3\)): \(\delta_C\) 179.0, 174.2, 144.7, 144.3, 135.8, 134.3, 130.5, 130.0, 127.6, 127.1, 124.0, 121.0, 117.7, 115.5, 62.7, 60.0, 44.4, 43.1, 37.9, 33.5, 32.6, 25.3, 25.1, 21.7. IR (neat): \(\nu_{\text{max}}/\text{cm}^{-1}\) 3636, 2981, 1727. MS (p NSI): 481.2 (100%, [M+H]+), 498.2 (15%, [M+NH\(_4\)]+), 503.2 (35%, [M+Na]+), 983.3 (5%, [2M+Na]+). HRMS (p NSI): calcld C\(_{26}\)H\(_{29}\)N\(_2\)O\(_5\)S [M+H]+: 481.1792; observed: 481.1786.

4-((3aS*,4R*,10aS*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-yl)butanal (20)

DMSO (0.07 mL, 1.04 mmol) was added dropwise at -78 °C to a stirred solution oxalyl chloride (0.1 mL, 0.49 mmol) in dry DCM (2 mL). After 30 min a solution of 3aS*,4R*,10aS*,10bS*)-4-(4-hydroxybutyl)-2-methyl-10-tosyl-4,10,10a,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (0.200 g, 0.42 mmol) in DCM (8 mL) was added. The reaction mixture was stirred for 30 min at -78°C followed by the addition of triethylamine (0.23 mL, 1.68 mmol). The reaction mixture was warmed to r.t., stirred for 2 h, quenched with saturated NaHCO\(_3\)(aq) (10 mL), extracted with DCM (2 x 25 mL), washed with brine, dried over MgSO\(_4\) and filtered. The solvent was removed under reduced pressure to give a yellow solid which was purified by column chromatography (petrol/ethyl acetate 1:1) to give the product as a white solid (0.1588 g, 0.33 mmol, 79%).

Mp. 171 – 173 °C. Rf: 0.3 (petrol/ethyl acetate 1:1). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta_H\) 9.76 (s, 1H), 7.80 (d, \(J = 8.3\) Hz, 2H), 7.60 (d, \(J = 8.8\) Hz, 1H), 7.30 – 7.19 (m, 4H), 6.97 (t, \(J = 7.5\) Hz, 1H), 6.14 (dd, \(J = 7.4, 3.3\) Hz, 1H), 4.84 (dd, \(J = 7.5, 3.3\) Hz, 1H), 4.19 – 4.10 (m, 1H), 3.13 (q, \(J = 7.7\) Hz, 1H), 3.05 (d, \(J = 8.7\) Hz, 1H), 2.84 (s, 3H), 2.49 (t, \(J = 6.8\) Hz, 2H), 2.37 (s, 3H), 1.80 – 1.67 (m, 2H), 1.62 – 1.47 (m, 2H). \(^13\)C NMR (75 MHz, CDCl\(_3\)): \(\delta_C\) 201.7, 178.8, 174.1, 144.7, 144.3, 136.1, 134.1, 130.6, 130.0, 127.6, 126.9, 124.0, 121.0, 117.1, 115.5, 60.0, 44.3, 43.6, 43.1, 37.6, 32.8,

(3aS*;3bR*,7S*,7aS*,12bS*)-7-hydroxy-2-methyl-12-tosyl-3b,4,5,6,7,7a,12,12b-octahydrobenzo[c]pyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (21)

Dimethyl aluminum chloride (1.0 M in hexane, 0.06 mL, 0.06 mmol) was added dropwise at -78 °C to a solution of 4-((3aS*,4R*,10aS*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-yl)butanal (0.03 g, 0.06 mmol) in dry DCM (5 mL). The reaction mixture was stirred for three hours at 25 °C before being quenched with saturated NaHCO₃ (aq) (5 mL), extracted with DCM (1 x 20 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give a white solid which was purified by column chromatography (petrol/ethyl acetate 1:1) to give the product as a white solid in (0.0165 g, 0.034 mmol, 54%).

Mp: 265 – 267 °C. R_f: 0.6 (petrol/ethyl acetate 1:1).¹H NMR (300 MHz, CDCl₃) δ_H 8.00 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 7.7 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.25 – 7.19 (m, 1H), 7.19 (d, J = 8.3 Hz, 2H), 4.96 (d, J = 7.2 Hz, 1H), 4.12 – 4.00 (m, 1H), 3.80 (dd, J = 12.4, 7.2 Hz, 1H), 3.07 (dd, J = 5.0, 2.7 Hz, 1H), 3.01 (s, 3H), 2.44 (d, J = 14.0 Hz, 1H), 2.33 (s, 3H), 2.10 – 1.83 (m, 3H), 1.81 – 1.47 (m, 4H).¹³C NMR (126 MHz, CDCl₃): δ_C 177.9, 174.3, 145.1, 137.9, 135.3, 130.3, 129.8, 128.2, 126.9, 125.4, 124.0, 121.7, 118.7, 116.1, 67.8, 43.4, 42.4, 38.8, 34.4, 32.2, 26.8, 25.2, 21.7, 14.6. IR (neat): ν_{max}/cm⁻¹ 3655, 2980. MS (p NSI): 479.2 (100%, [M+H]⁺), 501.1 (85%, [M+Na]⁺). 496.2 [M+NH₄]⁺). HRMS (p NSI): calcd C₂₆H₂₇N₂O₅S [M+H]⁺: 479.1635; observed: 479.1629.

Table 1: Crystal data and structure refinement for 11

<table>
<thead>
<tr>
<th>Identification code</th>
<th>mjh140033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C<sub>25.95</sub>H<sub>26.95</sub>Cl<sub>2.86</sub>N<sub>2</sub>O<sub>5</sub>S (CHCl<sub>3</sub> solvate)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>579.94</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>150.01(10)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
</tbody>
</table>
Space group
P2₁/c
a/Å
10.33568(16)
b/Å
31.6318(5)
c/Å
8.57183(13)
α/°
90
β/°
106.4841(16)
γ/°
90
Volume/Å³
2687.25(7)
Z
4
ρ_ccalc/mg/mm³
1.433
μ/mm⁻¹
4.015
F(000)
1204.0
Crystal size/mm³
0.37 × 0.27 × 0.2
Radiation
CuKα (λ = 1.54184)
2Θ range for data collection
5.588 to 133.572
Index ranges
-12 ≤ h ≤ 12, -35 ≤ k ≤ 37, -9 ≤ l ≤ 10
Reflections collected
37079
Independent reflections
4756 [R_int = 0.0365, R_sigma = 0.0164]
Data/restraints/parameters
4756/45/349
Goodness-of-fit on F²
1.033
Final R indexes [I>=2σ (I)]
R₁ = 0.0412, wR₂ = 0.1029
Final R indexes [all data]
R₁ = 0.0444, wR₂ = 0.1054
Largest diff. peak/hole / e Å⁻³
0.83/-0.43

Table 2: Crystal data and structure refinement for 12.

Identification code
mjh140032_fa
Empirical formula
C₂₅H₂₆N₂O₅S
Formula weight
466.54
Temperature/K
150.01(10)
Crystal system
monoclinic
Space group
P2₁/n
Table 3: Crystal data and structure refinement for 15

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>mjh140006</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{26}H_{26}N_{2}O_{5}SCl_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>549.45</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>150.01(10)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1/n</td>
</tr>
<tr>
<td>a/Å</td>
<td>12.9390(2)</td>
</tr>
<tr>
<td>b/Å</td>
<td>11.80720(1)</td>
</tr>
<tr>
<td>c/Å</td>
<td>11.35230(1)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>94.7820(1)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>2200.26(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>(\rho_{\text{calc}}) g/cm³</td>
<td>1.408</td>
</tr>
<tr>
<td>μ/mm⁻¹</td>
<td>1.654</td>
</tr>
<tr>
<td>F(000)</td>
<td>984.0</td>
</tr>
<tr>
<td>Crystal size/mm³</td>
<td>0.38 × 0.11 × 0.06</td>
</tr>
<tr>
<td>Radiation</td>
<td>CuKα ((\lambda = 1.54184))</td>
</tr>
<tr>
<td>2Θ range for data collection/°</td>
<td>8.874 to 133.532</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-14 ≤ h ≤ 14, -13 ≤ k ≤ 13, -19 ≤ l ≤ 19</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>59078</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3905 [(R_{\text{int}} = 0.0517, R_{\text{sigma}} = 0.0161)]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>3905/0/304</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.038</td>
</tr>
<tr>
<td>Final R indexes [I >= 2σ (I)]</td>
<td>(R_1 = 0.0344, wR_2 = 0.0884)</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>(R_1 = 0.0403, wR_2 = 0.0933)</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.26/-0.42</td>
</tr>
</tbody>
</table>
Table 4: Crystal data and structure refinement for 21

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>mjh150010</td>
</tr>
<tr>
<td>Chemical formula (moiety)</td>
<td>C_{26}H_{26}N_{2}O_{5}S·0.5CH_{2}Cl_{2}</td>
</tr>
<tr>
<td>Chemical formula (total)</td>
<td>C_{26.5}H_{27}ClN_{2}O_{5}S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>521.01</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>synchrotron, 0.6889 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 13.119(3) Å, α = 90°</td>
</tr>
</tbody>
</table>
b = 16.319(3) Å, \(\beta = 100.030(2)^\circ \)
c = 22.882(5) Å, \(\gamma = 90^\circ \)

Cell volume 4823.9(18) Å³

Z 8

Calculated density 1.435 g/cm³

Absorption coefficient \(\mu \) 0.231 mm⁻¹

F(000) 2184

Crystal colour and size colourless, 0.070 \times 0.010 \times 0.010 mm³

Reflections for cell refinement 6929 (\(\theta \) range 2.2 to 25.5°)

Data collection method Rigaku Saturn 724+ on kappa diffractometer

wide-frame \(\omega \) scans

\(\theta \) range for data collection 1.5 to 25.8°

Index ranges h –16 to 16, k –20 to 17, l –28 to 28

Completeness to \(\theta = 24.4^\circ \) 99.9 %

Reflections collected 42956

Independent reflections 10111 (\(R_{int} = 0.0955 \))

Reflections with \(F^2 > 2\sigma \) 6291

Absorption correction none

Structure solution direct methods

Refinement method Full-matrix least-squares on \(F^2 \)

Weighting parameters a, b 0.1315, 7.9105

Data / restraints / parameters 10111 / 67 / 664

Final R indices \([F^2>2\sigma]\) \(R_1 = 0.0838, wR_2 = 0.2270 \)

R indices (all data) \(R_1 = 0.1379, wR_2 = 0.2582 \)

Goodness-of-fit on \(F^2 \) 1.073

Extinction coefficient 0.0093(11)

Largest and mean shift/su 0.003 and 0.000

Largest diff. peak and hole 0.81 and –1.12 e Å⁻³

References

14) CCDC 1437386-1437389 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.