Routine Diagnostic Medulloblastoma Subgrouping Using Low-Cost, Low-Input DNA Methylomics: Application to Trials Cohorts Previously Refractory-to-Analysis.

In: 17th International Symposium on Pediatric Neuro-Oncology (ISPNO).

Copyright:
This is the authors’ manuscript of an abstract of a paper that was presented at the 17th International Symposium on Pediatric Neuro-Oncology (ISPNO) and published in Neuro-Oncology by Oxford University Press.

DOI link to published version:
http://dx.doi.org/10.1093/neuonc/now076.22

Date deposited:
24/08/2016

Embargo release date:
01 June 2017

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk
Routine diagnostic medulloblastoma subgrouping using low-cost, low-input DNA methylomics: Application to trials cohorts previously refractory-to-analysis

Schwalbe, E.C.1,2, Hicks, D.1, Rafiee, G.1, Bashton, M.1, Gohlke, H.3, Enshaei, A.1, Potluri, S.1, Matthiesen, J.1, Mather, M.1, Taleongpong, P.1, Chaston, R.4, Crosier, S.1, Smith, A.J.1, Bordeaut, F.5, Doz, F.5, Rutkowski, S.6, Lannering, B.7, Bailey, S.1, Pietsch, T.8, Williamson, D.1, Clifford, S.C.1

1Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, U.K.
2Northumbria University, Newcastle upon Tyne, U.K.
3Agena, Hamburg, Germany
4NewGene, Newcastle upon Tyne, U.K.
5Institut Curie, Paris, France
6University Medical Center Hamburg-Eppendorf, Hamburg, Germany
7University of Gothenburg, Sweden
8University of Bonn, Germany
The subclassification of medulloblastoma into its four consensus molecular subgroups is rapidly informing disease treatment and risk-stratification. DNA-methylation microarrays have been essential for subgroup discovery and assignment in research studies, however their clinical utility is limited by expense, platform-specificity, sample number/quality requirements and practicality. Here, we aimed to (i) develop a rapid and robust, low-cost, array-independent, subgrouping assay suitable for routine diagnostic sub-classification of single samples, and (ii) assess its application to scant, poor-quality and historical samples, including the previously unassignable HIT-SIOP-PNET4 trial cohort of standard-risk medulloblastomas.

Using a cross-validated classification model, a minimal, multiply-redundant, 17-locus signature was derived to assign subgroup from 220 medulloblastomas profiled using Illumina 450K DNA-methylation arrays. We next adapted Agena’s iPLEX assay to interrogate DNA methylation at these loci following bisulfite treatment. After in-vitro validation, the assay was applied to 101 independent DNA extracts from tumour material (fresh-frozen, FFPE and nuclear preparations (<30,000 nuclei)), representing all subgroups. Subgroup assignments from an optimised machine learning model were compared against gold-standard 450K calls for this validation cohort. 95/101 samples passed QC thresholds (technical, subgroup assignment confidence); all 95 recapitulated their corresponding 450K subgroup call. Assay turnaround (DNA extraction to result) was <5 days.

Following validation, subgrouping was attempted in 153 HIT-SIOP-PNET4 samples, previously unclassifiable due to sample limitations (e.g. scant FFPE material, nuclear preparations, <50ng dsDNA (>250ng required, 450K/EPIC array)). High-confidence calls were made for 70% (107/153) of samples. MB\textsubscript{Group4} predominated (62/107) in this standard-risk cohort and subgroups showed predicted relationships to clinical, pathological and molecular demographics.

In summary, single medulloblastoma samples can be routinely, rapidly and robustly subgrouped using low-cost minimal DNA-methylation signatures and technologies (Agena) transferrable to many diagnostics laboratories. Importantly, the assay is applicable to limited and low-quality samples refractory to array-based analysis, allowing the retrospective unlocking of subgroup status in historical trials cohorts.

Resources:
Online classifier: [insert address]