
Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism.

Cell Reports 2016, 16(8), 2061-2067.

Copyright:

©The Authors. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/

DOI link to article:

http://dx.doi.org/10.1016/j.celrep.2016.07.053

Date deposited:

18/10/2016

This work is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/)
Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism

Highlights
- SNP rs539846 underlies 15q15.1 association with chronic lymphocytic leukemia
- rs539846 resides in a B cell super-enhancer, disrupting a conserved RELA-binding site
- The rs539846 risk allele (A) reduces enhancer activity and RELA binding in CLL
- rs539846-A confers lower BMF expression

Authors
Radhika Kandaswamy, Georgina P. Sava, Helen E. Speedy, ..., James M. Allan, Elias Campo, Richard S. Houlston

Correspondence
richard.houlston@icr.ac.uk

In Brief
Kandaswamy et al. find that SNP rs539846 underlies the 15q15.1 chronic lymphocytic leukemia risk locus. Follow-up data demonstrate that rs539846 resides within a transcriptional enhancer and alters RELA binding at a conserved site. The rs539846-A risk allele results in reduced RELA-mediated enhancer activity and lower expression of BCL-2-modifying factor.

Kandaswamy et al., 2016, Cell Reports 16, 2061–2067
August 23, 2016 © 2016 The Author(s). http://dx.doi.org/10.1016/j.celrep.2016.07.053
Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism

Radhika Kandaswamy,1,8 Georgina P. Sava,1,8 Helen E. Speedy,1,8 Silvia Beà,3 José I. Martin-Subero,2,3 James B. Studd,1 Gabriele Migliorini,1 Philip J. Law,1 Xose S. Puente,4 David Martín-García,2 Itziar Salaverria,3 Jesús Gutiérrez-Abril,5 Carlos López-Otín,4 Daniel Catovsky,5 James M. Allan,6 Elías Campo,7 and Richard S. Houlston1,5,9

1Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
2Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
3Departament d’Anatomia Patològica, Microbiologia i Farmacologia, Universitat de Barcelona, 08036 Barcelona, Spain
4Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
5Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
6Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
7Unitat de Hematologia, Hospital Clínic, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain
8Co-first author
9Lead Contact

*Correspondence: richard.houlston@icr.ac.uk

http://dx.doi.org/10.1016/j.celrep.2016.07.053

SUMMARY

Chronic lymphocytic leukemia (CLL) is an adult B cell malignancy. Genome-wide association studies show that variation at 15q15.1 influences CLL risk. We deciphered the causal variant at 15q15.1 and the mechanism by which it influences tumorigenesis. We imputed all possible genotypes across the locus and then mapped highly associated SNPs to areas of chromatin accessibility, evolutionary conservation, and transcription factor binding. SNP rs539846 C>A, the most highly associated variant (p = 1.42 × 10−13, odds ratio = 1.35), localizes to a super-enhancer defined by extensive histone H3 lysine 27 acetylation in intron 3 of B cell lymphoma 2 (BCL2)-modifying factor (BMF). The rs539846-A risk allele alters a conserved RELA-binding motif, disrupts RELA binding, and is associated with decreased BMF expression in CLL. These findings are consistent with rs539846 influencing CLL susceptibility through differential RELA binding, with direct modulation of BMF expression impacting on anti-apoptotic BCL2, a hallmark of oncogenic dependency in CLL.

INTRODUCTION

Although genome-wide association studies (GWASs) frequently have identified statistically significant associations within non-coding regions of the genome, the underlying causal variant has been elucidated in only a few instances. GWASs of chronic lymphocytic leukemia (CLL) have identified 31 risk loci, with the signal annotating B cell lymphoma 2 (BCL2)-modifying factor (BMF) at 15q15.1 being highly robust (Berndt et al., 2013, 2016; Crowther-Swanepoel et al., 2010; Di Bernardo et al., 2008; Slager et al., 2011, 2012; Speedy et al., 2014).

Elevated expression of the anti-apoptotic protein BCL2 is a hallmark of CLL, driving the accumulation of mature leukemic lymphocytes (Hanada et al., 1993). BMF, a BH3-only pro-apoptotic member of the BCL2 protein family, neutralizes the anti-apoptotic activity of BCL2 through direct interaction (Puthalakath et al., 2001). Here we sought to identify the causal polymorphism(s) driving the 15q15.1 association with CLL susceptibility as a basis for understanding BCL2 addiction mechanisms in CLL.

RESULTS

Fine-Mapping of the 15q15.1 CLL Risk Locus

A previous GWAS reported an association between rs8024033 at 15q15.1 and CLL risk (Berndt et al., 2013). To refine the association signal, we performed fine-mapping of the 15q15.1 CLL risk locus by imputation of our European GWAS to 1000 Genomes Project (Abecasis et al., 2012) and UK10K (UK10K Consortium et al., 2015) reference panels. By this approach, we identified four risk SNPs with minor allele frequency >0.01 and association p < 5.0 × 10−7 (Figure 1A; Table S1). The lead SNP, rs539846 (odds ratio = 1.35, p = 1.42 × 10−13), mapped to the third intron of BMF and was in high linkage disequilibrium (LD, r² = 0.91) with the published SNP, rs8024033. We verified the fidelity of imputed rs539846 genotypes by Sanger sequencing in a subset of 176 CLL cases, demonstrating >95% concordance.

To rule out the existence of multiple statistical signals at the BMF locus, we repeated association testing conditional on
rs539846 genotypes, observing no significant variants (most significant variant: rs181168015, \(p = 1.52 \times 10^{-10} \); Figure S1). We also found no rare non-synonymous variants in BMF in the germ-line exomes of 141 CLL cases (enriched for genetic susceptibility by virtue of family history; Supplemental Experimental Procedures). Collectively these results are consistent with a single underlying variant at the 15q15.1 locus.

Definition of rs539846 as a Plausible CLL Risk SNP

To further prioritize candidate CLL risk variants, we examined the regulatory potential of SNPs in LD (\(r^2 > 0.2 \)) with rs539846, based on epigenetic data from lymphoblastoid cell lines (LCLs [ENCODE Project Consortium, 2012]) and primary CLL cells. These data showed that rs539846 resides within an active enhancer region inferred by DNase sensitivity and H3K4me1 and H3K27ac histone modifications in both cell types (Figure 1B; Table S1). Moreover, analysis of histone H3K27ac data from lymphoid cells of both B cell and T cell lineages defined a B cell-specific 15q15.1 super-enhancer that spans ~80 kb, encompassing the CLL risk locus (Hnisz et al., 2013), while high-throughput chromosome conformation capture (Hi-C) data from LCLs (Rao et al., 2014) show that this putative super-enhancer element overlaps a chromatin contact domain (Figure 2A).

Since causal SNPs that drive GWAS associations may function by altering transcription factor binding, we examined whether 15q15.1 candidate risk SNPs disrupt predicted JASPAR motifs. This revealed that rs539846 alters a highly conserved base within a putative RELA-binding motif (GGGGACTTT[C/A]C, phastCons score = 1.00, Genomic Evolutionary Rate Profiling [GERP] score = 4.81) (Figure 1B). Encyclopedia of DNA Elements (ENCODE) transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) in LCLs confirmed the presence of RELA binding across this site (Figure 1B) in cells homozygous for the rs539846-C allele (non-risk allele, preserving the RELA motif). Within the 15q15.1 chromatin contact domain, chromosome conformation capture–on-chip with sequencing (4C-seq) in the MEC1 CLL cell line showed a high frequency of three-dimensional contacts between the viewpoint (adjacent to
rs539846) and the distal end of the predicted super-enhancer, with both points overlapping regions of RELA and CTCF binding (Figure 2B).

No other candidate CLL risk variant at the 15q15.1 locus showed the unique combination of evolutionary conservation, active enhancer localization, and disruption of a transcription factor-binding motif, thus re-affirming that rs539846 is the single best causal SNP candidate.

rs539846 Alters RELA-Mediated Enhancer Activity

We next performed luciferase reporter assays to determine the effect of rs539846 on enhancer activity. MEC1 cells transfected with constructs containing the risk A allele demonstrated a significant reduction in normalized luminescence compared to the C allele (p = 0.015, Figures 3 A and 3B), indicating that the intact RELA motif is required for enhancer activity. We assayed protein-DNA interactions for rs539846-C and -A alleles using electrophoretic mobility shift assays (EMSAs). The C allele formed stronger protein-DNA complexes compared with the A allele (Figure 3C), and in an EMSA super-shift assay RELA was preferentially recruited to the C allele (Figure 3C).

rs539846 Alters RELA-Mediated Regulation of BMF

To determine whether BMF is a target of RELA-mediated regulation, we first queried the International Cancer Genome Consortium (ICGC) dataset, revealing a correlation between RELA and BMF expression in CLL (Table S2; p = 0.004). To establish a direct relationship between RELA and BMF expression, we performed small interfering RNA (siRNA) experiments in MEC1 cells, where knockdown of RELA was accompanied by a significant reduction in BMF mRNA (Figure 4A, p = 0.02; Figure S2). We also investigated whether the rs539846 genotype was associated with BMF transcript levels in 426 primary CLL cases. We observed a significant dose relationship between the rs539846-A risk allele and reduced BMF mRNA (p = 0.0003; Figure 4B). No association was seen between the rs539846 genotype and levels of other genes within 1 Mb of the SNP (false discovery rate < 0.05, Table S2). To investigate whether the rs539846 genotype might influence splicing of BMF, we examined RNA sequencing (RNA-seq) data from 30 CLL cases, finding no evidence of aberrant splicing. We also found no differences in the splicing levels of known BMF exons between the rs539846 risk allele and non-risk allele homozygotes (Figure S3).

Impact of rs539846 on Prognosis and Survival in CLL Patients

CLL can be classified on the basis of several prognostic factors, including immunoglobulin heavy-chain variable (IGHV) mutation status; expression levels of CD38, ZAP70, and CLLU1; as well as somatic genomic abnormalities (trisomy 12, 13q14 deletion, 6q21 deletion, 11q23 deletion, 17p13 deletion, NOTCH1 mutation, and SF3B1 mutation). We found no association between the rs539846 genotype and these features in a subset of UK-GWAS and ICGC study cases (Table S3). There was also no association between rs539846 and overall patient outcome (Table S4), and we noted that BMF transcript levels were not associated with patient survival (Table S4).

DISCUSSION

Collectively, our data demonstrate that the underlying molecular mechanism for the 15q15.1 CLL risk locus is mediated through
rs539846, which resides within a transcriptional enhancer and disrupts a conserved RELA transcription factor-binding site. Our data are compatible with the rs539846-A allele conferring increased CLL risk through reduced RELA-mediated expression of the pro-apoptotic BCL2 family gene, BMF. Furthermore, epigenetic and chromosome conformation capture data are consistent with rs539846 localizing within a chromatin contact domain, overlapping a B cell super-enhancer (Hnisz et al., 2013). This interval, anchored by divergent CTCF-binding sites, forms a loop domain (Rao et al., 2014), which is expected to bring two regions of RELA binding, separated by a linear distance of around 65 kb, into physical contact close to the promoter of BMF.

RELA (also known as p65) is a sub-unit of the necrosis factor kappa B (NF-κB) protein complex. This transcription factor complex regulates expression of genes involved in biological processes, such as proliferation, survival, and inflammation. NF-κB signaling is constitutively active in CLL (Furman et al., 2000), while high levels of the pro-survival gene BCL2, an established NF-κB target, are a hallmark of the disease (Scarfo and Ghi, 2013).

Here, we provide direct evidence that BMF is transcriptionally regulated by RELA, in keeping with the somewhat counter-intuitive observation that levels of pro-apoptotic BMF are high in CLL (Mackus et al., 2005). In the normal response to cellular stress, BMF interacts with BCL2 at the mitochondrial surface and neutralizes its anti-apoptotic properties (Puthalakath et al., 2001). In CLL, it is hypothesized that, although cells maintain some ability to induce pro-apoptotic BH3-only proteins like BMF in response to oncogenic stress, apoptosis ultimately fails due to overexpression of pro-survival proteins.

Our data suggest that, in individuals carrying the rs539846 risk allele, BMF transcript levels are reduced and thus the apoptotic response may be attenuated further. Indeed, previous studies in the myeloma cell line U266 have reported that siRNA-mediated knockdown of BMF is associated with a decrease in apoptosis following treatment with arsenic trioxide (Morales et al., 2008), whereas mice lacking Bmf develop a B cell lymphadenopathy caused by a resistance of B cells to apoptosis (Labi et al., 2008).

We did not observe an association between the SNP and prognostic markers or patient survival in CLL. This is consistent with differential expression of BMF being important in the early phases of CLL rather than disease progression per se. We do, however, acknowledge that our analysis had <50% power to demonstrate a 10% difference in patient outcome, and to robustly determine the relationship between BMF expression and patient outcome requires much larger patient cohorts.

Finally, this study underlines the importance of BH3-only proteins such as BMF in CLL development. Recently, a number of BH3 mimetics have been developed as potential therapies for lymphoid malignancies (Billard, 2013). These molecules are designed to mimic endogenous BH3-only proteins and bind to pro-survival members of the BCL2 family, facilitating the induction of apoptosis. One example, ABT-199 (Venetoclax), selectively targets BCL2, and, in recent clinical trials involving relapsed or refractory CLL, patients gave an overall response rate of 79% (Roberts et al., 2016). Our findings thus further demonstrate the utility of association studies to define clinically relevant oncogenic pathways.
Hi-C and Definition of a Topological Domain at the 15q15.1 Locus

We made use of publicly available Hi-C data on GM12878 cells (Rao et al., 2014), based on combined replicates digested using MboI, analyzed using the balanced Knight-Ruiz normalization method (Knight and Ruiz, 2013) with a uniform resolution of 5 kb. Contact domains were defined with the Arrowhead algorithm (Rao et al., 2014).

Cell Culture

MEC1 (human CLL) cells were grown in Iscove’s modified Dulbecco’s medium (Life Technologies) supplemented with 10% fetal calf serum.

4C-Seq

4C-seq libraries were prepared as described (van de Werken et al., 2012), using ten million MEC1 cells cross-linked with 2% formaldehyde. Using 4C primer design software (http://mnlab.uchicago.edu/4Cpd/), we identified a viewpoint adjacent to SNP rs539846. Primary and secondary restriction enzymes were DpnII and HindIII (cut sites, chr15:40,397,659–40,397,662 bp and chr15:40,396,692–40,396,697 bp, respectively). Primers are listed in Table S5. Libraries were sequenced on an Illumina MiSeq to obtain 150-bp single-end reads. Reads were mapped to the human genome using Bowtie (version 2.1.0) and filtered for PHRED score > 30. Implementing standard procedures, unique 4C-seq reads were allocated to blind and non-blind fragments. Profiles for the two classes of fragments were obtained at 100-bp resolution and an average profile for a 5-kb running window was computed. For data visualization, we used Vispig (Scales et al., 2014) and incorporated processed ChIP-seq data from the ENCODE Project (ENCODE Project Consortium, 2012).

Plasmid Construction and Luciferase Assays

Allele-specific fragments of a 591-bp region spanning rs539846 were amplified from human genomic DNA using primers detailed in Table S5, cloned into the POR8/GW/TOPO vector, and then transferred into pGL3 luc2 promoter vector using Gateway technology (Life Technologies). Reporter constructs were introduced into MEC1 cells by nucleofection, using program X-01 on the Amaxa Nucleofector I (Amaxa Biosystems). Typically, 5 x 10^6 cells were resuspended in 100 µl Cell Line Nucleofector Solution V and mixed with 3 µg reporter plasmid DNA and 60 ng internal control plasmid (pRL-SV40). Transiently transfected cells were grown for 24 hr before assaying with the Dual-Luciferase Reporter Assay System (Promega) and the Fluoroskan Ascent FL plate reader (Labsystems). Relative luciferase activity was calculated as the ratio of luminescence from the experimental reporter to that of the control reporter. Each transfection experiment was repeated three times and statistical significance was calculated using the Student’s t test.

EMSA

Nuclear protein was extracted from MEC1 cells using NE-PER nuclear and cytoplasmic extraction kits (Thermo Fisher Scientific). Infrared dye DY-682-labeled (Eurofins Genomics) and unlabeled (Life Technologies) complementary oligonucleotides flanking rs539846 (5'-GAGGGGACTTT[C/A]CCTCCCC AAAC-3' and 5'-GTTTGGAGGAGG(CT)AAACGTCCCTC-3') were annealed to generate double-stranded EMSA probes. Each 20 µl binding reaction
Gene Expression and Splicing Analysis
We used Spearman’s rank correlation to assess the relationship between BMF and RELA transcript levels in the ICGC dataset (Puente et al., 2015). Expression quantitative trait locus analyses were performed for all genes in the 1-Mb region around rs539846, using Affymetrix Human Genome Array U219 data on 426 CLL patients (Puente et al., 2015). Four cases with 15q15.1 copy number losses were excluded. Genotypes were determined by imputation as described and were confirmed from whole-genome-sequencing (WGS) data in 145 samples, with >99% concordance. The association between SNP genotype and expression was evaluated by linear regression controlling for false discovery using matrixEQTL (Shabalin, 2012) implemented in R (version 3.2.0). To assess the impact of rs539846 on splicing, we used RNA-seq data from CLL tumors (Puente et al., 2015), counting individual k-mers supporting each of the possible splicing events. Sample genotype for SNP rs539846 was determined from WGS data, and differences between k-mer counts for rs539846-CC and -AA homozygotes were evaluated using a Student’s t test.

The accession numbers for the data utilized in this paper are European Genome-phenome Archive EGAD00010000875 and EGAS00000000992.

siRNA Knockdown
siRNA targeting RELA and a control siRNA (Table S5) were obtained from Eurofins Genomics. MEC1 cells were transfected with 100 nM siRNA using nucleofection as described. Total RNA was extracted 24 hr post-transfection using the RNeasy Plus Mini Kit (QIAGEN). The cDNA was produced using reverse transcriptase with standard protocols. RELA antibody was used with GAPDH antibody (FL-335; sc-25778, horse-radish peroxidase [HRP]; Santa Cruz Biotechnology) as the loading control.

Association between the rs539846 Genotype and Clinical Variables
Logistic regression was used to test the association between the rs539846 genotype and prognostic factors. Trisomy 12, 13p14 deletion, 6q21 deletion, 11q23 deletion, 17p13 deletion, CD38 expression, ZAP70 expression, CLLU1 expression, NOTCH1 mutation, and SF3B1 mutation statuses were determined in a subset of UK-CLL-1 patients who were participants in the LRF CLL4 Trial (Catosky et al., 2007), as previously described (Oscier et al., 2010, 2013). IGHV mutation status was determined as per BIOMED-2 protocols (van Dongen et al., 2003) in a subset of patients from UK-CLL-1, UK-CLL-2, and the ICGC CLL project (Puente et al., 2019). In accordance with published criteria (van Krieken et al., 2007), we classified sequences with germline homology of ≥98% as unmutated and those with homology <98% as mutated. Survival analysis was performed using data from a subset of UK-CLL-1 and ICGC CLL project cases. Analysis was carried out using the log-rank test (using time from diagnosis to death or censoring at the end of follow-up).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, three figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.07.053.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

Bloodwise provided principal funding (LRF05001, LRF06002, and LRF13044). We also acknowledge support from Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund) and the Arrib Charitable Fund. G.P.S. is in receipt of a PhD studentship from The Institute of Cancer Research funded by Cancer Research UK. We also acknowledge support from The Spanish Ministry of Science and Innovation (MICINN) through the Instituto de Salud Carlos III (ISCIII) International Cancer Genome Consortium for Chronic Lymphocytic Leukemia (IGCC-CLL Genome Project). This study uses data generated by the Wellcome Trust Case-Control Consortium 1 and 2. A full list of the investigators who contributed to the generation of data is available at http://www.wtccc.org.uk/. We are grateful to all investigators and patients for their participation. We also thank the clinicians and other staff who contributed to the blood sample and data collection for this study.

Received: April 15, 2016
Revised: June 14, 2016
Accepted: July 20, 2016
Published: August 11, 2016

REFERENCES

