
Copyright:

This is the authors’ accepted manuscript of an article that was published in its final definitive form by Nature Publishing Group, 2017. After 6 months the work will become freely available under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

DOI link to article:

http://dx.doi.org/10.1038/bjc.2016.351

Date deposited:

22/12/2016

Embargo release date:

08 May 2017

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License](http://creativecommons.org/licenses/by-nc-sa/3.0/)

Newcastle University ePrints - eprint.ncl.ac.uk
Projected cancer risks potentially related to past, current and future practices in paediatric CT in the UK, 1990-2020

Running title: Cancers attributable to paediatric CT in the UK, 1990-2020

Neige M.Y. Journy¹, Choonsik Lee¹, Richard W. Harbron²,³, Kieran McHugh⁴, Mark S. Pearce²,³, Amy Berrington de Gonzalez¹

¹Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9776 Bethesda, Maryland 20892, United States

²Institute of Health & Society, Newcastle University, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK

³NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, UK

⁴Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, United Kingdom

Corresponding author: Neige M.Y. Journy, neige.journy@nih.gov, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, MSC 9776 Bethesda, Maryland 20892, United States
Acknowledgments: This study used data from the Diagnostic Imaging Dataset released by the National Health Service (NHS) England. The authors acknowledge the NHS England for providing us detailed data on frequencies of paediatric CT scans. The interpretation and reporting of these data are the sole responsibility of the authors, and do not necessarily reflect the view of the NHS England. The estimated frequencies of CT scans provided in this paper might differ from official statistics because we applied our own methodology to handle missing data on patients’ characteristics.

Funding sources: This study was supported by the U.S. National Cancer Institute intramural research program, the UK Department of Health and Cancer Research UK. The funding sources and sponsor had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Conflict of Interest Disclosures: None reported.
ABSTRACT

Objectives: To project risks of developing cancer and the number of cases potentially induced by past, current and future computed tomography (CT) scans performed in the UK in individuals under 20 years of age.

Methods: Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the UK. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool.

Results: In 2000-2008, ELRs ranged from 0.3 to 1 per 1,000 head scans, and 1 to 5 per 1,000 non-head scans. ELRs per scan were reduced by 50-70% in 2000-2008 compared to 1990-1995, subsequent to dose reduction over time. The 130,750 scans performed in 2015 in the UK were projected to induce 64 (90% uncertainty interval (UI): 38-113) future cancers. Current practices would lead to about 300 (90% UI: 230 to 680) future cancers induced by scans performed in 2016-2020.

Conclusion: Absolute excess risks from single exposures would be low compared to background risks, but even small increases in annual CT rates over the next years would substantially increase the number of potential subsequent cancers.
INTRODUCTION

Fifteen years ago, Brenner and colleagues first assessed the possible magnitude of cancer risks induced by paediatric Computed Tomography (CT), and raised concerns about potential harmful effects of these x-ray exposures (Brenner et al., 2001). That study predicted risks of fatal cancer ranging from one per 10,000 to one per 1,000 scanned patients, depending on their age and the scanned body part. Based on current radiological practices at that time in the US, they projected that about 500 children scanned each year would ultimately die from a radiation-related cancer. Several investigators also reported the use of adult-calibrated scan parameters in paediatrics in this past period, resulting in unnecessarily high radiation doses in small body size patients (Mettler et al., 2000, Donnelly et al., 2001, Huda and Vance, 2007).

Since then, direct evidence of increased cancer risks after CT scans received in childhood or early adulthood has been provided in epidemiological studies (Pearce et al., 2012, Mathews et al., 2013, Huang et al., 2014), although there were uncertainties in the dose estimates and a possibility of bias due to underlying medical conditions (Walsh et al., 2014, Berrington de Gonzalez et al., 2016). These studies have enhanced awareness about potential risks of x-ray exposures among the medical community and, along with considerable technological progress in CT, has led to further radiation dose optimisation in paediatrics. For instance, a survey in Great Britain showed that doses per scan were reduced by 50% in 2000-2008 compared to exposures before 1990 (Lee et al., 2016). At the same time, however, the number of examinations performed annually has considerably increased, in both adults and children (Pearce et al., 2011), due to the more widespread availability of CT scanners, the considerable reduction in scan times (which now makes the use of sedation unnecessary in most children), and improvements in CT
image quality allowing more medical applications. The increasing frequency of CT use has undoubtedly provided considerable medical benefits to children, but at the same time has increased the collective radiation exposure and the number of possible radiation-related cancers (Linton et al., 2003). In 2010, Parkin and Darby estimated that, in the UK, 0.6% of all cancers would be attributable to radiation exposures from diagnostic imaging in both pediatrics and adults (Parkin and Darby, 2011).

Our aim here is to estimate the potential radiation-related cancer risks from current CT practice in the UK, specifically in pediatrics, compared to past practice, and to quantify the impact of the documented dose reductions. We then use data on frequency of CT use to project the numbers of future cancers possibly attributable to pediatric scans currently performed in the UK, or will be in the next five years, in individuals less than 20 years of age.

METHODS

Projection of Excess Lifetime Risks (ELRs) per scan

To project future cancer risks, we used the RadRAT risk assessment tool, which was developed at the National Cancer Institute, Bethesda, MD, U.S. (Berrington de Gonzalez et al., 2012), and is now freely accessible at https://irep.nci.nih.gov/radrat. RadRAT incorporates an extended list of cancer site-specific risk models which were previously derived by the U.S. National Research Council in the BEIR VII report (NRC, 2006) from cohorts of survivors of the Hiroshima and Nagasaki atomic bombings and patients receiving radiotherapy for benign diseases or repeated diagnostic procedures. The above-mentioned recent studies on CT exposures cannot provide a full picture of radiation-related risks, mainly because their duration of follow-up is still too short.
to describe cancer incidence after the age of 50 (Pearce et al., 2012, Mathews et al., 2013, Huang et al., 2014, Berrington de Gonzalez et al., 2016). In consequence, most of these studies estimated risks for a limited range of cancer sites. The risk estimates per unit dose were, however, compatible with the models implemented in RadRAT for leukemia and cerebral tumours (no estimate per unit dose is available for other cancer sites), once children with previous cancers or cancer-predisposing conditions were excluded (Berrington de Gonzalez et al., 2016). Current evidence from CT scans provides thus support for the appropriateness of the BEIR VII/RadRAT models for our risk projection purposes.

From these models, ELRs of developing cancer were calculated for single CT scans, according to the patient’s age at exposure, gender, and scanned body part, as cumulative risks which would occur in addition to baseline cancer risks (i.e. without CT exposure) over a lifetime, while accounting for survival probabilities at each attained age. Survival functions (England, 2011-2013) and baseline incidence rates (UK, 2011-2012) were collected from the Office for National Statistics (ONS) (www.ons.gov.uk, accessed on March 26, 2015). To account for risk projection uncertainties, 90% uncertainty intervals (UIs) were calculated as the 5th through to 95th percentile range of the distribution of ELR (or total number of future cancers) values computed by Monte Carlo simulations using RadRAT. As detailed in the methodological paper, probability distributions were assigned to each of the following components of risk projection: dose-response model parameters, minimum latency period between radiation exposure and cancer occurrence, high-to-low doses risk extrapolation, and population-to-population risk transport, as well as to organ doses (see “Organ dose” section), to propagate uncertainties and dose variability in risk projection (Berrington de Gonzalez et al., 2012). All results on projected risks are displayed as median simulated values with 90% UI.
The total number of cancers potentially related to annual frequencies of CT scans was calculated as a sum of estimated numbers of scans in a year for a given age groups, gender and scanned body part, multiplied by the corresponding ELRs. The presumed linear dose-response relationship for solid cancers and leukemia over the dose range of our interest (<0.5 Gy) (Preston et al., 2007, Wakeford, 2013), implies that the sum of projected risks for children who received multiple exposures is simply equal to the sum of projected risks per scan over all exposures in the population. The number of cancers potentially related to future scans for the period 2016-2020 was projected under different scenarios of dose reduction and future annual CT rates, which are detailed below. The total number of cancers potentially induced by past CT use (1990-2012) was not projected, due to the lack of data on frequencies of paediatric CT scans in this time period, and the overly speculative nature of retrospective risk projections over such a long period.

Organ doses per scan

Organ doses were estimated by age-at-exposure (0-4, 5-9, 10-14, 15-19 years), scanned body part (head, chest, abdomen-pelvis), gender and time period (1990-1994, 1995-1999, 2000-2008), mainly from individual scan parameters extracted from a sample of 1073 procedures in members of the UK CT cohort (Lee et al., 2016), to refine dosimetry since the first publication (Pearce et al., 2012). We converted the values of volume Computed Tomography Dose Index (CTDIPv) estimated from the scan parameters into organ doses using conversion coefficients and standard landmarks, as described previously (Lee et al., 2016). For risk projection, the variability in organ doses was described by log-normal distributions derived from the 1,073 CT scan sample. For less
frequently scanned body parts (cervical spine, shoulders, hips) and particular protocols (high-resolution, whole-body CT), data from the sample were very sparse. We thus used “typical” CTDI\textsubscript{vol} values published from two national surveys of CT protocols used in the UK (Kim et al., 2012). For these infrequently scanned body parts, we did not account for dose variability (or uncertainty) in risk projection because no variability parameters were provided in the two national reference surveys. No dose estimation was performed for scans of the limbs because published values of CTDI\textsubscript{vol} were not reported separately for both legs and arms (Kim et al., 2012), and conversion factors were not developed for arms (Lee et al., 2012). For risk projection in the period 2016-2020, we considered three scenarios of possible future dose reduction (constant, -20%, or -40%, as compared with doses per scan in 2000-2008), which would result from technological innovation and improved dose optimization (Raman et al., 2013, Dougeni et al., 2012).

Frequencies of paediatric CT scans in the UK

The total number of scans in England in 2013-2015 was collected from the Diagnostic Imaging Dataset (DID) which gathers information about all imaging tests carried out in England through the National Health Service (NHS) since April 2012 (reports accessible at www.england.nhs.uk). In the UK, paediatric CT scans are virtually all performed within the public NHS system. Data were obtained by 5-year age group and gender, excluding CT-guided procedures (e.g. biopsies or drainage) which are usually associated with very small doses. Procedures with unknown age or gender (<3%) were assumed to have the same age and gender distribution as scans with specified patients’ age and gender, and were added to sub-totals. To estimate the number of scans by body part, we applied frequencies by scan type and 5-year age groups estimated in the UK CT cohort.
(Pearce et al., 2012). The number of scans throughout the UK was estimated by applying CT rates per 1,000 inhabitants in England by 5-year age group and calendar year to the 2012-based population projections for the whole of the UK published by the ONS (http://www.ons.gov.uk, accessed on March 7, 2016). The number of CT scans performed over the next five years was projected under various realistic scenarios of future changes in annual CT rates per inhabitant (constant, +5%, +3%, or -2%, as compared with the rates in 2015), and a “worst case” scenario of annual increase by 10% corresponding to CT trends observed in past years in other countries (Smith-Bindman et al., 2012, Brady et al., 2016, Dovales et al., 2016).

RESULTS

Excess Lifetime Risks associated with single CT scans, in 1990s and 2000s

The projected ELR per scan decreased by 50-70% during the period 2000-2008 compared to the period 1990-1994, depending on age-at-exposure, gender and scanned body part (Figure 1). In 2000-2008, ELRs ranged from 0.3 to 1 per 1,000 head scans, and 1 to 5 per 1,000 non-head scans (scans of the chest or abdomen and pelvis) according to patient gender and age (Table 1). For head scans, projected ELRs were similar for both genders, but, for non-head scans, ELRs were 1.5 to 3 times higher in girls than in boys due to higher risks of thyroid, breast, lung and gynecological cancers. As compared to a background lifetime risk of 40% in unexposed children, each single scan during childhood would lead to one excess case per 1,000 spontaneous cancers, on average. Uncertainties in risk projection were nevertheless large, e.g. for chest scans in girls aged 5 years, 90% of the simulated ELR values ranged from 1 to 13 per 1,000 (Table 1).
In England, the annual rate of CT use increased by 3% on average over the period 2013-2015, up to 8.5 scans per 1,000 in 2015. The 2015 rates were respectively 5.6, 3.8, 7.0, and 17.9 per 1,000 in individuals aged 0 to 4, 5 to 9, 10 to 14, and 15 to 19 years. Based on these figures, we projected that 64 (90% UI: 38-113) future cancers would be induced by the 130,750 scans performed in 2015 in the UK in individuals aged <20 years. Girls accounted for 46% of the projected future cancers; adolescents aged 15-19 years accounted for half, and infants (<1-year-old at scan) for almost 10% of projected future cancers (Figure 2). Cerebral tumours were the most frequent potentially radiation-related cancers, accounting for a fourth of all projected future cancers (Figure 3). Leukaemia, oral, lung, breast, and colorectal cancers accounted each for one out of ten. Despite the fact that cervical spine, chest, abdomen and/or pelvis scans accounted for only one-fifth of all examinations, tumours of organs located exclusively in the neck, thoracic or abdominal region (thyroid gland, breasts, lungs, digestive and urinary organs) accounted for half of all projected future cancers, due to their high sensitivity to radiation.

Projected future cancers from different scenarios of CT practices up to 2020

While considering the doses per scan during the period 2000-2008 and the CT rates of 2015 remaining constant up to 2020, we calculated that 320 (90%UI: 230 to 680) future cancers would be induced by paediatric CT use in the UK over the next 5 years (Table 2). If the frequency of scans continues to increase by 3% per year up to 2020, this would lead to a number of potential future cancers increasing by 10%, as compared to constant CT rates. Rates increasing annually by 5% and 10% would be associated with increasing numbers of subsequent future cancers by 16% and 34% respectively by 2020. Countering these projections are further CT dose reduction
techniques likely to be developed or implemented in the future, which would proportionally decrease the associated potential cancer risks (Table 2).

DISCUSSION

This study is an updated risk assessment for paediatric CT scans, which accounts for recent trends in radiation doses and frequency of use in the UK. Compared to the earliest period of CT use (before 1995), it shows that potential cancer risks per scan have been reduced by 50-70% in recent years due to dose reduction practices over time. With an estimated annual rate of 8.5 scans per 1,000 children and adolescents, resulting in a total of 131,000 scans in 2015, we projected that 40 to 110 children who were scanned in that year would ultimately develop a radiation-related cancer over their lifetime. To put this in context, if we assume that 110,000 children were scanned that year (1.2 scan per child on average), 44,000 of these children would develop a cancer during their life, independently of their CT exposure in childhood (assuming a background lifetime risk of cancer of 40%).

An rough estimate of 5 future cancers per 10,000 paediatric scans from current practices in the UK is substantially lower than in previous studies conducted from past CT practices in the US, which estimated 8 cancer deaths (Brenner et al., 2001), and 10-12 incident cancers (Berrington de Gonzalez et al., 2009, Miglioretti et al., 2013) attributable to 10,000 paediatric scans. A reduction of risks per scan in the US by a similar extent to our estimates for the UK would be especially meaningful in terms of cancer burden reduction in this larger population. A projection rate of 5 future cancers per 10,000 scans would correspond to 3,400 future cancers possibly induced by the 6.8 million pediatric scans performed in the US in 2014 (IMV, 2014), as compared with the 7,000 to 8,000 future cancers that we project from the previous estimates.
(Berrington de Gonzalez et al., 2009, Miglioretti et al., 2013). This reduction assumes that the reduced doses per scan observed in the UK also apply in the US, although, to our knowledge, no large-scale survey has described very recent trends in radiation doses in routine paediatric care in the US. Transposing current results for the UK to another population also assumes that the two populations have similar background risks, and distribution of age at scan and scanned body parts, which can be considered as a reasonable assumption (Ferlay et al., 2012).

Other previous studies have projected cancer risks from paediatric CT scans. Most of them have reported radiation exposure and potential subsequent risks based on dedicated CT protocols, e.g. for monitoring of cystic fibrosis (de Jong et al., 2006), detection of renal calculi (Kuhns et al., 2011), treatment of neurovascular diseases (Raelson et al., 2009), low-dose chest scan (Niemann et al., 2015), or coronary angiography (Huang et al., 2009). Few other studies have projected risks per scan from standard paediatric CT protocols, e.g. in the US (Li et al., 2011), France (Journy et al., 2014), and China (Su et al., 2014). None, to our knowledge, has previously considered routine practices in the UK. Many components differ between these studies, including population-specific background cancer risks and life expectancy, organ doses (scan parameters including length of scan region, and methods for organ dose estimation), risk models (though relatively homogeneous models were used in most studies), and methods to propagate risk projection uncertainties. However, a projection of 0.1 to 1 incident case (all cancer sites combined) per 1,000 head scans, and 1 to 5 per 1,000 non-head scans, is completely consistent among studies reporting all-cancer risks from standard CT protocols (Berrington de Gonzalez et al., 2009, Li et al., 2011, Miglioretti et al., 2013). With the use of largely similar risk models, these studies also consistently reported 2 to 7 times higher risks per scan in girls than boys (for non-head scans only), and 1.5 to 3 times higher risks per scan in neonates than adolescents aged
10-15 (for all scans) (Berrington de Gonzalez et al., 2009, Li et al., 2011, Miglioretti et al., 2013, Journy et al., 2014).

The current study benefited from the use of empirical data on radiation doses and frequency of exposure in the UK for past and current time periods. The source of information used for organ dose estimation is the only one to include both individual variability and temporal trends from 1990 to 2008 in the UK, and will be part of a refined dosimetry of the UK CT cohort (Lee et al., 2016). Since the most recent period (2000-2008) of this survey, progress in CT technology and improved practices in dose optimization are likely to have reduced radiation doses that are currently delivered to patients, and to reduce them even more in the future. While future technological advances are unpredictable, we assessed different scenarios of dose reduction compatible with the expected gains from the widespread use of recent technological innovations (particularly automatic exposure control and iterative reconstruction) (Raman et al., 2013, Dougeni et al., 2012). A recent national survey in the UK, however, suggested few changes in CT practices in 2011 compared to 2003 (PHE, 2014). Future frequencies of CT use are also unpredictable, but “realistic” scenarios of future annual CT rates increasing by -2% to +5% would predict total numbers of possibly induced future cancers varying from -6% to +16% in the UK by the end of 2020, as compared with CT rates in 2015. A “worst case scenario” of annual rates increasing by 10% up to 2020 would lead to an increased total number of potential subsequent cancers by 34% in the next five years.

As has been extensively discussed in the literature (NRC, 2006, UNSCEAR, 2012), the methodological framework for low-dose radiation risk projection has several limitations. In our particular context, the main sources of uncertainty are related to the shape of the dose-response
relationship, particularly at low doses (<0.1 Gy), the joint effect of radiation and other risk factors for cancer, the existence of modifying effects, such as age-at-exposure, and the latency time between radiation exposure and cancer diagnosis. Propagation of uncertainties through Monte Carlo simulations as implemented in RadRAT accounts for most of these sources of uncertainties to provide ranges of possible risk values. However, RadRat only considers one set of risk models and does not allow for different modelling of the dose-response relationship and modifying effects (Berrington de Gonzalez et al., 2012). Using the same reference data as used to estimate the BEIR VII/RadRAT models, other risk models have been preferred by other authors and scientific committees, in particular the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006) and U.S. Environmental Protection Agency (EPA, 2011). These models generally use different assumptions to model the dose-response relationship and account for confounding factors and effect modifiers. Attempts have been made to develop methods to account for model uncertainty based on goodness-of-fit criteria, but they might lead to omitting important confounding factors (Richardson and Cole, 2012) or effect modifiers (e.g. age-at-exposure), which could be critical for risk projection purposes.

Extrapolation of risks from moderate-to-high doses (0.1 to >2 Gy) to the low dose range (<0.1 Gy) of single CT exposures remains controversial (Doss, 2013). CT scan studies do not have a sufficient follow-up to provide risk estimates over a lifetime and for cancer sites which usually occur at old ages (e.g. thyroid, breast, lung, digestive cancers). These studies are nevertheless helpful to assess the validity of the BEIR VII/RadRAT models (or others) for risk projection purposes. First analyses in the UK and the Australian studies showed risk estimates for brain tumours that were higher than what the BEIR VII/RadRAT risk models would have predicted, with an Excess Relative Risk (ERR) per mGy of 0.02 (95%CI: 0.01 to 0.04) vs. 0.006 (95%CI: 0
to 0.06) in the a-bomb survivors who were exposed before age 20 and followed up to 20 years after exposure (Pearce et al., 2012, Mathews et al., 2013). However, a further analysis of the UK CT cohort showed that the risk estimates were reduced after excluding children with a previous unreported diagnosis of cancer or suspected tumour at the time of scan, with an ERR per mGy of 0.01 (95%CI: 0.004-0.03) (Berrington de Gonzalez et al., 2016). After accounting for indication bias, this latest analysis thus provides risk estimates that are compatible with the results from the a-bomb survivor' study, especially if we consider that a residual indication bias may remain in the CT risk estimates. The risk estimates for leukemia, including myelodysplasia, after CT exposures (ERRs per mGy comprised between 0.03 and 0.04 depending on the population considered) appeared also consistent with the results of the a-bomb survivor study (ERR per mGy=0.04) (Pearce et al., 2012, Mathews et al., 2013, Berrington de Gonzalez et al., 2016), which also includes cases of myelodysplasia during the early follow-up (Hsu et al., 2013). Current evidence from CT scan studies thus support the appropriateness of the BEIR VII/RadRAT models to evaluate potential risks subsequent to CT exposures at a population level. At the current time, this conclusion is however limited to brain tumors and leukemia only, as no dose-response analyses has been conducted to date for other cancer sites in studies with sufficient sample size. We thus acknowledge the need for further analyses with longer duration follow-up to fully address the issue of risk extrapolation to CT exposures.

Finally, caution is required to avoid interpreting the current results as individual risks. As discussed below, large uncertainties exist when projecting risks from one particular situation of radiation exposure to another one, and we must acknowledge that the sensitivity to radiation varies according to individual factors, such as genetic susceptibility or other cancer risk factors (UNSCEAR, 2013). In addition, we considered here that the current background cancer risks
and life expectancy of the general UK population applied in children who receive CT scans, without considering temporal changes and individual underlying medical conditions that may impact the risk of cancer and survival. A reduced survival probability will obviously reduce the risk of radiation-related effects over a lifetime (Brenner et al., 2011, Harbron et al., 2016). The current results should therefore only be interpreted at the population level to provide a sense of the magnitude of the potential risks and impact of collective exposures, and to assess possible future scenarios of CT practices. At the individual level, with potential absolute risks subsequent to CT exposures usually very low compared to the background lifetime risks of cancer, the immediate benefits of CT, as currently utilized in the UK, would largely outweigh the risks in most clinical situations.

CONCLUSION

Changes in practice have substantially reduced the radiation doses to children from CT scans in the UK, and potential subsequent cancer risks. However, the accompanying increase in frequency of scans has increased the collective exposure and the potential associated cancer burden. We estimated that about 230 to 680 future cancers would be induced by scans performed in children during 2016-2020 in the UK, if the frequency of CT use remains unchanged and no substantial further dose reduction occurs on a widespread scale. The absolute excess risk related to one CT scan would be very low as compared to background cancer risks that patients would face over their lifetime. Therefore, when paediatric CT is justified for a particular indication and other imaging tests are not adapted or available, the expected benefits of CT for children would largely outweigh the risks. However, because of the potential harmful effects of radiation
exposure, pediatric CT scans need to be used in accordance with clinical guidelines and with proper dose optimization to avoid unnecessary exposures and risks.
REFERENCES

(a) Number of CT scans in 2015
All ages: 130,750 scans

(b) Number of future cancers potentially induced
All ages: 64 future cancers

NB: Figures are reported only for diagnostic scans; they exclude CT-guided procedures.
(a) Body parts scanned by CT

- Head, facial bones: 71%
- Cervical spine: 8%
- Chest: 3%
- Abdomen +/- pelvis: 9%
- Pelvis: 7%
- Extremities, hips, shoulders, whole body: 2%

(b) Projected future cancers

- Brain & CNS: 26%
- Leukemia: 10%
- Lung: 12%
- Oral Cavity & pharynx: 13%
- Colon & rectum: 12%
- Other digestive organs: 10%
- Breast: 9%
- Thyroid: 4%
- Urinary organs: 7%
- Others: 5%

CNS: central nervous system NB: Figures are reported only for diagnostic scans; they exclude CT-guided procedures. Frequencies of CT scans by scanned body part are reproduced from (Pearce et al., 2012). Projected numbers of potential future cancers are those which would occur over the entire individuals' lifetime after CT exposures during childhood or adolescence.
Table 1: Projected Excess Lifetime Risk (ELR) and uncertainty intervals of all cancers incidence per 1,000 CT scans, according to the time period of scan, the scanned body part, patient’s gender and age

<table>
<thead>
<tr>
<th>Scanned body part</th>
<th>Age (in years)</th>
<th>Gender</th>
<th>ELR (90% uncertainty interval) by time period</th>
<th>Relative difference between time periods (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1990-1994 (1)</td>
<td>1995-1999 (2)</td>
</tr>
<tr>
<td>Head</td>
<td>0</td>
<td>Male</td>
<td>2.4 (1.2 to 4.8)</td>
<td>1.6 (0.6 to 4.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>2.1 (1.0 to 4.0)</td>
<td>1.5 (0.7 to 3.2)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Male</td>
<td>1.4 (0.7 to 2.7)</td>
<td>1.0 (0.4 to 2.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>1.2 (0.6 to 2.0)</td>
<td>0.9 (0.4 to 1.8)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Male</td>
<td>0.9 (0.4 to 1.8)</td>
<td>0.4 (0.2 to 1.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>0.6 (0.3 to 1.0)</td>
<td>0.3 (0.1 to 0.8)</td>
</tr>
<tr>
<td>Chest</td>
<td>0</td>
<td>Male</td>
<td>3.7 (1.8 to 8.7)</td>
<td>1.9 (0.8 to 5.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>13.3 (6.5 to 24.8)</td>
<td>6.3 (2.7 to 16.3)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Male</td>
<td>3.0 (1.4 to 7.1)</td>
<td>1.5 (0.7 to 4.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>10.5 (5.0 to 18.3)</td>
<td>4.9 (2.1 to 12.6)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Male</td>
<td>2.2 (1.2 to 4.3)</td>
<td>1.3 (0.6 to 3.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>7.3 (4.2 to 11.4)</td>
<td>4.4 (1.9 to 8.8)</td>
</tr>
<tr>
<td>Abdomen and pelvis</td>
<td>0</td>
<td>Male</td>
<td>6.2 (3.0 to 12.4)</td>
<td>3.1 (1.4 to 7.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>10.6 (5.5 to 20.0)</td>
<td>5.4 (2.7 to 11.7)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Male</td>
<td>5.2 (2.5 to 10.1)</td>
<td>2.6 (1.2 to 6.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>8.5 (4.4 to 16.1)</td>
<td>4.3 (2.2 to 9.4)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Male</td>
<td>3.8 (2.1 to 7.4)</td>
<td>2.4 (1.2 to 5.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>5.3 (3.2 to 9.9)</td>
<td>3.5 (1.6 to 7.0)</td>
</tr>
</tbody>
</table>

ELR: median simulated value of Excess Lifetime Risk per 1,000 scans *Relative differences of median ELR values between two time periods
Table 2: Projected number of future cancers potentially induced by CT scans performed over the next 5 years (period 2016-2020) in the UK, according to various scenarios of future practices in pediatrics

<table>
<thead>
<tr>
<th>Change in doses per scan as compared to practices in 2000-2008</th>
<th>Change in annual CT rate per inhabitant as compared to 2015</th>
<th>Projected future cancers potentially induced by scans performed in 2016-2020 (90% uncertainty interval)</th>
<th>Avoided or additional future cancers as compared to the reference scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>absolute difference</td>
</tr>
<tr>
<td>Dose remaining constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10%</td>
<td></td>
<td>430 (300 to 870)</td>
<td>+111</td>
</tr>
<tr>
<td>+5%</td>
<td></td>
<td>370 (260 to 770)</td>
<td>+52</td>
</tr>
<tr>
<td>+3%</td>
<td></td>
<td>350 (250 to 730)</td>
<td>+30</td>
</tr>
<tr>
<td>+0%</td>
<td></td>
<td>320 (230 to 680)</td>
<td>Reference scenario</td>
</tr>
<tr>
<td>-2%</td>
<td></td>
<td>300 (220 to 650)</td>
<td>-19</td>
</tr>
<tr>
<td>20% reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10%</td>
<td></td>
<td>350 (240 to 700)</td>
<td>24</td>
</tr>
<tr>
<td>+3%</td>
<td></td>
<td>280 (200 to 590)</td>
<td>-40</td>
</tr>
<tr>
<td>+0%</td>
<td></td>
<td>260 (180 to 540)</td>
<td>-64</td>
</tr>
<tr>
<td>40% reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10%</td>
<td></td>
<td>260 (180 to 520)</td>
<td>-62</td>
</tr>
<tr>
<td>+3%</td>
<td></td>
<td>210 (150 to 440)</td>
<td>-111</td>
</tr>
<tr>
<td>+0%</td>
<td></td>
<td>190 (140 to 410)</td>
<td>-129</td>
</tr>
</tbody>
</table>

The number of projected future cancers are rounded to the nearest 10.