
Copyright:
This is the author’s manuscript of a paper that was presented at 14th Overture Workshop, held on 7th November 2016 in Limassol, Cyprus

Link to article:
http://ojs.statsbiblioteket.dk/index.php/ece/issue/view/3507

Date deposited:
08/11/2016
Resilience Profiling in the Model-Based Design of Cyber-Physical Systems

Mark Jackson and John S. Fitzgerald
Newcastle University, UK
{M.Jackson3, John.Fitzgerald}@newcastle.ac.uk

Abstract. We consider the potential to use co-modelling and co-simulation in the design of dependably resilient Cyber-Physical Systems (CPSs). Resilience is widely discussed in the public discourse on CPSs, but has many definitions. We propose the description of system resilience in terms of a multi-attribute profile which may be used as a basis for assessment and trade-off analysis in CPSs. Our profile has a particular focus on description of system recovery behaviour. As a first evaluation of the concept, we present a case study based on a VDM and 20-sim co-model of a small smart grid illustrating causal chains that cross the cyber-physical boundary. An evaluation of the study leads to suggestions for further proof-of-concept studies that experiment with increasingly challenging CPS architectures.

1 Introduction

In complex environments, resilience often spells success, while even the most brilliantly engineered fixed solutions are often insufficient or counterproductive.

McChrystal et al. [1]

Cyber-Physical Systems (CPSs) formed from the integration of computational and physical processes [2] are a natural evolution of embedded devices in networked environments [3]. Examples range from medical devices and automotive control systems, to “smart” infrastructures in areas such as road traffic management and energy grids [4,5]. In many cases, existing physical infrastructure is overlaid with a computer network that – in principle – offers more efficient and reactive control with greater autonomy than is delivered by individual embedded or centralised architectures. However, computer networks are complex (in the sense that small changes can have remote and large-scale effects), and are vulnerable to failure and attack modes that can be difficult to predict and test. Adding cyber networks to physical infrastructure is therefore a risky business. Controlling this risk requires both design methods that promote detection and avoidance of vulnerabilities, and building-in the capacity to recover from unanticipated faults or attacks.

Much of the public discourse on infrastructure is concerned with resilience. Although widely used, the term appears to have a range of meanings in different sectors. The United Kingdom’s National Resilience Capabilities programme sees it as “the
ability of assets and networks to anticipate, absorb, adapt to and recover from disruption” [6]. It is open to debate whether this might be defined in terms of properties such as fault avoidance, detection, tolerance and recovery [7], but the term is often used in a broader sense to include adaptive capacity [8]. Given the range of facets of resilience that are important in different application sectors, it is apparent that a nuanced characterisation of resilience is needed to facilitate disciplined engineering.

Engineering dependably resilient CPSs is a demanding goal [9], and many CPSs emerge or are developed without resilience in mind at all. Model-based systems engineering methods offer considerable promise, but are challenged by the independence and heterogeneity of CPS constituents. Several of these challenges are addressed by co-modelling technology such as that explored in INTO-CPS. Predecessor projects such as DESTECs and COMPASS demonstrated model-based engineering for fault tolerance in these settings. It is therefore legitimate to ask whether co-modelling can help to deliver dependably resilient CPSs. This is the subject of our current work.

We discuss background and related work on resilience in Section 2. Given the need for a nuanced characterisation of resilience, we discuss resilience profiling (Section 3) and consider how this might be realised in heterogeneous co-models of CPSs. An example based on a simple smart grid is presented (Section 4). Our work is at an early stage; Section 5 describes future directions.

2 Background and Related Work

We aim to provide usable methods and tools for engineering dependably resilient CPSs. In this section, we describe the scope and background to our work. We briefly indicate what we mean by a CPS, explain why we focus on model-based techniques and introduce our baseline tools. We then examine in more detail the existing work on resilience profiling in CPS-related contexts.

Multidisciplinary Model-Based Design for CPSs

A CPS integrates computational and physical processes [2]. CPS engineering therefore should therefore address the integration of methods and tools from different (discrete and continuous) domains and disciplines [10]. The focus of much current work, including our own, is on systems of networked computing elements, including “smart” devices, that together deliver emergent properties on which reliance is placed. This adds to the mix important systems-of-systems (SoS) aspects, including the need to integrate independently owned and managed systems, the ability to reason about the composition of the contractual interfaces between them, and the ability to deal with dynamically evolving structures over the life of the CPS [11, 12].

Collaborative and multi-paradigm Model-Based Design (MBD) techniques have been proposed as a means of evaluating alternative architectures and functionality, and providing early identification of defects in CPSs [13]. Realising the value of such approaches requires a semantic basis for linking models given in diverse notations, the ability to compose abstract descriptions of interfaces between system elements, and the ability to describe architectures explicitly.
Much research builds on hybrid systems as a common semantic framework for CPSs [14]. Rather than work with a single formalism, we aim at an extensible framework able to integrate the diverse formalisms used in practice. In the work discussed here, we take Crescendo\(^1\) as a baseline technology. In Crescendo, a model of a CPS is actually a co-model with discrete-event (DE) and continuous time (CT) models (in VDM/Overture and 20-sim respectively) as its constituents. Crucially for our work, the approach allows the direct modelling of causal chains across the cyber-physical boundary. A bespoke co-simulation harness implements an operational semantics that manages time and communication between the separate DE and CT models running in their own simulators. The emerging INTO-CPS\(^2\) toolchain promises to extend this to an \(n\)-ary multi-modelling approach, allowing co-simulation of executables derived from multiple modelling tools [15]. It leverages Unifying Theories of Programming (UTP) to permit extensible and reusable semantics [16]. At the time of writing, the INTO-CPS framework is not quite able to handle multi-models of the type needed for our smart grid applications (Section 4), and we remain with Crescendo for the moment.

Resilience

Resilience is important in many fields [17, 18]. In materials science it is “the ability of a material to absorb energy when deformed elastically and to return it when unloaded” [19]. In IT and organisational contexts, a resilient control system has been characterised as “one that maintains state awareness and an accepted level of operational normalcy in response to disturbances, including threats of an unexpected and malicious nature” [20]. In the context of power systems, it is seen as the ability of a system to degrade gracefully under extreme perturbations, and recover quickly after the events have ceased [21]. In socioecological systems Carpenter et al. argue that an assessment of system resilience must be qualified by specifying which system configuration and disturbances are of interest (resilience ‘of what, to what, and under what conditions’) [22]. Recent European research calls on crisis management see resilience as the ability to reduce the impact of disruptive events and the recovery time [23].

Together, the approaches in the literature reflect the idea that resilience as a composite property: a system cannot simply be said to either be resilient or not, but may be said to show some characteristics of resilience in response to a certain set of faults or attacks under certain circumstances. There is a also a trade space here: for example, a system may be show resilience to a certain set of attacks, but at the expense of becoming less resilient to others, or at the price of slower recovery. Again, being able to trace cause and effect as they go across the cyber-physical boundary is critical to effective model-based engineering of resilience.

Among the few current research projects directly addressing CPS resilience are ADREAM\(^3\), FORCES\(^4\), and SURE\(^5\). ADREAM aims to investigate and develop core

1. http://crescendotool.org/
4. https://www.cps-forces.org/
technologies, methodologies and components that will enable the successful design of dependable CPSs. FORCES aims to increase the resilience of large-scale networked CPSs in the key areas of energy delivery, transportation, and energy management in buildings. SURE will develop foundations and tools for designing, building, and assuring CPSs that can maintain essential system properties in the presence of adversaries. Although few outputs are available from these projects at this time, there is an emerging body of work aiming to address CPS resilience.

Resilience Profiling

To analyse resilience in model-based CPS design, we need a working intuitive characterisation of resilience. We adopt some of the terminology of faults, errors and failures [7] in that we regard a failure as the deviation of a delivered service from correct service. An error occurs when the state of the system deviates from those required to deliver a correct service. A fault is the adjudged or hypothesized cause of an error. An error does not necessarily cause a failure, but it is possible one or more errors may. Throughout this report we describe a specific fault–error–failure casual chain as a resilience scenario.

Rather than identify a single resilience metric, we treat it as a multi-attribute property defined in what we will call a resilience profile. The idea of a multifaceted definition of resilience is not new. Jackson [24] proposes a representation of resilience composed of four attributes:

- **Capacity**: the ability of a system to absorb or adapt to a disturbance without a total loss of performance or structure.
- **Tolerance**: the exhibition of graceful degradation near the boundary of a system’s performance.
- **Flexibility**: the system’s ability to restructure itself in response to disruptions.
- **Inter-element Collaboration**: collaborations, or communication and cooperation between human elements of a system.

A resilience scenario is divided into three aspects:

- **Avoidance**: the preventive aspects of system resilience in response to a disruption, either internal or external.
- **Survival**: implies that the system has not been destroyed or totally incapacitated and continues to function when experiencing a disturbance.
- **Recovery**: the capability of surviving a major disturbance with reduced performance.

 This capability is a focus of system resilience.

Pflanz [25] extends Jackson’s characterisation, applying it to command and control systems. Although Pflanz does not consider inter-element collaboration, he subdivides the first three of Jackson’s attributes into the constituent facets listed in Figure 1. Jackson’s resilience scenarios were then implemented by Pflanz as temporal phases, as shown in Figure 2.

Pflanz’s work focuses on the survival phase, where capacity, tolerance and flexibility provide means of analysing resilience in this phase alone. However, there is only limited further discussion of ways in which to characterise recovery.
Research Landscape

Although increasing importance is attached to the resilience of the CPSs on which we depend, there is no widely accepted definition of the concept, still less methods and tools for the lack of a coherent definition of resilience in the field, and a lack of methods for analysing resilience as a profile, especially in the recovery phase. In our current work, we therefore have two main goals. First, to deliver a resilience profile that describes resilience in the context of CPS, specifically characterising the recovery phase. Secondly we will provide methods for analysing co-models in the MBD of CPS.

3 Resilience Profiling

In this section we describe our approach to delivering the two goals mentioned at the end of Section 2. We extend the resilience profile described with new attributes which elaborate the recovery phase. We initially present one new attribute ‘Recovery’ with three facets described below and indicated in Figure 3:

Rate of Recovery: the rate at which system performance returns to an acceptable level.
Available Recovery Capacity: the available performance margin from the current operating levels to the expected recovery operating level.

Actual Recovery Capacity: the actual performance margin from the current operating levels to the recovery operating levels.

As shown in Figure 4, the (average) Rate of Recovery (in blue) is measured by the Measure of Performance Capability (y-axis) divided by time (x-axis). The Actual Recovery Capacity (in red) is measured from the point in which the performance value settles within a range of acceptable levels, however never reaches the Available Recovery Capacity (purple) which we assume is higher. Further analysis of resilience lies in the ability to compare our attributes in our profile (as shown in Section 4).
Given a co-model that can co-simulate a resilience scenario, how can we assess the resilience of the system of interest according to our extended profile? First, we must ensure that the co-model is competent in the sense that it incorporates sufficient features to allow resilience attributes to be assessed; this amount to ensuring we can observe the properties needed for the y-axis of the graphs shown in Figures 2 and 4. This could potentially involve instrumenting the constituent models by adding, e.g. methods in Overture or 20-sim. Second, we can visualise or post-process co-simulation output data to generate the elements needed for analysis against our resilience profile. in either case, the key question lies with the CPS design engineer on exactly what properties need to be measured. In some cases the y-axis measure may be composed of properties both cyber and physical in nature.

4 Example

In this section we describe an example co-model from the smart grids domain. We first explain why we have chosen this application area to evaluate our extended resilience profile. Second we demonstrate how we can use our co-model to produce sufficient data so that we are be able to analyse the resilience of an example grid.

Smart Grids

In seeking to extend the resilience profile so as to better incorporate recovery, we need to validate the approach with example studies. In order to be credible, these should be in a well established and accepted CPS domain [4, 5]. In order to test the capabilities of formalisms, they should be capable of incorporating a series of increasingly demanding architectures, including centralised, distributed, and modular control. Finally, the resilience of the systems of interest should be both desirable to have, and challenging to deliver.

Smart power grids present one such area. Such a grid is a complex ecosystem of heterogeneous (co-operating) entities that interact in order to deliver specific functionality related to the generation, transmission, storage and consumption of (usually electrical) energy [4]. It is an archetypal example of a CPS, in which the power network is overlaid with a computing and communication network, and the two are coupled together into what is generally perceived as a single system of interest [5, 26]. CPS technology is seen as an integral part of the smart grid concept and resilience in smart grids is identified as a key challenge [9, 27]. There is interest in increasing local control and autonomy to better match supply and demand in smart grids, and the idea of a local microgrid provides a modular control concept. Finally, significant reliance is placed on the energy supply, even in the face of natural or human-made disruptions. Together these factors make smart grids a suitable example domain for our work.

Co-model Example

To demonstrate our approach to analyse our resilience profile, we have created an example co-model of a Smart Grid with a centralised controller in Crescendo. In our example,
we model the physical environment in 20-Sim which includes a physical description of the grid’s components ranging from power stations and transmission lines, to sensors and actuators.

Figure 5 is a representation of the CT model in our co-model example in 20-Sim. This gives us an overview of our physical system, in which we include 1 PowerStation, 1 SubStation, 3 Transmission lines, 3 Switches and 1 House. To give context, Figure 6 shows us the CT logic for Switch1. This is an example of the types of CT equations present in our physical model in 20-Sim.

```
parameters
    real Ron = 0.00001 (ohm); // Resistance when switched on
    real Roff = 100000.0 (ohm); // Resistance when switched off
    real vc = 0.5; //threshold value, switch = on when abs(input)>vc

variables
    real R (ohm);

equations
    R = if input > vc then Roff else Ron end;
    p.u = R * p.i;
```

Our DE model is written using VDM-RT. This is where we write our controller logic and any other cyber functionality present in our CPS. Figure 7 shows the controller logic used in our co-model when deciding to switch transmission lines. The logic changes switch state if the voltage level falls below a ‘minLevel’ threshold (minLevel is a shared parameter between CT and DE models).
Cross-Domain Resilience Scenarios

Cross-domain resilience scenarios are those in which the causal chain transits the boundary between cyber and physical elements. We look at how cyber faults can lead to physical failures. An example of a cyber fault is a digital controller that fails to execute its control logic even though it is receiving signal data. We model this in Overture by creating a subclass of our centralised controller class. Before we co-simulate, we initialise a faulty version (subclass) of our controller class. The fault would cause the switches in our Smart Grid to remain in their initial state. Our controller would never switch to a different transmission line and thus may lead to the propagation of physical failures within the system.

We can also characterise physical faults leading to cyber failures. For example, we may consider a faulty voltage sensor in the house. This sends only the first voltage value. We can model this in 20-Sim by creating a second (faulty) implementation of the equation model of our house. Before we co-simulate we can switch to the faulty implementation. The value sent to the centralised controller would be an outdated value, and so the controller cannot switch transmission lines if the voltage level falls below the minimum threshold (shown in Figure 7).

Resilience Profiling

To allow for the analysis of resilience, we must be able to evaluate our resilience profile against data produced from our co-models. To test our scenario, we run our co-model

```
private controlLoop : () ==> ()
controlLoop() ==
( cycles(2)
  ( -- retrieve the level values from Co-sim
dcl level1 : real := levelSensor1.getLevel();
dcl level2 : real := levelSensor2.getLevel();
dcl level3 : real := levelSensor3.getLevel();
    if level1 > 1 and level1 < minLevel then
       ( switch1.setClosed();
         switch2.setOpen();
       );
  );
);
```

Fig. 7. A code snippet of controller logic
through a co-simulation in Crescendo. The PowerStation in our study provides power to the SubStation. The SubStation uses a step-down transformer to reduce the voltage to 240Volts(V). This power is then split across 3 transmission lines. The first source is sent across TransmissionLine1, where it passes an open switch to get to the house. The second and third sources of power are sent across TransmissionLine2 and TransmissionLine3 respectively, where they encounter closed switches and do not reach the house. The power from TransmissionLine2 and TransmissionLine3 are considered as a contingencies in the case TransmissionLine1 fails to provide adequate service.

In our scenario, TransmissionLine1 is faulty, which has lead to a steady decrease in voltage output. Our centralised controller checks the voltage level the house receives. If this level falls below a threshold, the centralised controller closes the switch to TransmissionLine1 and opens the switch to TransmissionLine2.

From Figure 8 we see a significant voltage drop from TransmissionLine1 (blue) until around 1 second into the simulation. This is when the controller has closed the switch from TransmissionLine1.

![Figure 8](image)

Fig. 8. A comparison of the output voltage from TransmissionLine1 and TransmissionLine2.

Figure 8 shows us the comparison between the voltage received by the house from TransmissionLine1 (blue) and TransmissionLine2 (red). The cyber controller in our DE model recognises when the voltage from TransmissionLine1 falls below our threshold and switches to TransmissionLine2. The house now receives power once again - although at a reduced voltage (220V).

With this data we demonstrate how we can analyse the resilience of our example using our resilience profile. As shown in Figure 9, from our co-model output we can analyse the three facets of our recovery phase.

1. **Rate of Recovery** - In Figure 9 we can see the gradient of the voltage increase is our Rate of Recovery (blue). In our example the switch in our transmission lines happens almost instantaneously which results in a vertical line on our graph. In this case we would have an undefined gradient. From our analysis perspective in the recovery phase this is the optimal rate at which our line an reach its Available and Actual Recovery Capacity.
2. **Available Recovery Capacity** - The Available Recovery Capacity is shown in purple in Figure 9. This is the maximum potential in which our system may recover to. In our case TransmissionLine1’s voltage dropped to 0, and the maximum difference the house can receive is the limit of our initial transmission line which is 240V. This follows that our Available Recovery Capacity is 240V.

3. **Actual Recovery Capacity** - The Actual Recovery Capacity is shown in red. In this case TransmissionLine2 is a line operating at 220V as opposed to 240V. Therefore the Actual Recovery Capacity is 220V. This is not always the case, as performance may be recovered fully, to the Available Recovery Capacity.

Resilience Trade-Off

Crescendo allows us to model resilience scenarios across both cyber and physical domains. We present a resilience scenario in which we can perform resilience profiling and trade-off analysis of our Smart Grid co-model. To perform trade-off analysis we consider two resilience scenarios:

1. **TransmissionLine1 - TransmissionLine 2** - Transmission line 2 produces power almost instantly but at a reduced voltage (220V).
2. **TransmissionLine1 - TransmissionLine 3** - Transmission line 3 produces a higher voltage (240V), but at the expense of time.

In our example we have modelled each scenario, and analysed the results. Figure 10 shows us a comparison between scenario 1 (left) and scenario 2 (right). In scenario 1 we can clearly see that TransmissionLine 2 switches almost instantly and provides power to the house at a voltage of 220V. In scenario 2 the house receives power from TransmissionLine 3 at around 5 seconds, this is approximately a 4 second delay from when
Transmission Line 1 is switched off. It is here a CPS design engineer must consider which is more important, the Actual Recovery Capacity, or the Rate of Recovery.

Figure 11 shows the analysis of the Recovery attribute in our resilience profile. It is shown that the Available Recovery Capacity (purple) is the same in both scenarios (240V), as this is the maximum potential voltage our house can receive under normal operation. The Actual Recovery Capacity (red) for scenario 1 is 220V, whereas in scenario 2 it is 240V. The Rate of Recovery in scenario 1 is a vertical line and so we have an undefined gradient as the switch is almost instantaneous. However due to the delay of switching in scenario 2, our (average) Rate of Recovery becomes 240V divided by 4 seconds, this gives us a Recovery Rate of 60V/s. With this data a CPS design engineer can assess the trade-off between the Actual Recovery Capacity and the Rate of Recovery facets, in the Recovery Attribute of our resilience profile.

Fig. 10. A comparison of resilience scenarios.

An important note to make about our trade-off analysis example as seen in Figure 11, resides in the fact that our Rate of Recovery facet (blue) is compromised of our voltage level and time. The Rate of Recovery facet will always rely on the relation and importance of the y-axis and the x-axis on our graph. We calculated the (average) Rate of Recovery in Figure 11 for scenario 2 as 60V/s, however we can see from the graph that there is no voltage supplied at all until 5 seconds. This is due to the discrete nature of switching transmission lines in our model. This information may be of interest to a CPS design engineer. For other resilience scenarios, the engineer may wish to have some values of performance available leading up to the Actual Recovery Capacity, as opposed to our co-model example, in which the transmission line is either switched on
or off. In this case we can analyse our recovery phase further at more time steps. It is for reasons like this that we seek to extend our resilience profile to a more refined and sophisticated version. Although this is somewhat a trivial example, it describes the basis of our resilience profile and demonstrates how we can perform trade-off analysis between attributes and facets.

5 Evaluation and Further Work

We have provided motivation for being interested in resilience as a property of cyber-physical systems. Recognising that it is a multi-faceted property, we have extended an existing resilience profile with additional features that characterise recovery phases, and demonstrated that it is possible to assess this aspect of resilience on CPS co-models using Crescendo by means of a simple example from the domain of smart grids. We have illustrated resilience scenarios that cross the cyber-physical boundary and have demonstrated the potential to assess trade-offs.

Our work is at a preliminary stage, but we believe that there is potential to build useful methods for CPS resilience engineering on top of co-modelling technology of the kind pioneered by Overture, 20-sim, Crescendo and INTO-CPS. We naturally expect to progress from the Crescendo framework to INTO-CPS, exploiting the nascent SysML architectural modelling methods developed in that context as well as the improving performance of tools. We hope to take advantage of order of magnitude improvements in co-simulation and design space exploration performance that will allow us to evaluate our resilience profile on system architectures that reflect the potential complexity of
emerging CPSs. These will include decentralisation of control, and eventually increased localised responsibility and autonomy in smart grids. Modular architectures such as microgrids (in which local smart grids negotiate with one another to trade energy) may serve to improve or impede facets of resilience, for example. We will assess the extent to which the abstractions currently available in VDM-RT help or hinder the modelling of such structures.

As discussed at the end of Section 4, we seek to extend our profile in order to better encapsulate the interesting design decisions that a CPS design engineer may face when considering the resilience of a system. In the future we look towards generating data using the INTO-CPS tool chain described in Section 1. This would allow us to profile the resilience of models of CPSs that have been generated with different semantics across a variety of simulation tools.

Finally, we note that there are – at least at a certain abstraction level – significant similarities between CPSs in different infrastructure domains. We might expect that some modelling patterns might be shared between, say, negotiating microgrids, and negotiating traffic flow systems. There is therefore significant potential in identifying and exploiting those patterns as a means of sharing experience between otherwise quite separate application domains.

As societal and business dependence on cyber-physical systems grows, we believe that the need to take a systematic view of resilience – and in particular recovery – will only grow. Through their support for varied levels of abstraction, and their capacity to integrate with hitherto isolated tools, Overture and VDM have a vital role to play in addressing this requirement in the future.

References

21. L. Mili and N. V. Center, “Taxonomy of the characteristics of power system operating states,” in Taxonomy of the characteristics of power system operating states, 2011.
23. C. of the European Communities, “Disaster resilience: Safeguarding and securing society, including adapting to climate change.”