
Copyright:

This is a pre-copyedited, author-produced version of an article accepted for publication in Rheumatology following peer review. The version of record Hackett KL, Gotts ZM, Ellis J, Deary V, Rapley T, Ng W-F, Newton JL, Deane KHO. An investigation into the prevalence of sleep disturbances in primary Sjögren’s syndrome: a systematic review of the literature. Rheumatology 2016 is available online at:

DOI link to article:

http://dx.doi.org/10.1093/rheumatology/kew443

Date deposited:

03/01/2017

Embargo release date:

24 December 2017

This work is licensed under a [Creative Commons Attribution-NonCommercial 3.0 Unported License](http://creativecommons.org/licenses/by-nc/3.0/)

Newcastle University ePrints - eprint.ncl.ac.uk
Title: An investigation into the prevalence of sleep disturbances in primary Sjögren’s syndrome: a systematic review of the literature

Authors and affiliations:
Katie L. Hackett1,2 MSc PhD candidate, Zoe M. Gotts3 PhD, Jason Ellis4 PhD, Vincent Deary2,4 PhD, Tim Rapley3 PhD, Wan-Fai Ng1,2 MD PhD, Julia L. Newton2,6 MD PhD, Katherine H.O. Deane7 PhD.

1Musculoskeletal Research Group, Institute of Cellular Medicine & NIHR Biomedical Research Centre for Ageing and Chronic Diseases, Newcastle upon Tyne, UK.
2Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
3Institute of Health and Society, Newcastle University, UK
4Northumbria Centre for Sleep Research, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne UK.
5Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne UK.
6Institute of Cellular Medicine & NIHR Biomedical Research Centre for Ageing and Chronic Diseases, Newcastle upon Tyne, UK.
7School of Health Sciences, University of East Anglia, Norwich, UK.

Correspondence to: Katie Hackett
Institute of Cellular Medicine
Newcastle University
Newcastle upon Tyne, NE2 4HH
United Kingdom
katie.hackett@ncl.ac.uk; Tel: +44-191-2083449 Fax: +44-191-2085455

Word count: 3609
Abstract

Objectives
To identify whether sleep disturbances are more prevalent in primary Sjögren’s syndrome (PSS) patients compared with the general population and to recognise which specific sleep symptoms are particularly problematic in this population.

Methods
Electronic searches of the literature were conducted in PubMed; Medline (OVID); Embase (OVID); PsychINFO (OVID) and Web of Science and the search strategy registered a priori. Titles and abstracts were reviewed by two authors independently against a set of pre-specified inclusion/exclusion criteria, reference lists examined and a narrative synthesis of the included articles was conducted.

Results
Eight whole text papers containing nine separate studies met the inclusion criteria and were included in the narrative analysis. Few of these studies met all of the quality assessment criteria. The studies used a range of self-reported measures and objective measures including polysomnography. Mixed evidence was obtained for some of the individual sleep outcomes, but overall compared to controls PSS patients reported greater subjective sleep disturbances and daytime somnolence and demonstrated more night awakenings and pre-existing obstructive sleep apnea.

Conclusions
A range of sleep disturbances are commonly reported in PSS patients. Further polysomnography studies are recommended to confirm the increased prevalence of night awakenings and obstructive sleep apnea in this patient group. PSS patients with excessive
Systematic review of sleep disturbances in primary Sjögren’s syndrome

daytime somnolence should be screened for comorbid sleep disorders and treated appropriately. Interventions targeted at sleep difficulties in PSS such as cognitive behavioural therapy for insomnia and nocturnal humidification devices have potential to improve quality of life this patient group and warrant further investigation.

Key words
Sjögren’s syndrome, systematic review, sleep, quality of life, disability evaluation.
Systematic review of sleep disturbances in primary Sjögren’s syndrome

Introduction
Primary Sjögren’s syndrome (PSS) is a systemic autoimmune disease characterised by sicca symptoms[1]. Extraglandular features are commonly seen in PSS patients including fatigue[2], orthostatic intolerance[3], pain[4], and depression[5]. These patients commonly experience impaired function[6] and poor health related quality of life[8]. Fatigue is seen in 75% of patients with PSS[7], is strongly correlated with poor quality of life [8-10] and is associated with functional impairment[6]. Due to the prevalence and impact of fatigue, there has been much research into factors associated with this symptom including potential genetic associations[11], and anti-inflammatory mechanisms[12]. Sleep disturbances have also been reported in the PSS literature[13] and are associated with fatigue [2]. In the general population, impaired sleep is associated with adverse health outcomes including weight gain, depression, pain, impaired immune function, impaired functional performance, increased risk of early mortality and cognitive symptoms including increased errors and increased risk of accidents[14]. Current recommendations are that adults should regularly have between seven and nine hours sleep, consistently per night[14].

Many sleep disturbances are potentially modifiable[15-18]. Therefore the successful identification and treatment of sleep problems may have a positive effect on symptoms such as pain, mood and fatigue, resulting in improvements in in physical and cognitive functioning and quality of life.

A previous review of sleep disturbances in rheumatological diseases included PSS[19], but was published some time ago and the PSS section was predominantly based on one comparative study which used RA patients as controls. Therefore an up-to-date systematic
review of the PSS sleep literature, which includes normative data on healthy controls, is required.

The aim of this review was to identify all the published literature on sleep difficulties in PSS in order to answer the following questions:

- Are sleep difficulties more prevalent in PSS patients than in the general population?
- Which sleep difficulties are more prevalent in PSS patients than in the general population?

Methods
A systematic review of the published literature on sleep and PSS was conducted. The protocol was published prospectively with PROSPERO (CRD42015024977)[20]. The methodological framework used was the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement[21].

Eligibility criteria
Eligible studies were English language, primary research papers published in full. These included intervention, diagnostic, prognostic and aetiological studies with adult participants (>18 years) with a diagnosis of PSS. Case studies and review papers were excluded. Where papers report mixed populations, only studies which analysed the PSS population separately were included. Outcomes had to include sleep outcomes and other outcomes which have a relationship with sleep. In mixed population studies PSS data had to be reported separately for PSS patients. Data for PSS data had to be compared with a control population, which could be healthy controls or controls with other diseases. Therefore studies which did not
Systematic review of sleep disturbances in primary Sjögren’s syndrome

compare data from a PSS group with a non-PSS control group were excluded from this review.

Search strategy

Databases (PubMed; Medline (OVID); Embase (OVID); PsychINFO (OVID) and Web of Science) were searched from inception to September 2015 using a pre-specified search string (Supplementary Table 1). The references of all included studies were also searched. Two reviewers (KH, ZG) independently examined the titles and abstracts of all records identified and full papers were retrieved for all papers which met inclusion criteria. All full text articles were screened by two review authors independently (KH, KD) for inclusion.

Data extraction and quality assessment

Data were extracted by one author (KH) onto a piloted form. These were checked by a second author (KD). Risk of bias was assessed at study level separately by two authors (KH and KD) using the Joanna Briggs Institute Prevalence Critical Appraisal Tool[22] and specific notes for questions within to tool were agreed between the authors (KH, KD) to reduce ambiguity prior to making a decision for each criteria (Supplementary Table 2). Disagreements between reviewers were resolved through discussion.

Summary measures

Any sleep summary measure which compared a PSS cohort with a comparative group was extracted. These include difference in means and medians and odds ratios. Data were combined in a narrative synthesis due to the expected heterogeneity of the included studies.

Results
Nine studies from eight publications were identified for inclusion in this narrative review\[13, 23-29\] (Figure 1). A summary of the included studies are in Table 1. Sixteen studies did not meet the inclusion criteria. Excluded studies with reasons for exclusion can be seen in Supplementary Table 3. One excluded study was a small uncontrolled study (n=9) of a nocturnal humidification device, which reduced nocturnal sicca symptoms in the participants\[30\]. Another excluded study included the use of an artificial saliva water spray, compared to placebo, to improve nocturnal oral dryness symptoms and improvements were demonstrated in both placebo and intervention groups\[31\]. This review did not set out to investigate interventions for PSS sleep disturbances, but these findings are considered in the context of potential future interventions in the discussion.
Systematic review of sleep disturbances in primary Sjögren’s syndrome

Ninety-three records were screened. Most studies were excluded at the title stage as they were not relevant to the review or did not fit the inclusion criteria (Figure 1). 14 publications were examined in more detail before exclusion (Supplementary Table 1) and nine studies from eight publications were included in this narrative review[13, 23-29] (Table 1).

Gudbjörnsson et al[23] included two studies in their paper and these are referred to as Gudbjørnsson et al Study 1 (a comparative study of sleep symptoms in three populations) and Study 2 (a polysomnography study) in this review for clarity.

Assessment of bias

The risk of bias quality assessment findings of the included studies can be viewed in Figure 2. Three studies included only female PSS participants[13, 24, 29] and were consequently deemed as not being representative of the target population. Two studies (Gudbjörnsson et al Study 1 and Study 2)[23] used the Copenhagen Classification Criteria[32] to identify their subjects. These criteria were not validated or accepted universally[33], therefore these studies were also scored as not being representative of the target population. The remaining studies[13, 24-29] used either the European Community criteria[34] or the American European Consensus Group criteria[33].

Several studies did not fully specify how their participants were recruited (including Gudbjörnsson et al Study 1 and Study 2)[13, 23, 24, 28] and uncertainty remained for this item for these studies. The sample size was small (<40) for a number of studies (including
Systematic review of sleep disturbances in primary Sjögren’s syndrome

Gudbjörnsson et al Study 2)[13, 23, 24, 27, 28] and these studies were scored as being at high risk of bias for this question.

Overall, three studies were deemed to be of high risk of bias (including Gudbjörnsson et al Study 2)[13, 23, 24], four at medium risk of bias (including Gudbjörnsson et al Study 1)[23, 27-29] and two at low risk of bias[25, 26].

Prevalence of specific sleep difficulties in PSS

The main sleep outcomes can be viewed in Table 2.

Perceived sleep disturbance, (measured by sleep diary or patient reported sleep questionnaires) was reported in four studies (including Gudbjörnsson Study 1)[13, 23, 26, 28]. Odds ratios were calculated from the data provided by one study[26]. PSS patients scored significantly worse than healthy controls for this outcome. It was unclear whether overall there is a higher prevalence of sleep disturbance in PSS patients compared with other disease groups (osteoarthritis (OA), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE)) as there were inconsistent findings between the studies.

Time spent in bed was assessed in two studies with conflicting findings. One study objectively assessed this outcome with polysomnography (Gudbjörnsson Study 2,[23]), and the other measured time in bed subjectively with a patient reported sleep questionnaire[25]. However the study which reported no difference for this outcome between PSS patients and healthy controls (Gudbjörnsson Study 2)[23] had very small numbers and took the measurements in a laboratory. The polysomnography study protocol and environment may
have influenced how long a participant remained in bed. Therefore it is not clear whether PSS patients do spend longer in bed compared with other populations.

We identified five separate studies that examined total sleep duration including Gudbjörnsson Studies 1 and 2[13, 23, 24, 27]. Three small studies[13, 24, 27] compared a total of 53 PSS patients with RA patients (n=25)[13] or healthy controls (total n=26)[24, 27]. They found no significant differences between the groups in terms of total sleep time.

However Gudbjörnsson et al (Study 1)[23] compared 40 people with PSS with 42 people with RA and 60 healthy controls. They identified that people with PSS reported significantly less sleep than the comparators as measured by sleep diaries (between 40 min to 1 hour 45 min less) and in their smaller polysomnography study (Study 2) they identified that PSS patients experienced between 1 hour 18 min to 2 hours less sleep than healthy controls.

Three studies examined the proportions of time spent in each of the stages of sleep between PSS patients and controls (including Gudbjörnsson et al Study 2[23, 24, 27]. Two found that PSS patients spent more time in Stage 1 sleep than controls (Gudbjörnsson et al Study 2)[23, 24]. However Usmani et al[27] found no such difference. None of the studies found between group differences for other stages of sleep.
Systematic review of sleep disturbances in primary Sjögren’s syndrome

Sleep onset latency (time taken to fall asleep) was not significantly different between PSS patients, RA patients and healthy controls using self-reported methods in one study (Gudbjörnsson Study 1)[23], although the authors had not made a direct comparison between the PSS and control groups. However two studies (including Gudbjörnsson Study 2)[23, 27] involving objective testing of this outcome (polysomnography) studies did find sleep onset latency to be greater in PSS patients (mean of 20 to 22 minutes) compared with controls (mean of 13.8[27], range 1.5 to 13.6 minutes[23]).

Sleep efficiency (percentage of time spent in bed asleep) was identified as reduced in people with PSS in two studies (including Gudbjörnsson Study 2)[13, 23] both of which used objective measures. In a third study[24] with very low numbers, the sleep efficiency was very poor for both groups. However this could be due to the nasal mask that participants wore and the regular negative pressure pulses used to measure airway collapsibility, which may have interfered with their sleep. Therefore the environment was not ideal to examine sleep efficiency in this study.

All studies which examined the number of night awakenings found that these were increased in PSS patients (Gudbjörnsson Study 2 and Theander et al)[23, 25] (see Table 2). That said, the polysomnography studies that report an arousal index (number of times sleep is interrupted) found no difference between PSS patients and comparison groups[24, 27].

Factors associated with disturbed sleep

A number of studies examined specific reasons for waking in the night.

Theander et al[25] noted that 13% of their PSS group reported sicca symptoms which disturbed their sleep, compared with none of their controls.
Hilditch et al [24] found that nocturnal oral dryness did not differ significantly between PSS patients and controls which is surprising, but due to their very low numbers, could be a type II error. The same authors found that saliva surface tension showed no difference between the groups in the early morning, but was significantly higher in the PSS group in the late evening.

Nocturnal pain and disturbed sleep was more common in PSS compared with controls and RA patients (Gudbjörnsson Study 1 and Theander et al)[23, 25]. Gudbjörnsson and colleagues (Study 1)[23] reported that 54% of their PSS group experienced nocturnal pain compared with 37% of their RA group (p<0.01) and 0% of their healthy control group (p<0.0001). Theander et al[25] found that nocturnal pain which disturbed sleep was present in 19% of their PSS group, which was greater than the 9% of those in the control group - although this difference was not significant (p=0.07).

There was conflicting evidence from two studies for nocturia disturbing sleep in PSS patients. Walker et al[29] investigated in nocturia and found no difference between PSS patients and an OA population for the occurrence of this symptom (OR 0.93, p=0.85). Conversely, Theander et al[25] found that 53% of their PSS participants experienced nocturia which disturbed sleep was present in 53% of their PSS participants, in comparison to 26% of their healthy controls (p=0.001).

Autonomic Symptoms

Nocturnal autonomic symptoms were only investigated by Gudbjörnsson et al (Study 1)[23], which found 20% of the PSS participants in this study reported experiencing nocturnal sweating, which was greater than their RA comparison group (12%, NS) and their healthy controls.
controls (2%, p<0.01). Palpitations at night were reported in 5% of their PSS group and these were not present in either their RA or healthy control groups.

Presence of co-morbid sleep disorders

In Theander et al’s study[25], 2 of their 72 PSS cohort self-reported a diagnosis of narcolepsy compared with none of their controls, but this was not reported as an outcome in any of the other included studies.

Using polysomnography, one study noted the occurrence of obstructive apneas and hypopneas were double in their PSS group compared with healthy controls[27]. In this study, continuous positive airway pressure (CPAP) treatment was offered to eight out of twenty eight PSS study participants who were identified as having severe sleep apnea (with an apnea-hypnea index score ≥40). Five participants accepted the treatment and significant improvements were demonstrated both in their Epworth Sleepiness Scale (ESS) scores and fatigue scores at 2-6 months after commencing CPAP treatment.

However another study[24] investigated the upper airway collapsibility and found no difference in both the upper airway collapsibility index and a range of respiratory variables between their PSS and control groups but this could be due to the study being underpowered.

Daytime somnolence

Four studies identified increased daytime sleepiness in patients with PSS compared to healthy controls. Gudbjörnson et al (Study 1)[23] found their PSS patients were sleepy in the daytime five-times more frequently than RA controls and almost three-times more frequently than healthy controls. Theander et al (2010), Usmani et al (2012) and Walker et
al (2003) reported that Epworth Sleepiness Scale scores were significantly higher in PSS patients than in controls[25, 27, 29].

Discussion

Findings of the review

We have found that subjective and objective sleep disturbances are more common in PSS patients. Further research is needed to examine the differences between PSS patients and other disease groups.

There were inconclusive findings regarding whether PSS patients spend more time in bed than comparative groups, however, if they do spend longer in bed it is likely that this is due to the sleep disturbances and night awakenings they experience. Further studies are needed to confirm whether PSS patients have a short sleep duration compared with other groups, due to the conflicting findings in this review. However PSS patients do seem to experience more frequent nocturnal awakenings than other groups. Despite this finding, the arousal index scores were not found to be greater for PSS patients in the studies that examined this outcome. One reason could be due to low numbers of participants in these studies. However an alternative suggestion is that the PSS patients awaken more frequently during these arousals, due to their symptoms such as dryness, pain and autonomic symptoms. A further possibility is that PSS patients may demonstrate high frequency EEG throughout the night which may influence their perception of sleep and wakefulness. Further investigations would be required to test this.

Sicca symptoms did disturb sleep in one study[25] and potential interventions to reduce these symptoms, and thus improve sleep will be discussed shortly. Pain is another symptom which is more common in PSS patients during the night. Segal and colleagues have observed
that sleep quality reduced as pain increases[4]. If pain is reduced, sleep quality might therefore improve.

There were conflicting findings regarding the symptom of nocturia in PSS patients. However, PSS patients regularly drink to ease the symptoms of their dryness. Needing the toilet during the night could be a natural consequence of this.

Although autonomic symptoms were only reported in one included study, there is a greater prevalence of these symptoms in PSS patients[3] and it is logical that these symptoms, which can include palpitations, dizziness and sweats, may interfere with sleep.

There does seem to be an increased prevalence of obstructive sleep apnea in PSS patients, although further studies are needed to reproduce this finding. The Epworth Sleepiness Scale can be used as a screening to identify patients who are at risk of obstructive sleep apnea[35] and these patients should be referred for further investigations.

This review has demonstrated that daytime sleepiness is a problem in PSS patients. Daytime sleepiness correlates with reduced quality of life[10], fatigue[25, 29], autonomic dysfunction[3] and functional impairment[6]. Furthermore, patients with who are functionally impaired have significantly greater Epworth Sleepiness Scale scores than those who experience no functional disability[6].

Potential interventions for sleep disturbances in PSS

Interventions which address the perception of poor sleep without the necessity for objective verification, include addressing unhelpful beliefs surrounding sleep, addressing sleep efficiency and prescribing time in bed. These are all components of a Cognitive Behavioural Therapy for Insomnia (CBT-I) intervention[36]. CBT-I is considered as a first line
Systematic review of sleep disturbances in primary Sjögren’s syndrome

treatment for insomnia associated with a medical condition[37] and is an effective
intervention in other long term conditions[38], therefore could be beneficial in PSS. Time in
bed and sleep efficiency are both addressed in the sleep restriction component of a CBT-I
intervention and this may be a useful way of addressing longer spells spent in bed awake in
this patient group, and lead to improved sleep. Further studies of CBT-I and various modes
of delivering this intervention are therefore warranted in this patient group.

Nocturnal humidification and artificial saliva sprays may ease nocturnal sicca symptoms and
decrease sleep disturbances in PSS patients and are unlikely to contribute towards bladder
disturbances during the night. Although a humidification device did seem to be a promising
intervention in an excluded study[30], further appropriately powered studies comparing
nocturnal humidification devices in PSS with controls are required to demonstrate efficacy.

For autonomic symptoms which interfere with sleep, appropriate interventions addressing
these symptoms, such as water bolus treatment during the day[39] may also help to
improve sleep, particularly if these symptoms are regularly experienced during the night.
Further research is required to demonstrate the efficacy of interventions for dysautonomia
such as blood pressure dysregulation in PSS on sleep outcomes.

Further considerations

A more detailed sleep assessment, including polysomnography, may be beneficial for this
group when considering the level of sleep apnea reported in this population. Moreover,
polysomnography will afford a closer examination of other objectively verifiable sleep
disorders which may influence sleep (e.g. narcolepsy, periodic limb movement disorder,
Systematic review of sleep disturbances in primary Sjögren’s syndrome

restless legs syndrome and hypersomnolence disorders). If severe sleep apnea is identified in PSS patients, CPAP treatment should be offered[40].

Pain is another symptom which can interrupt sleep. PSS patients who experience pain which is interfering with their sleep should be offered appropriate pain management interventions[4]. CBT-I is efficacious at improving sleep duration, continuity and perceived quality in chronic pain patients with co-morbid insomnia and CBT-I with an additional pain component is feasible[38]. A pain adjunct to a CBT-I intervention may therefore improve sleep in PSS patients with chronic pain. Interventions targeting sleep disturbances in PSS may improve daytime sleepiness and fatigue which could result with increased functional capacity and quality of life.

There are some limitations to this review. Firstly, although we did not specifically investigate potential causes of sleep disturbances, we have uncovered several potential contributing factors from within the included studies. However there may be further potential complications in PSS which might play a role in sleep disturbance, such as gastroesophageal reflux[41]. Further work needs to be done to determine the causes of sleep disturbances in this patient group. Secondly, although we did not set out to investigate specific interventions for sleep disturbances, we have identified some uncontrolled studies of interventions for sleep in PSS. There may therefore be further studies of interventions for sleep disturbances in PSS uncovered by our search. However a recent systematic review of all non-pharmacological interventions for PSS did not identify any randomized controlled trials for sleep difficulties in this patient group[42]. Furthermore recent meta-analysis of twenty three studies determined that CBT-I was efficacious at
reducing sleep disturbances and improving sleep quality in patients with insomnia secondary to a comorbid condition[43].

This review included a total of 350 PSS patients in nine separate studies. Only two studies (with 142 PSS patients) were deemed to be at low risk of bias. This highlights the paucity of high quality existing research into sleep disturbances in PSS patients.

Conclusion

From the included studies in this review, we found an increased prevalence of sleep disturbances in PSS patients compared with controls, including; daytime somnolence; subjective sleep disturbances including disturbance due to dryness symptoms, and increased occurrence of night awakenings. Sleep apnea may be more common, but further polysomnography studies are required to confirm this.

Although we did not set out to investigate interventions, logic dictates that CBT-I for sleep disturbances and night awakenings and nocturnal humidifiers for nocturnal sicca symptoms would be beneficial in this patient group. However further studies are required to confirm their effectiveness in PSS. Due to the variable quality of the included studies, the mix of outcomes assessed within these studies and the overall low numbers of patients included within them, we recommend further studies to add to the body of PSS sleep prevalence literature. Finally, in the presence of sleep difficulties in PSS patients, primary sleep disorders should be screened for and treated appropriately.
Systematic review of sleep disturbances in primary Sjögren’s syndrome

Key Messages

- This is the first published review of sleep disturbances of primary SS.
- Sleep disturbances are common in primary SS patients and should be identified and treated appropriately.
- Future investigations of sleep interventions for primary SS are warranted.

Conflict of interest
The authors declare no conflict of interest.

Funding
This work was funded by Arthritis Research UK (Grant 20169) and a Research Career Development Grant from the United Kingdom Occupational Therapy Research Foundation
Systematic review of sleep disturbances in primary Sjögren’s syndrome

References

Systematic review of sleep disturbances in primary Sjögren’s syndrome

Systematic review of sleep disturbances in primary Sjögren’s syndrome

Systematic review of sleep disturbances in primary Sjögren’s syndrome

Systematic review of sleep disturbances in primary Sjögren’s syndrome

Systematic review of sleep disturbances in primary Sjögren’s syndrome
Systematic review of sleep disturbances in primary Sjögren’s syndrome

Tables

Table 1. Summary of included studies
<table>
<thead>
<tr>
<th>Author, year and country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sleep Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodchild 2010 UK [13]</td>
<td>Observational prospective study</td>
<td>PSS: n=14, AECG diagnostic criteria for PSS[29], 100% female, mean age=58, mean disease duration (MDD)=13 years</td>
<td>Sleep diary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RA: n=25, 100% female, mean age=62, MDD=9 years</td>
<td>Actigraphy</td>
</tr>
<tr>
<td>Gudbjörnsson 1993 Sweden [23]</td>
<td>Study 1 Cross sectional sleep questionnaire</td>
<td>PSS: n=40, Copenhagen diagnostic criteria for PSS [32], 95% female, mean age-53. 10 PSS patients also had PSG</td>
<td>Study 1: Uppsala Sleep Inventory [45]</td>
</tr>
<tr>
<td></td>
<td>Study 2 Observational study. Polysomnography</td>
<td>RA: n=42, ARA criteria for classical RA [44], 100% female, 10 had symptoms of secondary Sjögren’s syndrome</td>
<td>Study 2: Polysomnography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HC: n=60, 100% female, Age matched with the PSS participants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSS: n=10, no demographic information provided.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HC: n=30, Middle aged</td>
<td></td>
</tr>
</tbody>
</table>
Systematic review of sleep disturbances in primary Sjögren’s syndrome

<table>
<thead>
<tr>
<th>Author, year and country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sleep Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilditch 2008</td>
<td>Observational study over a night's sleep</td>
<td>PSS: n=11, AECG diagnostic criteria for PSS, 100% female, mean age=61, MDD not reported</td>
<td>Electroencephalogram, electrooculogram, submental electromyogram. Respiratory (inspiratory flow, end-tidal CO₂ and mask leak). Breathing effort. Upper airway collapsibility. Oral wetness and saliva surface tension</td>
</tr>
<tr>
<td>Australia [24]</td>
<td></td>
<td>HC: n=8, All female, mean age=55.9, Age matched with patient group</td>
<td></td>
</tr>
<tr>
<td>Theander 2010</td>
<td>Cross sectional survey</td>
<td>PSS: n=77, AECG criteria for PSS, 90% female, median age=61, MDD=12</td>
<td>Epworth Sleepiness Scale [46], Restless Legs Syndrome questionnaire [47], Lund University Sleep Questionnaire [25], Profile of Fatigue, fatigue VAS</td>
</tr>
<tr>
<td>Sweden [25]</td>
<td></td>
<td>HC: n=59, 90% female, Median age=55</td>
<td></td>
</tr>
<tr>
<td>Tishler 1997</td>
<td>Cross sectional survey</td>
<td>PSS: n=65, AECG classification criteria for PSS, 92% female, Mean age =57.3, MDD=8.3</td>
<td>Mini Sleep Questionnaire [26]</td>
</tr>
</tbody>
</table>
Systematic review of sleep disturbances in primary Sjögren’s syndrome

<table>
<thead>
<tr>
<th>Author, year and country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sleep Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usmani 2012
Australia [27]</td>
<td>Observational study</td>
<td>RA (Group A): n=67, 83% female, MDD=12.6 years
RA with sicca symptoms (Group B): n=63, 70% female, MDD=15.1 years
OA: n=31, 94% female, MDD=10.3 years</td>
<td>Epworth Sleepiness Scale</td>
</tr>
<tr>
<td>van Oers 2010
Netherlands [28]</td>
<td>Repeated measures study to compare variability of fatigue during the day</td>
<td>PSS: n=29, 100% Female, AECG criteria for PSS, mean age 53.3, MDD not stated
SLE: n=23, 100% Female
RA: n=19, 100% Female
HC: N=52, 100% Female, Mean age 51</td>
<td>Polysomnography, Apnea-Hypopnea Index [27], 15 Item Dutch questionnaire on sleep quality [48]</td>
</tr>
</tbody>
</table>
Systematic review of sleep disturbances in primary Sjögren’s syndrome

<table>
<thead>
<tr>
<th>Author, year and country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sleep Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walker 2003 Australia [29]</td>
<td>A study comparing differences in urinary symptoms and daytime sleepiness</td>
<td>PSS: n=76, European Community criteria for PSS, 100% female, median age=58, MDD not stated</td>
<td>Epworth Sleepiness Scale, FACIT-F [49], American Urological Symptom Index [50]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA: n=43, 100% female, median age=64</td>
<td></td>
</tr>
</tbody>
</table>

Notes: AECG, American-European Consensus Group Criteria; ARA, American Rheumatism Association; HC, healthy controls; MDD, mean disease duration; OSA, Obstructive sleep apnea; RA, Rheumatoid arthritis; SLE, systemic lupus erythematosus; OA, Osteoarthritis; PSS, primary Sjögren’s syndrome; VAS, Visual analogue scale,
Table 2. Differences in specific sleep outcomes between PSS patients and controls

<table>
<thead>
<tr>
<th>Study</th>
<th>Results</th>
<th>PSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived sleep disturbance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodchild 2010 [13]</td>
<td>PSS vs RA not significantly different for quality of sleep or feeling of refreshment</td>
<td>ND</td>
</tr>
<tr>
<td>Gudbjörnsson 1993</td>
<td>44% PSS not feeling rested after sleep vs 9.8% RA (p<0.001) and 15.3% HC (p<0.01)</td>
<td>+</td>
</tr>
<tr>
<td>Tishler 1997 [26]</td>
<td>Moderate/severe sleep disturbance 75% PSS. Significantly greater than OA and RA (p<0.01)</td>
<td>+</td>
</tr>
<tr>
<td>van Oers 2010 [28]</td>
<td>Significant differences sleep disturbance (p<0.001) between all groups (SLE, RA, HC, PSS). PSS highest median (6/15), HC lowest (2.3/15).</td>
<td>+</td>
</tr>
<tr>
<td>Time spent in bed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gudbjörnsson 1993</td>
<td>PSS mean time in bed (500 min, range 444-532) similar to HC, range 419-514</td>
<td>ND</td>
</tr>
<tr>
<td>Theander 2010 [25]</td>
<td>PSS 45 min more in bed vs HC (8.24 vs. 7.72 hours; p=0.048)</td>
<td>+</td>
</tr>
<tr>
<td>Total sleep time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodchild 2010 [13]</td>
<td>PSS mean 7h asleep, similar to RA</td>
<td>ND</td>
</tr>
</tbody>
</table>
Systematic review of sleep disturbances in primary Sjögren’s syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gudbjörnsson 1993</td>
<td>Sleep
PSS mean 5.2h asleep (SD=1.90), significantly less than RA (6.8h SD=1.30) P<0.05) & HC</td>
<td></td>
</tr>
<tr>
<td>Study 1 [23]</td>
<td>(7.2h SD=0.77, P<0.0001)</td>
<td></td>
</tr>
<tr>
<td>Gudbjörnsson 1993</td>
<td>Sleep onset latency
Mean time to fall asleep greatest in PSS (30 min SD=52.49) vs RA (21 min SD=19.44) and HC</td>
<td></td>
</tr>
<tr>
<td>Study 1 [23]</td>
<td>(19 min SD=6.97) difference not significant.</td>
<td></td>
</tr>
<tr>
<td>Gudbjörnsson 1993</td>
<td>Sleep efficiency
PSS 70% mean sleep efficiency, well below control range (94%-100%)</td>
<td></td>
</tr>
<tr>
<td>Study 2 [23]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hilditch 2008 [24]</td>
<td>No difference total sleep time PSS vs HC</td>
<td>ND</td>
</tr>
<tr>
<td>Usmani 2012 [27]</td>
<td>No difference total sleep time PSS vs HC</td>
<td>ND</td>
</tr>
<tr>
<td>Sleep onset</td>
<td>Gudbjörnsson 1993</td>
<td>ND</td>
</tr>
<tr>
<td>Study 2 [23]</td>
<td>PSS mean 20 min to fall asleep (range 3-65), greater than HC range (1.5 to 13.6 min)</td>
<td></td>
</tr>
<tr>
<td>Usmani 2012 [27]</td>
<td>PSS mean 22.8 min to fall asleep (range 14-40) vs 13.8 for HC (range 6-22) (p=0.035)</td>
<td></td>
</tr>
<tr>
<td>Sleep efficiency</td>
<td>Goodchild 2010</td>
<td>+</td>
</tr>
<tr>
<td>[13]</td>
<td>PSS 84% sleep efficiency significantly less than RA 89.4% (p<0.05)</td>
<td></td>
</tr>
<tr>
<td>Gudbjörnsson 1993</td>
<td>PSS 70% mean sleep efficiency, well below control range (94%-100%)</td>
<td>+</td>
</tr>
<tr>
<td>Study 2 [23]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Systematic review of sleep disturbances in primary Sjögren’s syndrome

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Study details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of night awakennings</td>
<td>Gudbjörnsson 1993 Study 1 [23]</td>
<td>PSS woke mean 2.6 times, significantly more than RA (1.5) (p<0.0001) and HC (1.0) (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>Gudbjörnsson 1993 Study 2 [23]</td>
<td>PSS woke mean 19 times (polysomnography) vs HC (range 1-7)</td>
</tr>
<tr>
<td></td>
<td>Theander 2010</td>
<td>PSS awakenings (mean 2.7 SD=0.17) higher than HC (mean 1.7 SD=0.18, p=0.001)</td>
</tr>
<tr>
<td>Arousal index</td>
<td>Hilditch 2008 [24]</td>
<td>Trend of higher mean nocturnal arousals in PSS vs HC (p<0.06)</td>
</tr>
<tr>
<td></td>
<td>Usmani 2012 [27]</td>
<td>No difference PSS vs HC (p=0.18)</td>
</tr>
<tr>
<td>Ventilatory measurements</td>
<td>Hilditch 2008 [24]</td>
<td>No difference PSS vs HC for upper airway collapsibility index and respiratory variables</td>
</tr>
<tr>
<td></td>
<td>Usmani 2012 [27]</td>
<td>Twice frequency of apneas and hypoapneas in PSS vs HC (p=0.032)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sleep apnea 64% PSS vs 28% controls (p=0.03)</td>
</tr>
<tr>
<td>Daytime somnolence</td>
<td>Gudbjörnson 1993 Study 1 [23]</td>
<td>PSS significantly more daytime sleepiness vs HC (p<0.001) or RA (p<0.0001). PSS significantly more daytime naps PSS 15.2% vs HC 0% (p<0.01) but not RA 21.4%</td>
</tr>
</tbody>
</table>
Systematic review of sleep disturbances in primary Sjögren’s syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theander 2010 [25]</td>
<td>PSS significantly worse daytime sleepiness (ESS; mean 9.5, SD=5.2) vs HC (mean 7, SD=4.0) (p=0.003) and significantly more excessive sleepiness (15.3%) vs HC (11.9%) (p=0.016)</td>
</tr>
<tr>
<td>Usmani 2012 [27]</td>
<td>PSS significantly worse for daytime sleepiness (ESS; mean 10.1, SD=5.82) vs HC (mean 6.5, SD=3.39) p=0.014</td>
</tr>
<tr>
<td>Walker 2003 [29]</td>
<td>PSS daytime sleepiness significantly worse vs OA (OR 2.50, p=0.01)</td>
</tr>
</tbody>
</table>

Notes: + Favours controls; ESS Epworth Sleepiness Scale; h hours; HC healthy controls; min minutes; ND No difference; OA osteoarthritis; PSS primary Sjögren’s syndrome; RA rheumatoid arthritis, SLE systemic lupus erythematosus. P values are reported when provided in the published studies.