Md Latar N, Mahkamova K, Aspinall S, Meeson A. **Thyroid Stem Cells: Concept and Clinical Implications.** *Journal of Surgical Academia* 2016, 6(2), 4-11.

Copyright:

The final publication is available at the Journal of Surgical Academia via http://dx.doi.org/10.17576/JSA.2016.0602.02

Date deposited:

02/12/2016
Thyroid Stem Cells: Concept and Clinical Implications

Nani ML1,2, Mahkamova K1, Aspinall S1,3, Meeson A1

1Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, United Kingdom.
2Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.
3Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, NE29 8NH, United Kingdom.

Abstract

Thyroid pathology is the commonest endocrine surgical problem encountered. However, the study of thyroid stem cells is relatively new in the field of stem cell research. Since the identification of thyroid stem cells in 1992, research interest in this area has been increasing mainly based on furthering our knowledge of the biology of these important cells that are thought to be responsible for tumourigenesis and propagation of cancers. This article reviews the current science and biology of thyroid stem cells and summarizes their potential role in the general management of thyroid disorders.

Keywords: Cancer stem cells, clinical implications, stem cells, thyroid

Introduction

Thyroid nodular disease, either symptomatic or incidental, is the most common endocrine surgical disorder encountered. Nodules are not a single disease entity but represent a wide range of pathological processes ranging from the normal physiological process to lethal malignancy (1). The main pathophysiological process that drives the formation of these nodules is attributed to chronic stimulation of thyrocytes via the thyrotropin hormone receptor (TSHR) and its downstream signaling cascade. In one population based study, it was noted that the incidence of thyroid cancer increased with higher TSH and interestingly, high level of TSH is associated with more advanced differentiated cancers (2). Thyroid nodular disease is also one of the predisposing factors for development of thyroid cancer, although this relationship is still not clearly understood.

The worldwide incidence of thyroid cancer has progressively risen over the past three decades by an average of 4.5% each year from 2002 to 2012 in the USA (3,4). While this can partly be attributed to the ease of access to thyroid sonography that has resulted in more sensitive detection, more accurate diagnostics work up and increasing patient awareness are other contributing factors. With this steady upward trend, detection of smaller cancers (i.e. micropapillary carcinoma) becomes an increasingly common scenario (5) and this may result in thyroid cancer becoming the third most common cancer in the United States by 2030 (6,7). Despite the increasing reported incidence, mortality due to thyroid cancers has been stable at 0.3 and 0.6 per 100,000 population in men and women, respectively in high-resourced countries (7).

The mortality from thyroid cancer is mainly attributed to the more radio-resistant, recurrent, differentiated
Figure 1: Schematic diagram of the classical self-renewal and differentiation properties of stem cells (SC). Symmetric division occurs when SC divides into two similar progenitor cells or SC, whilst asymmetric division occurs when SC divides into one identical SC and another daughter cell that becomes differentiated cell.

Stem Cells

Stem cells are fundamental cells from which all our cells arise or ‘stem’ from. These unique undifferentiated cells have the properties to divide and thus renew themselves for very long period of time in the body and in vitro (13). They are broadly classified into embryonic stem cells (ESC) and somatic/adult stem cells based on their differentiation potential (potency). The pluripotent ESC can differentiate into any of the three germ layers i.e. endoderm (gastrointestinal tract and its derivatives e.g. lung, liver, pancreas and thyroid), mesoderm (muscle, bone, blood and cardiovascular system) and ectoderm (skin and nervous system). However, this ability is limited in adult stem cells. While there is no doubt that the therapeutic potential of ESC seems limitless, the ethical implications that surround their use have restricted their application in clinical practice.

Stem cells are able to divide giving rise to similar progenitor cells (symmetric division) or asymmetrically. Asymmetric division allows for two different daughter cells to be produced, one to replenish the stem cell pool and the other to become a differentiated cell, so the stem cell daughter would be capable of generating more stem cells (Fig. 1). This clonogenic capacity contributes to the presence of cell heterogeneity within tissues and ensures homeostatic control within tissues is maintained (13). In order to retain and safeguard this special feature, stem cells need to reside in a specific microenvironment called the niche (14).

There are a number of transcriptional regulatory circuits which are responsible for maintaining pluripotency and self-renewal capability in stem cells (15). Homeodomain transcription factors are evolutionary conserved and play important roles in cell fate (16). Oct4/POU5F1 and NANOG are essential regulators of early development and their expression provides evidence of embryonic stem cell identity (17,18). OCT4 acts in concert with another transcription factor SOX2. Their combination is thought to be fundamental in developmental control of gene expression involved in pluripotency.

It was reported that OCT4 controls pluripotency in a quantitative manner, that is when expressed at high levels in embryonic stem cells OCT4 drives these cells to endoderm and mesoderm lineages (19). Among these widely studied core transcriptional factors, OCT4 has been found to be indispensable in the maintenance of pluripotency (20).

With their specialised roles, stem cells have been identified as important players in regeneration, fibrosis
Thyroid stem cells: Concept and implications

The cancer stem cells (CSC) theory was first introduced in the study of haematological malignancies (34) where a small population of cells was found to constitute a reservoir of self-sustaining cells with exclusive ability to self-renew, maintain the tumour and also produce heterogenous non-tumourigenic cancer cell types that constituted the bulk of the tumour (35). Due to these properties, SC are able to multiply uncontrollably, metastasize and resist chemotherapeutic interventions resulting in treatment resistance.

The advancement of CSC theory in solid malignancy however lagged behind until 5 years later when Ignatova et al. identified clonogenic, stem-like cells in human cortical gliomas, providing the first evidence of CSC in solid cancers (36). Other solid tumours with established SC properties were later identified in breast (37), prostate (38), colon (39) and pancreas (40). For thyroid cancers, a small percentage of CSC has been successfully isolated from both tissues and cell lines (41-44).

Takano has put forward the notion of fetal cell carcinogenesis, which suggests that thyroid cancer cells arise from abnormal development of fetal thyroid cells possibly secondary to genetic mutations (45). This is based on gene expression profiling data seen in anaplastic thyroid cells, where onco-fetal fibronectin was found to be highly expressed in conjunction with lack of expression of differentiated thyroid markers (46). Another aspect involved in thyroid carcinogenesis relates to the CSC theory. Thyroid CSC was first isolated by Mitsutake et al. who postulated that the presence of a small subset of cells in the mature thyroid is responsible for cancer initiation and maintenance (42). At this point, it is not clear whether the origin of this subset of cells is normal cells that have undergone transformation, or existing stem cells that have become activated (47).

The CSC model has evolved from a static to dynamic hierarchical one in which the new progenies acquire the ability of self-renewal through de-differentiation, as well as reversal of differentiated cells (48). In addition to this, the theory of clonal evolution, which emerged recently, demonstrated the acquisition of self-renewal capabilities by non-CSC populations within a tumour (49,50). This interconversion ability is likely to be acquired through oncogenic transformation (49). These recent advances, identified through extensive research on leukaemic SC, further establishes the importance of developing strategies that target both CSC and their progenies as both contribute to the development of therapy resistant cancers (48).

Epithelial-Mesenchymal Transition (EMT) and CSC

EMT refers to the transition during which epithelial cells lose their apico-basal polarity, acquire migration capability and transform into cells with a more mesenchymal phenotype (51). This important process is essential in embryonic development and has also been implicated in initiation and progression of tumour

Normal Thyroid SC

Over the past decade, a number of investigators have reported on the identification of putative human thyroid stem/progenitor cells. The presence of thyroid SC populations was first postulated by Dumont et al. (24), who found that it was possible to grow thyroid tissue in recipient animals using only a minimum number of cells. This idea was further elaborated and reinforced by Thomas et al. (25) and Fierabracci et al. (26) who identified precursor cells of endodermal origin and isolated a specific subset of cell populations from goitrous nodules that have the ability for clonal expansion respectively. These cells detected by flow cytometry comprise of less than 1.5% of human thyroid tissues and lack the expression of thyroid specific markers such as thyroglobulin (Tg).

Human thyrocytes have a slow turnover rate (estimated at 8.5 to 14.4 years) (27) with limited regeneration capacity. Furthermore, thyroid SC niches have not been demonstrated in thyroid tissues unlike the brain (28) and intestines (29). Due to these facts, other than the mature follicular cells, the source of thyroid SC has been postulated to derive from embryological remnants (30), microchimerism (31) and SC from bone marrow (32).

There was a forward leap in the study of thyroid stem cells a few years ago, when Antonica et al. successfully demonstrated the ability of murine ESC to differentiate into a functional thyrocytic lineage in vitro. These cells were able to support hormone deficiency when transplanted under the renal capsules in athyroid mice (33).

Cancer Stem Cells (CSC)

The cancer stem cells (CSC) theory was first introduced in the study of haematological malignancies (34) where a small population of cells was found to constitute a reservoir of self-sustaining cells with exclusive ability to self-renew, maintain the tumour and also produce heterogenous non-tumourigenic cancer cell types that constituted the bulk of the tumour (35). Due to these properties, SC are able to multiply uncontrollably, metastasize and

Journal of Surgical Academia 2016; 6(2): 4-11
Thyroid stem cells: Concept and implications

Numerous data has documented the presence of EMT in malignant cells in vitro, however its significance in human cancer tissues has remained a matter of debate. This is due to the difficulty in distinguishing stromal cells and other tumour associated fibroblasts from individual mesenchymal cells derived from epithelial tumour cells by EMT (52). However, Prall et al. have now demonstrated the existence of aggregated colorectal cancer cells detaching from the main tumour mass into adjacent stroma which poses EMT characteristics (54). This supports the concept that cancer cells with EMT properties are present at the invasive fronts of human tumours, which is the immediate interphase for tumour and stromal signalling from which metastasis occurs (52).

Clinical Implications

Current chemotherapeutic agents generally target actively dividing cells, leading to reduction in tumour bulk at certain time points during treatment but fail to eradicate the relatively dormant CSC (55). Following treatment, SC normally remain inactive for some time; however the change in the tumour microenvironment along with acquired genetic transformations that occur after initial treatment may later trigger the development of a more aggressive SC phenotype (56). In well differentiated thyroid cancers, often tumour cells demonstrate sensitivity towards initial radioactive iodine treatment. In those that recur presumably, the previously radio avid cells, acquire changes that reduce their sensitivity towards later treatment. As tumours are composed of heterogenous groups of cells, with SC thought to be responsible for recurrence, it is reasonable to assume that we should change our perspective of how we manage malignant tumours in the future. Designing agents that would be able to target both cancer and CSC will hopefully result in more effective treatment. Identifying the pathways involved in this respect may open avenues for the development of more targeted therapy in cancer management.

The development of resistance in cancer cells towards chemotherapeutic agents may partly be attributed to the presence of cells that are able to pump out these drugs. This efflux property, which is the most widely studied aspect of multidrug resistance (MDR) in cancer cells, is due to the overexpression of the ATP-binding cassette (ABC) transporters that reside in the transmembrane region of the cells. This feature has been exploited to isolate a CSC population with a distinct phenotype known as side population (SP) cells. This subpopulation of cell was first identified by Goodell et al. (57). Using the SP assay, SC have been successfully isolated from benign and malignant thyroid tissues and cells lines (42,58). There have been approaches involving nanoparticle administration aimed at inhibiting the activity of these transporters as means of overcoming drug resistance in cancer cells (59).

The presence of distant metastases denotes stage IV disease with lowest survival rate. Evidence is now accumulating that relates EMT and prognosis. Expression of transcription factors involved in EMT such as Snail and Zeb2 are poor prognostic markers in hepatocellular (60) and ovarian carcinoma (61) respectively. Activation of EMT itself has been linked to poor prognosis in colorectal carcinoma (62). In addition to this, EMT markers have also been linked to tumour recurrence, which generally indicates poor prognosis in metastatic breast cancer patients (63). Celina and Buehler et al. have also found a correlation between the presence ZEB1, SNAIL and TWIST transcription factors and high grade thyroid cancers (64). Defining and targeting the appropriate pathways involved in EMT will potentially broaden treatment options for cancers.

Stem Cells in Benign Tumours

The role of normal SC in the initiation and development of benign tumours has been gaining attention. In the pathogenesis of benign prostatic hyperplasia, in addition to the complex interaction of growth stimulation, apoptosis and cell proliferation, SC have been shown to play a major role (65). Understanding the behaviour of SC in normal and benign diseases, may allow us to identify a suitable focused treatment in order to minimise harm to surrounding normal tissues.

Stem Cells in Regenerative Medicine for Hypothyroidism

While the role of CSC is becoming more popular and its therapeutic potential widely researched to further improve the outcome of thyroid cancers, the role of normal SC as a regenerative tool in the management of hypothyroidism (primary or secondary) is still in its infancy. Even though stem cells from normal thyroid tissues have been isolated and characterised, their role as a cellular therapy has never been assessed. Hypothyroidism is a common condition and thyroid regeneration therapy could possibly be an alternative to medication. Thyroid SC transplantation post total thyroidectomy could potentially avoid the need for
administration of lifelong thyroxine, with a potential impact on both quality of life and healthcare costs.

Conclusion

In conclusion, knowledge of the presence of SC residing in thyroid tissues and cell lines has sparked new ideas and avenues in search for a cure for thyroid diseases, specifically anaplastic and recurrent cancers. Further studies are needed to determine if targeting thyroid CSC will provide a platform on which to build new more effective options for the treatment of this group of thyroid cancers that currently have poor prognostic outcomes.

References

64. Montemayor-Garcia C, Hardin H, Guo Z, et al. The role of epithelial mesenchymal transition