Kleijn J, Koutny M, Pietkiewicz-Koutny M.
Signal Set Tissue Systems and Overlapping Localities.
Theoretical Computer Science (2017)
DOI: https://doi.org/10.1016/j.tcs.2017.02.036

Copyright:
© 2017. This manuscript version is made available under the [CC-BY-NC-ND 4.0 license](https://creativecommons.org/licenses/by-nc-nd/4.0/)

DOI link to article:
https://doi.org/10.1016/j.tcs.2017.02.036

Date deposited:
22/02/2017

Embargo release date:
10 April 2018

[Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence](https://creativecommons.org/licenses/by-nc-nd/4.0/)
Signal Set Tissue Systems and Overlapping Localities

Jetty Kleijna,* Maciej Koutnyb Marta Pietkiewicz-Koutnyb

aLIACS, Leiden University, P.O.Box 9512, NL-2300 RA Leiden, The Netherlands
bSchool of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom

Abstract

In signal set tissue systems with overlapping localities (SSOLT-systems) evolution rules can be associated with several cells. Rules may influence each other through instant signalling and, moreover, they are synchronised when sharing activated cells. The latter is a new feature. We study the behaviour of SSOLT-systems in the form of labelled step transition systems. This allows to compare SSOLT-systems with and without signalling and overlapping localities. Next the synthesis problem is considered, i.e., the question when given a step transition system, how to effectively construct an SSOLT-system exhibiting this behaviour. To this end, SSOLT-systems are related to a new class of Petri nets, that are behaviourally equivalent to SSOLT-systems. It is shown how certain region based synthesis techniques can be applied to these nets and hence are also available for SSOLT-systems.

Key words: natural computing, set tissue system, instant signalling, locality, concurrency, step transition system, Petri net, synthesis, theory of regions.

1 Introduction

Tissue systems are a computational model inspired by the way biochemical reactions and interactions take place inside and among living cells ([21, 22]). Like membrane systems, tissue systems are defined in terms of evolution rules

* corresponding author

Email addresses: h.c.m.kleijn@liacs.leidenuniv.nl (Jetty Kleijn), maciej.koutny@ncl.ac.uk (Maciej Koutny), marta.koutny@ncl.ac.uk (Marta Pietkiewicz-Koutny).
that specify how objects (molecules) can be combined to form new objects. In both types of systems reactions are localised, i.e., they take place in compartments where their reactants reside and their products can either remain in the originating compartment or be delivered to a neighbouring one. A membrane system has an associated hierarchical structure (a tree) that reflects the structure of a cell; the tree corresponds to the nesting of its compartments separated by membranes. The more general tissue systems use a graph to formalise neighbourhood relations between compartments, now like cells arranged in a tissue. Motivated by reaction systems [6, 8, 9] that model biochemical processes using a qualitative rather than a quantitative approach, [12] has introduced a variant of membrane systems — set membrane systems, independently introduced also in [1] — with evolution rules that no longer refer to multisets of objects (indicating how many instances of each object are involved), but rather to sets (merely indicating presence/absence) of objects. In [13] set tissue systems, i.e., tissue systems with such qualitative evolution rules, are enhanced with instant signalling that makes it possible to fast process certain objects even within the same computational step that has produced them. This extension is an abstraction of cell signalling, a complex system of communication employed in cellular biochemical processes. In a biological micro environment, signalling is a fundamental feature, governing and coordinating the activities of cells. This ability to pass on and respond immediately to the presence of signalling objects has been abstracted in [13] in the framework of set tissue systems through the concurrent execution of evolution rules based on a local maximality (eagerness) principle that reflects that everything that can happen (in an active compartment) does not wait and occurs as soon as possible. As said, the various models of membrane and tissue systems discussed so far are based on the idea that reactions take place locally, i.e., in individual compartments. Moreover, executions in different compartments are unrelated.

In this paper, we introduce evolution rules that are associated with conglomerates of compartments, i.e., each rule has a locality consisting of all compartments where it may occur. The underlying idea is that not only the reactions taking place within and among cells are influencing each other by the production of biochemical substances, but that there may also be external stimuli (mechanical, temperature, light etc.) that simultaneously affect several cells within a tissue. A rule that is associated with thus `activated’ compartments will then be simultaneously executed in each of the compartments with which it is associated. In this paper we are interested in the behaviour of the resulting signal set tissue system with overlapping localities, or SSOLT-systems. To capture this behaviour, labelled transition systems (so-called concurrent reachability graphs) are used that describe how starting from an initial configuration (state), a SSOLT-system evolves from configuration to configuration through a ‘locally maximal’ execution of evolution rules. Here, we distinguish between two types of semantics depending on the interpretation of local maximality, i.e., the interpretation of the eagerness underlying the locally maximal execution of the enabled rules. In the first interpretation, a rule is involved
whenever all its compartments are activated (have resources). In the second semantics, a rule is involved whenever at least one (any) of its compartments is activated. Consequently, there will be two kinds of concurrent reachability graphs that can be defined by a SSOLT-system. As will be shown, in both these semantics, signalling and simultaneous activation of compartments have each their own effect on the expressiveness of the resulting models in terms of the generated reachability graphs.

On the other hand, we will also consider how to obtain from a labelled step transition system a SSOLT-system that behaves as specified, i.e., has a concurrent reachability graph (of type all or any) that is isomorphic to the given transition system — if at all possible. Algorithmic methods to synthesise concurrent systems from behavioural specifications (like step transition systems) provide an attractive way to construct systems that behave according to specification. This so-called synthesis problem has been extensively studied in the context of Petri nets, a well-established mathematical framework for the modelling of concurrent and distributed systems (see, e.g., [23, 24]). As we will demonstrate, some of the theory developed there can be extended and then transferred to SSOLT-systems.

Thus, we will relate the concurrent reachability graphs of SSOLT-systems to those of a suitable class of Petri nets. At a very basic level, the dynamics of membrane and tissue systems is similar to that of Petri nets (see [10]). Molecules in a compartment correspond to tokens in a specific place and evolution rules can be viewed as transitions related to input and output places in accordance with the objects consumed and produced by the rule. Once a similar mode of execution for both models has been agreed upon, there is a one-to-one correspondence between configurations and markings (token distributions) and between the concerted execution of multiple rules and the simultaneous firing of their related transitions, guaranteeing isomorphic reachability graphs. This correspondence has been proven to be robust in the sense that various concepts and methods could be transferred from one framework to the other. From the observation that the evolution rules of a membrane or tissue system are localised (belong to compartments) came the idea to also associate a locality with Petri net transitions and to define a locally maximal execution mode ([18, 17]). And membrane systems with qualitative evolution rules relate to set nets — that have a firing rule based on sets rather than multisets — with localities ([12]). Instant signalling on the other hand involves an application of the special so-called a/sync places that can be used for the instantaneous transfer of tokens from an input transition to an output transition ([11]). Overlapping localities of transitions, resembling the overlap of localities of the rules in a SSOLT-system, have been considered in [20].

Our solution to the synthesis problem will be based on the notion of region, introduced in the seminal paper [7] for the synthesis of Elementary Net systems with a sequential execution semantics, a basic class of Petri Nets. Over the
years, this idea has been further developed and extended in various directions,
including synthesis modules of tool kits, various application areas of other
net classes, other execution semantics, and different behavioural specification
models. One of the key advances in the design of region based solutions has
been the development in [3] of a general approach for dealing with region
based synthesis for a range of synthesis problems. This approach is founded
on so-called \(\tau \)-nets and \(\tau \)-regions. The parameter \(\tau \) conveniently captures the
marking information and different connections between places and transitions
of varying classes of Petri nets, removing the need to re-state and re-prove the
basic results every time a net model is modified. Once a class of Petri nets has
been shown to be a class of \(\tau \)-nets, i.e., to correspond to a class of \(\tau \)-nets for
some suitable \(\tau \), this general method can be applied.

Based on the above considerations, we thus introduce a new class of Petri
nets, so-called signal set nets with overlapping localities, or SSOL-nets. It is
demonstrated that indeed SSOLT-systems and SSOL-nets closely correspond
to each other both in structure and dynamics and hence for each of the two
execution modes (all and any), the related concurrent reachability graphs are
essentially the same. Finally, we show that SSOL-nets are indeed a class of
\(\tau \)-nets. Hence it is possible to address the synthesis problem using \(\tau \)-regions.
However, since SSOL-nets have two kinds of places (normal ones and signal
places), in this case the parameter \(\tau \) is based on two net-types to describe the
connections between places and transitions, which is a new feature.

The paper is organized as follows. After a preliminary section, SSOLT-systems
are introduced together with their all and any execution semantics in Section
3. In the same section, the expressive power of the different features is
compared in terms of the concurrent reachability graphs. Section 4 introduces
SSOL-nets and relates them to SSOLT-systems, whereas it is demonstrated in
Section 5 that SSOL-nets are \(\tau \)-nets. The synthesis problem is then addressed in
Section 6. In the concluding Section 7 we summarise what has been achieved.

2 Preliminaries

A labelled transition system, or LT-system, is a triple \(\text{LTS} = (Q, A, \delta) \), where
\(Q \) is a finite set of states, \(A \) is a finite set of labels, and \(\delta : Q \times A \to Q \)
is a partial function. For every state \(q \in Q \), we define \(\text{enbl}_\text{LTS}(q) = \{ a \mid \delta(q, a) \text{ is defined} \} \) is the set of labels enabled at \(q \). LTS can be identified with
a labelled directed graph, where \(Q \) is the set of nodes, and \(\delta \) defines the labelled arcs, i.e., \(\delta = \{(q, a, q') \in Q \times A \times Q \mid a \in \text{enbl}_\text{LTS}(q) \land q' = \delta(q, a)\} \).

A step transition system, or ST-system, (over a finite set \(T \)) is a quadruple
\(\text{STS} = (Q, A, \delta, q_0) \) such that \(\text{LTS} = (Q, A, \delta) \) is an LT-system, \(q_0 \in Q \) is
the designated initial state, and $A = 2^T$ is the set of steps. For every $q \in Q$, we define $\text{enbl}_{STS}(q) = \text{enbl}_{LTS}(q)$. Moreover, we may also associate with STS the labelled directed graph defined through LTS. We require that each $t \in T$ occurs in the label of at least one arc in this graph, and that for each state $q \neq q_0$, there is a directed path from q_0 to q. Finally, we require that $\delta(q, \emptyset) = q$ for all $q \in Q$. (Note that the three requirements above are needed when applying the theory of regions in order to synthesise nets from transition systems.)

Let $STS = (Q, 2^T, \delta, q_0)$ and $STS' = (Q', 2^{T'}, \delta', q'_0)$ be two st-systems, and $\phi : T \to T'$ be a bijection. Then STS and STS' are ϕ-isomorphic if there is a bijection $\nu : Q \to Q'$ such that $\nu(q_0) = q'_0$ and, for all $q, q' \in Q$ and $\alpha \subseteq T$,

$$(q, \alpha, q') \in \delta \iff (\nu(q), \phi(\alpha), \nu(q')) \in \delta',$$

where $\phi(\alpha) = \{\phi(t) \mid t \in \alpha\}$. We denote this by $STS \cong_{\phi, \nu} STS'$ or $STS \cong_{\phi} STS'$. Moreover, two st-systems, STS and STS', are isomorphic (denoted $STS \cong STS'$) if there exists a bijection ϕ such that STS and STS' are ϕ-isomorphic. That is, the relation \cong considers two st-systems isomorphic if they are the same up to the renaming of their states and arc labels.

3 Signal Set Tissue Systems with Overlapping Localities

A tissue structure γ (of degree $m \geq 1$) is an undirected graph with m nodes identified with the integers $1, \ldots, m$. For all $i, j \in \{1, \ldots, m\}$, we write $(i, j) \in \gamma_{\text{edges}}$ to indicate that there is an edge between i and j, and $i \in \gamma_{\text{nodes}}$ means that i is a node of γ (see Figure 1 for an example). We will refer to the nodes of a tissue structure as compartments. An edge between i and j indicates that direct communication between the compartments i and j is possible.

![Fig. 1. A tissue structure γ of degree 4.](image)

Let V be a finite set of objects, $V^{sgl} \subseteq V$ be a set of signal objects, and γ be a tissue structure of degree m. A signal set tissue system with overlapping localities, or SSOLT-system, over V, V^{sgl} and γ is a tuple

$$\Sigma = (V, V^{sgl}, \gamma, w_1^{0}, \ldots, w_m^{0}, R)$$

such that, for every $i \in \gamma_{\text{nodes}}$, w_i^{0} is a set of objects from V present initially in the compartment i, and R is a set of (evolution) rules. A configuration of Σ is a
tuple \(C = (w_1, \ldots, w_m) \) of sets of objects, and \(C_0 = (w_1^0, \ldots, w_m^0) \) is the initial configuration. Each evolution rule \(r \in \mathcal{R} \) is of the form \(r = (c': \text{lhs}' \rightarrow \text{rhs}') \), where \(c' \), the locality of \(r \), is a nonempty subset of \(\{1, \ldots, m\} \); \(\text{lhs}' \), the left hand side of \(r \), is a non-empty subset of \(V \); and \(\text{rhs}' \), the right hand side of \(r \), is a subset of

\[
V \cup \{a_{\sigma_j} | a \in V \land j \in (\gamma_{\text{nodes}} \setminus c') \land \exists i \in c' : (i, j) \in \gamma_{\text{edges}}\}.
\]

A rule \(r \), when executed, will consume some objects from the compartments belonging to its locality, and produce some objects in the compartments of its locality and possibly in some of the compartments linked to them according to \(\gamma_{\text{edges}} \). Each \(a \in V \) in the left hand side of \(r \) represents an object to be consumed from each of the compartments of \(c' \). Each \(a \in V \) in the right hand side of \(r \) represents an object which is to be produced in each of the compartments of \(c' \). Therefore, one can understand the locality \(c' \) as the scope of \(r \). The indexed symbols \(a_{\sigma_j} \) represent an object \(a \) that is sent to compartment \(j \) not belonging to the locality of \(r \) but linked in \(\gamma \) with one of the compartments in the locality of \(r \). Figure 2 shows a pictorial representation of a SSOLT-system

\[
\Sigma_0 = (\{a, b, c\}, \{b\}, \gamma, \{a\}, \{a\}, \{a\}, \{r_1, r_2, r_3, r_4\}),
\]

where:

\[
\begin{align*}
 r_1 &= (\{1, 2\} : \{a\} \rightarrow \{c\}) \\
 r_2 &= (\{2\} : \{b, c\} \rightarrow \{b_{\sigma_1}\}) \\
 r_3 &= (\{1, 3, 4\} : \{a\} \rightarrow \{b\}) \\
 r_4 &= (\{4\} : \{b\} \rightarrow \{c_{\sigma_3}\}).
\end{align*}
\]

Fig. 2. An ssolt-system over the tissue structure \(\gamma \) shown in Figure 1. Note that the evolution rules are abbreviated (e.g., \(ac \) denotes \(\{a, c\} \)).

A SSOLT-system evolves from configuration to configuration through the application (execution) of evolution rules based on the notion of a set-rule defined as a set of evolution rules.

For the rest of this section we let \(\Sigma \) be a SSOLT-system as specified above. Let \(R \subseteq \mathcal{R} \) be a set-rule. Then \(c^R = \bigcup_{r \in R} c' \) denotes the set of compartments in the localities of the rules in \(R \); we define tuples \(\text{lhs}^R = (\text{lhs}_1^R, \ldots, \text{lhs}_m^R) \) and
\[\text{rhs}_R = (\text{rhs}_{R_1}^R, \ldots, \text{rhs}_{R_m}^R) \] such that, for every \(i \in \gamma_{\text{nodes}}, \)

\[
\begin{align*}
\text{lhs}_{i}^R &= \{ a \in V \mid \exists r \in R : (i \in c^r \wedge a \in \text{lhs}^r) \} \\
\text{rhs}_{i}^R &= \{ a \in V \mid \exists r \in R : ((i \in c^r \wedge a \in \text{rhs}^r) \vee a_{oi} \in \text{rhs}^r) \}.
\end{align*}
\]

The tuple \(\text{lhs}^R \) specifies which objects are needed per compartment for the simultaneous execution of all the evolution rules in \(R \). In the case of non-signal objects, these must be already present, but any signal object required by \(R \) may be created during the simultaneous execution of the evolution rules in \(R \).\(^2\) Thus, a set-rule \(R \subseteq \mathcal{R} \) is resource enabled, or res-enabled, at a configuration \(C = (w_1, \ldots, w_m) \) if, for all \(i \in \gamma_{\text{nodes}}, \text{lhs}_{i}^R \setminus w_i \subseteq \text{rhs}_{i}^R \cap V^{\text{sgl}} \).

The set-rules that are res-enabled at the initial configuration of the SOLT-system depicted in Figure 2 are all subsets \(R \subseteq \{r_1, r_2, r_3, r_4\} \) such that \(r_4 \in R \) implies \(r_3 \in R \). Also, \(c^{(r_1,r_2)} = \{1,2\} \) and \(c^{(r_3,r_4)} = \{1,2,3\} \). Moreover, for the singleton \(R = \{r_3\} \), we have \(\text{lhs}^R = (\{a\}, \emptyset, \{a\}, \{a\}) \) and \(\text{rhs}^R = (\{b\}, \emptyset, \{b\}, \{b\}) \).

Proposition 3.1 If \(R, R' \subseteq \mathcal{R} \) are set-rules res-enabled at a configuration \(C \), then \(R \cup R' \) is also res-enabled at \(C \).

Proof. Let \(C = (w_1, \ldots, w_m) \) and \(i \in \gamma_{\text{nodes}} \). We first observe that

\[
\text{lhs}_{i}^{R \cup R'} = \text{lhs}_{i}^R \cup \text{lhs}_{i}^{R'} \quad \text{and} \quad \text{rhs}_{i}^{R \cup R'} = \text{rhs}_{i}^R \cup \text{rhs}_{i}^{R'}.
\]

Moreover, since \(R \) and \(R' \) are res-enabled at a \(C \),

\[
\text{lhs}_{i}^R \setminus w_i \subseteq \text{rhs}_{i}^R \cap V^{\text{sgl}} \quad \text{and} \quad \text{lhs}_{i}^{R'} \setminus w_i \subseteq \text{rhs}_{i}^{R'} \cap V^{\text{sgl}}.
\]

Hence we obtain:

\[
\text{lhs}_{i}^{R \cup R'} \setminus w_i = (\text{lhs}_{i}^R \cup \text{lhs}_{i}^{R'}) \setminus w_i
\]

\[
= (\text{lhs}_{i}^R \setminus w_i) \cup (\text{lhs}_{i}^{R'} \setminus w_i)
\]

\[
\subseteq (\text{rhs}_{i}^R \cap V^{\text{sgl}}) \cup (\text{rhs}_{i}^{R'} \cap V^{\text{sgl}})
\]

\[
= (\text{rhs}_{i}^R \cup \text{rhs}_{i}^{R'}) \cap V^{\text{sgl}}
\]

Thus \(R \cup R' \) is res-enabled at \(C \). \(\Box \)

\(^1\) We do not define \(\text{lhs}_{i}^{R} \) and \(\text{rhs}_{i}^{R} \) for single evolution rules \(r \). However, \(R \) can be a singleton set containing just one rule.

\(^2\) This is called instant signalling. In fact, it is possible that a single evolution rule produces some of its own input in the form of signal objects.
To be executable a set-rule must not only be RES-enabled, but also satisfy a maximality criterion that guarantees that evolution rules of ‘active’ compartments (belonging to the localities of rules already included in the set-rule) that could occur with the set-rule are also included in the set-rule. When formalising this, it appears that there are two levels of ‘eagerness’ justifying such inclusion: firstly, evolution rules of which the whole locality (all compartments) is active, need to be included; and secondly, evolution rules which have one or more active compartments, need to be included.

Let R be a set-rule RES-enabled at a configuration C. Then R is:

- **all-control enabled** (or CTRL_{all}-enabled) at C if there is no set-rule $R' \supset R$ which is RES-enabled at C with $c^R = c^{R'}$, and
- **any-control enabled** (or CTRL_{any}-enabled) at C if there is no set-rule $R' \supset R$ which is RES-enabled at C with $c' \cap c^R \neq \emptyset$, for every $r \in R' \setminus R$.

There are two set-rules CTRL_{any}-enabled at the initial configuration of the SSOLT-system depicted Figure 2: \emptyset and $\{r_1, r_2, r_3, r_4\}$. Moreover, there are five set-rules which are CTRL_{all}-enabled at the same configuration: \emptyset, $\{r_2\}$, $\{r_1, r_2\}$, $\{r_3, r_4\}$, and $\{r_1, r_2, r_3, r_4\}$.

Let $\mu \in \{\text{all}, \text{any}\}$ be an **execution mode**. If R is CTRL_{μ}-enabled at configuration C, then it can be **μ-executed** leading to $C' = (w'_1, \ldots w'_m)$ such that, for all $i \in \gamma_{\text{nodes}}$,

$$w'_i = (w_i \setminus \text{lhs}^R) \cup (\text{rhs}^R \setminus (\text{lhs}^R \setminus w_i))$$

$$= ((w_i \cup \text{rhs}^R) \setminus \text{lhs}^R) \cup (w_i \cap \text{rhs}^R \cap \text{lhs}^R).$$

We denote this by $C \xrightarrow{R} C'$. Note that $R = \emptyset$ is CTRL_{μ}-enabled at any C, and that $C \xrightarrow{\mu} C$ always holds. Note also that the index μ refers to the type of enabledness, but that the result of executing a set-rule does not depend on whether it stands for **all** or **any**.

For the initial configuration of the SSOLT-system depicted Figure 2, we have:

$$\left(\{a\}, \{a, c\}, \{a\}, \{a\}\right) \xrightarrow{\{r_1, r_2, r_3, r_4\}}_{\text{any}} \left(\{b, c\}, \{c\}, \{b, c\}, \emptyset\right)$$

$$\left(\{a\}, \{a, c\}, \{a\}, \{a\}\right) \xrightarrow{\{r_3, r_4\}}_{\text{all}} \left(\{b\}, \{a, c\}, \{b, c\}, \emptyset\right)$$

Proposition 3.2 Let R be a set-rule RES-enabled at a configuration C, and $\mu \in \{\text{all}, \text{any}\}$. Then there is a set-rule $R' \supseteq R$ which is CTRL_{μ}-enabled at C.

Proof. Follows from the fact that there are no infinite C-increasing chains of set-rules in Σ. □

A **μ-evolution** is a finite sequence of μ-executions starting from C_0, and any configuration which can be obtained through such an evolution is μ-reachable.
Moreover, the \(\mu\)-concurrent reachability graph of \(\Sigma\) is the step transition system \(\text{CRG}_\mu(\Sigma) = ([C_0]_\mu, 2^R, \delta, C_0)\), where \([C_0]_\mu\) is the set of all \(\mu\)-reachable configurations which are the states of the graph, \(C_0\) is the initial state, and
\[
\delta = \{(C, R, C') \mid C, C' \in [C_0]_\mu \land R \subseteq R \land C \xrightarrow{R} C'\}.
\]

Note that we can assume without loss of generality that each evolution rule of \(\Sigma\) occurs in at least one set-rule labelling an arc in \(\delta\). Indeed, let \(r \in R\), and \(R_C\) be the set of all set-rules \(\text{res}\)-enabled at a configuration \(C \in [C_0]_\mu\). If there is \(C \in [C_0]_\mu\) and \(R \in R_C\) such that \(r \in R\) then, according to Proposition 3.2, there is a set-rule \(R' \supseteq R\) which is \(\text{ctrl}_\mu\)-enabled at \(C\), and so \(r\) occurs in the label of an arc of \(\text{CRG}_\mu(\Sigma)\). Otherwise, for each \(C \in [C_0]_\mu\), the sets of \(\text{res}\)-enabled set-rules remains the same if we take \(R \setminus \{r\}\) instead of \(R\). Hence the set of set-rules \(\text{ctrl}_\mu\)-enabled at \(C\) remains the same. As a result, \(r\) can be deleted from \(R\) without any influence on the behaviour of \(\Sigma\).

3.1 Overlapping localities vs. instant signalling

To assess the effect of the new feature of overlapping localities, we focus on the dynamics of the computational systems represented. Since the operational semantics of ssOLT-systems is fully captured by their concurrent reachability graphs, we will use the latter in order to compare the relative expressive power of the different sub-models. To carry out a meaningful comparison, we now single out three syntactical sub-models of ssOLT-systems.

A ssOLT-system \(\Sigma = (V, V^{\text{sgl}}, \gamma, w_1^0, \ldots, w_m^0, R)\) is called:

- **signal set tissue system**, or SST-system, if \(|c'| = 1\), for every \(r \in R\) \[13\].
- **set tissue system with overlapping localities**, or SOLT-system, if \(V^{\text{sgl}} = \emptyset\).
- **basic set tissue system**, or BST-system, if it is an SST-system and a SOLT-system \[12\].

Our first observation is that for an SST-system \(\Sigma\), \(\text{CTRL}_{\text{all}}\)-enabledness and \(\text{CTRL}_{\text{any}}\)-enabledness are identical notions, and so \(\text{CRG}_{\text{all}}(\Sigma) = \text{CRG}_{\text{any}}(\Sigma)\). We will in this case omit the reference to \(\text{all}\) and \(\text{any}\) and simply write e.g., \(\text{CRG}(\Sigma)\) for the concurrent reachability graph of \(\Sigma\).

We thus have the following families of concurrent reachability graphs:
The families of isomorphism classes (i.e., equivalence classes of the relation \(\cong \)) of the members of these six families will be respectively denoted by \(\mathcal{CRG}_{sso{l}t}^{all} \), \(\mathcal{CRG}_{sso{l}t}^{any} \), \(\mathcal{CRG}_{solt}^{all} \), \(\mathcal{CRG}_{solt}^{any} \), \(\mathcal{CRG}_{sst} \), and \(\mathcal{CRG}_{bst} \).

The relationships between the four classes of tissue systems described above are clear. What is not clear, however, is the relationship between the families of concurrent reachability graphs they generate. Directly from the definitions, we obtain:

Proposition 3.3 \(\mathcal{CRG}_{bst} \subseteq \mathcal{CRG}_{sst} \)

\[
\begin{align*}
\mathcal{CRG}_{bst} & \subseteq \mathcal{CRG}_{solt}^{all} & \mathcal{CRG}_{sst} & \subseteq \mathcal{CRG}_{sso{l}t}^{all} & \mathcal{CRG}_{solt}^{all} & \subseteq \mathcal{CRG}_{sso{l}t}^{all} \\
\mathcal{CRG}_{bst} & \subseteq \mathcal{CRG}_{solt}^{any} & \mathcal{CRG}_{sst} & \subseteq \mathcal{CRG}_{sso{l}t}^{any} & \mathcal{CRG}_{solt}^{any} & \subseteq \mathcal{CRG}_{sso{l}t}^{any} .
\end{align*}
\]

The above result, in turn, immediately yields (for the families of isomorphism classes):

Proposition 3.4 \(\mathcal{CRG}_{bst} \subseteq \mathcal{CRG}_{sst} \)

\[
\begin{align*}
\mathcal{CRG}_{bst} & \subseteq \mathcal{CRG}_{solt}^{all} & \mathcal{CRG}_{sst} & \subseteq \mathcal{CRG}_{sso{l}t}^{all} & \mathcal{CRG}_{solt}^{all} & \subseteq \mathcal{CRG}_{sso{l}t}^{all} \\
\mathcal{CRG}_{bst} & \subseteq \mathcal{CRG}_{solt}^{any} & \mathcal{CRG}_{sst} & \subseteq \mathcal{CRG}_{sso{l}t}^{any} & \mathcal{CRG}_{solt}^{any} & \subseteq \mathcal{CRG}_{sso{l}t}^{any} .
\end{align*}
\]

We will now strengthen the above results. The next three propositions will be used to demonstrate that all the inclusions in Proposition 3.4 are strict.

Proposition 3.5 \(\mathcal{CRG}_{sst} \setminus \mathcal{CRG}_{sso{l}t}^{all} \neq \emptyset \) and \(\mathcal{CRG}_{sst} \setminus \mathcal{CRG}_{sst}^{any} \neq \emptyset \).

Proof. Let \(\Sigma = (\{a\}, \{a\}, \gamma, \{a\}, \{a\}, \{r, r'\}) \) be an \(\text{sso{l}t} \)-system, where \(\gamma \) consists of nodes \(\{1, 2\} \) with an edge between 1 and 2, and:

\[
\begin{align*}
\gamma & = (\{1\} : \{a\} \rightarrow \emptyset) \\
\gamma' & = (\{2\} : \{a\} \rightarrow a_{e1}) .
\end{align*}
\]
Then: (i) \(\text{enbld}_{\text{CRG}(\Sigma)}(C_0) = 2^{(r,r')} \), (ii) \(C_0 \xrightarrow{[r']} C_1 \), and (iii) \(\text{enbld}_{\text{CRG}(\Sigma)}(C_1) = \{ \emptyset, \{ r' \} \} \), where \(C_0 = (\{ a \}, \{ a \}) \) and \(C_1 = (\emptyset, \{ a \}) \).

We show that there is no \text{SOLT}-system \(\Sigma' \) such that \(\text{CRG}(\Sigma) \cong \text{CRG}_{\text{all}}(\Sigma') \) or \(\text{CRG}(\Sigma) \cong \text{CRG}_{\text{any}}(\Sigma') \). Suppose that such a \(\Sigma' \) exists (in both cases).

Thus, \(\Sigma' \) has two rules \(r \) and \(r' \) (perhaps differently defined than their counterparts in \(\Sigma \)) and no others. Let \(C_0' \) and \(C_1' \) be the two configurations of \(\Sigma' \) corresponding to \(C_0 \) and \(C_1 \), respectively.

We first observe that \{ \(r \) \} is \text{RES}-enabled at \(C_1' \), because \(\{ r, r' \} \in \text{enbld}_{\text{CRG}(\Sigma)}(C_1) \) and \(\Sigma' \) has no signal objects. We then consider two cases.

Case 1: \(c'' \cap c''' = \emptyset \). Then, since \{ \(r \) \} is \text{RES}-enabled at \(C_1' \) and there are no other rules apart from \(r' \), it is also \text{CTRL}_{\text{all}}-enabled and \text{CTRL}_{\text{any}}-enabled at \(C_1' \), contradicting (iii).

Case 2: \(c'' \cap c''' \neq \emptyset \). Then, since \(\{ r, r' \} \in \text{enbld}_{\text{CRG}_{\text{any}}(\Sigma)}(C_1') \), it follows that \(\{ r, r' \} \) and \(r' \) are \text{RES}-enabled at \(C_1' \). So \(\{ r' \} \) is not \text{CTRL}_{\text{any}}-enabled at \(C_1' \), a contradiction. In the case of \text{CTRL}_{\text{all}}-enabledness, it would have to be the case, by (iii), that \(c'' \subseteq c''' \). However, this would produce a contradiction with \(\{ r \} \), \(\{ r, r' \} \in \text{enbld}_{\text{CRG}_{\text{all}}(\Sigma)}(C_0) \) (see (i)).

Hence \(\Sigma' \) does not exist. \(\Box \)

Proposition 3.6 \(\text{CRG}_{\text{all}} \setminus \text{CRG}_{\text{sst}} \neq \emptyset \).

Proof. Let \(\Sigma = (\{ a \}, \emptyset, \gamma, \{ a \}, \{ a \}, \{ a \}, \{ a \}, \{ r, r', r'' \}) \) be an \text{SOLT}-system, where \(\gamma \) has \{1, 2, 3, 4\} as its set of nodes and no edges, and:

\[
\begin{align*}
 r &= (\{1, 3\} : \{ a \} \rightarrow \emptyset) \\
 r' &= (\{2, 4\} : \{ a \} \rightarrow \emptyset) \\
 r'' &= (\{1, 2\} : \{ a \} \rightarrow \emptyset).
\end{align*}
\]

Then \(\text{enbld}_{\text{CRG}_{\text{all}}(\Sigma)}(C_0) = 2^{(r,r',r'')} \setminus \{ r, r' \} \), where \(C_0 = (\{ a \}, \{ a \}, \{ a \}, \{ a \}) \) is the initial configuration of \(\Sigma \).

We need to show is that there is no \text{SSST}-system \(\Sigma' \) such that \(\text{CRG}_{\text{all}}(\Sigma) \cong \text{CRG}(\Sigma') \). Suppose that such a \(\Sigma' \) exists.

Thus, the rules of \(\Sigma' \) are \(r \), \(r' \), and \(r'' \) (perhaps differently defined than their counterparts in \(\Sigma \)). Their localities in \(\Sigma' \) are given by \(c'' = \{ i \} \), \(c''' = \{ j \} \), and \(c'''' = \{ k \} \). We observe that the following hold:

1. \(\{ r \}, \{ r' \}, \{ r'' \}, \{ r, r', r'' \}, \text{and} \{ r, r', r'' \} \) are all \text{RES}-enabled at \(C_0' \) (the initial configuration of \(\Sigma' \)).

11
Hence, by (2) and the definition of CTRL_{all}-enabledness ($\text{CRG}(\Sigma') = \text{CRG}_{\text{all}}(\Sigma') = \text{CRG}_{\text{all}}(\Sigma)$).

(3) \{r, r'\} is RES-enabled at C_0'. This follows from (1) and Proposition 3.1.

Hence, by (2), (3) and the definition of CTRL_{all}-enabledness, \{r, r'\} is CTRL_{all}-enabled at C_0', contradicting \{r, r'\} $\notin \text{enbld}_{\text{CRG}_{\text{all}}(\Sigma)}(C_0) = \text{enbld}_{\text{CRG}_{\text{all}}(\Sigma')}(C_0')$. □

Proposition 3.7 $\overline{\text{CRG}_{\text{solt}}} \cap \text{CRG}_{\text{sst}} \neq \emptyset$.

Proof. Let $\Sigma = \{\{a, b\}, \emptyset, \gamma, \{a, b\}, \{r, r', r''\}\}$ be an SOLT-system, where γ has \{1, 2\} as its set of nodes and no edges, and:

\[
\begin{align*}
 r &= \{(1) : \{a\} \to \{a\}) \\
 r' &= \{(2) : \{a\} \to \{a\}) \\
 r'' &= \{(1, 2) : \{b\} \to \emptyset) .
\end{align*}
\]

Then: (i) $\text{enbld}_{\text{CRG}_{\text{any}}(\Sigma)}(C_0) = \{\emptyset, \{r, r', r''\}\}$, where $C_0 = \{(a, b)\}$ is the initial configuration; (ii) $C_0 \xrightarrow{[r,r',r'']} \text{any} C_1$, where $C_1 = \{\{a\}\}$; and (iii) $\text{enbld}_{\text{CRG}_{\text{any}}(\Sigma)}(C_1) = \{\emptyset, \{r\}, \{r', \{r, r'\}\}$.

We need to show that there is no SST-system Σ' such that (iv) $\text{CRG}_{\text{any}}(\Sigma') \cong \text{CRG}(\Sigma')$.

Suppose that such a Σ' exists. Let $C_0' = (w_1, \ldots, w_m)$ be its initial configuration. The rules of Σ' are r, r', and r'' (perhaps differently defined than their counterparts in Σ). Their localities in Σ' are given by $c' = \{i\}$, $c'' = \{j\}$, and $c'' = \{k\}$. Moreover, let $C_0' \xrightarrow{[r,r',r'']} C_1'$ where $C_1' = (u_1, \ldots, u_m)$. Recall that for Σ', CTRL_{any}-enabledness and CTRL_{all}-enabledness are the same notion.

We first show that $\{r\}$ is RES-enabled at C_0' in Σ'. Suppose that this does not hold. Then, by (i) and (iv), there is (in Σ') a signal object v such that $v \notin w_i$, $v \in \text{lhs}'' \setminus \text{rhs}''$ and $v \in \text{rhs}'' \cup \text{rhs}''$. By the definition of any-executeability of $R = \{r, r', r''\}$ at C_0', we have $v \notin u_i$. Hence $\{r\}$ is not RES-enabled at C_1', contradicting (iii).

We then observe that, by (iii) and (iv), $\text{enbld}_{\text{CRG}_{\text{any}}(\Sigma')}(C_1') = \{\emptyset, \{r\}, \{r', \{r, r'\}\}$. Hence, by the definition of CTRL_{any}-enabledness, we have $i \neq j$.

Suppose now that $i \neq k$. Since, as we just argued $\{r\}$ is RES-enabled at C_0', we have, by the definition of CTRL_{any}-enabledness and $j \neq i \neq k$, that $\{r\}$ is CTRL_{any}-enabled at C_0', contradicting (i).

Hence $i = k$ and, by symmetry, $j = k$. Thus $i = j$, a contradiction. □

From the above propositions we obtain a complete characterisation of the
relative expressive power of the various kinds of tissue systems considered here separately for the two different modes of execution.

Theorem 3.8 The graphs in Figure 3 depict strict inclusions between the domains forming their respective nodes. Moreover, no other inclusion holds.

Proof. The weak \subseteq inclusions all follow from Proposition 3.4. By Proposition 3.5 and Proposition 3.6, $\mathcal{CRG}_{\text{ssolt}}$ and $\mathcal{CRG}_{\text{sst}}$ are incomparable (not included in one another). Similarly, by Proposition 3.5 and Proposition 3.7, $\mathcal{CRG}_{\text{ssolt}}$ and $\mathcal{CRG}_{\text{sst}}$ are incomparable. As an immediate consequence of the above, all inclusions depicted are strict. \square

![Diagram of inclusions between different classes of tissue systems](image)

Fig. 3. Expressiveness of different classes of tissue systems.

4 Systems and nets

In this section we first add the concept of overlapping localities to the signal set nets of [13]. Next we compare the resulting net class with SSOLT-systems.

4.1 Signal set nets with overlapping localities

A signal set net with overlapping localities, or SSOL-net, is a tuple $N = (P, P^{\text{ss}}, T, F, \ell, M_0)$, where P and T are finite disjoint sets of respectively places and transitions, $P^{\text{ss}} \subseteq P$ are signal places, $F \subseteq (P \times T) \cup (T \times P)$ is the flow relation, $\ell : P \cup T \rightarrow 2^{\{1,2,\ldots\} \setminus \emptyset}$ is the locality mapping, and $M_0 \subseteq P$ is the initial marking. It is assumed that $\ell(t)$ is finite, for every transition $t \in T$, and that $|\ell(p)| = 1$, for every $p \in P$. For a transition t, we refer to $\ell(t)$ as the locality of t and to the elements of $\ell(t)$ as locations. Thus a transition
may have several locations which can be shared with other transitions (in case of overlapping localities). Places have only one location, but different places may have the same location.

If \(|\ell(t)| = 1\), for every \(t \in T\), then \(N\) is basically a signal set net from [13], and if, additionally, \(P_{sgl} = \emptyset\) then we obtain a model as in [12]. The latter was derived from set-nets [19], originally developed as a Petri net model for reaction systems [6, 8, 9]. In [20], overlapping localities are introduced, but the formalisation is different: a transition can belong to several designated subsets of transitions, referred to as localities; and there are no explicit localities assigned to places.

Let \(N\) be a ssol-net as specified above. A set of places is a marking, and a set of transitions is a step. If \(t\) is a transition, then we denote by \(\bullet t = \{p \in P \mid \exists (p, t) \in F\}\) its set of input places and by \(t\bullet = \{p \in P \mid (t, p) \in F\}\) its set of output places. Moreover, if \(U\) is a step, then we define \(U\bullet = \bigcup_{t \in U} \bullet t\) and \(U\bullet = \bigcup_{t \in U} t\bullet\); and \(\ell_U = \bigcup_{t \in U} \ell(t)\) are the locations associated with the transitions of \(U\). Moreover, for \(t \in T\): \(\bullet t = \bullet\{t\}\) and \(t\bullet = \{t\}\bullet\).

A step \(U\) is resource enabled, or res-enabled, at a marking \(M\) if \(\bullet U \setminus M \subseteq U\bullet \cap P_{sgl}\), i.e., if all input non-signal places of its transitions belong to \(M\), and all signal input places that are not in \(M\) are outputs of its transitions.

Markings indicate the presence of resources, but without any quantification (hence ‘set net’). Consequently, if a place is marked (belongs to the current marking), it can provide input (resources) to any number of simultaneously executed transitions. Executing a transition empties all its input places and each of its output places will belong to the resulting marking. Moreover, resources produced as output for signal places can be consumed in the same step by another (or even the same) transition having that place as an input place.

To be executable at a marking, a res-enabled step must also be ‘maximal’ in the sense that it cannot be extended with additional transitions with a locality that is already involved in that step. We distinguish between two criteria. According to the first one, there are no transitions left out which could be added to yield a new res-enabled step with the same set of localities as the original step; whereas the second one requires that there are no transitions left out that have an active locality (their localities overlap with some of the localities of the transitions forming the step) and could be added to yield a new res-enabled step.

Let \(U\) be a step res-enabled at a marking \(M\). Then \(U\) is:

- all-control enabled (or CTRL_all-enabled) at \(M\) if there is no step \(U' \supset U\) which is res-enabled at \(M\) with \(\ell_{U'} = \ell_U\), and
• *any-control enabled* (or CTRL_{any}-enabled) at M if there is no step $U' \supset U$ which is RES-enabled at M with $\ell(t) \cap \ell_U \neq \emptyset$, for every $t \in U' \setminus U$.

A step U which is CTRL_μ-enabled w.r.t. an execution mode $\mu \in \{\text{all}, \text{any}\}$ at M can be μ-executed leading to the marking M' given by

$$M' = (M \setminus \cdot U) \cup (U^* \setminus (\cdot U \setminus M)) = ((M \cup U^*) \setminus \cdot U) \cup (M \cap U^* \cap \cdot U).$$

We denote this by $M[U]_\mu M'$. It should be observed here that the subscript μ refers to the enabling condition; the effect of executing a step is in both modes the same. A μ-computation of N is a finite sequence of μ-executions starting from M_0, and any marking which can be obtained through such a computation is μ-reachable. Moreover, the μ-concurrent reachability graph of N is the step transition system $\text{CRG}_\mu(N) = ([M_0]_\mu, 2^T, \delta, M_0)$, where $[M_0]_\mu$ is the set of all μ-reachable markings which are the states of the graph, M_0 is the initial state, and

$$\delta = \{ (M, U, M') \mid M, M' \in [M_0]_\mu \land U \subseteq T \land M[U]_\mu M' \}.$$

Note that we can assume here - without loss of generality - that all transitions of N are useful, i.e., they occur in at least one μ-execution in a μ-computation of N).

4.2 Relating ssOLT-systems and ssOL-nets

In this sub-section, we show that the two models of concurrent systems introduced in this paper are closely related in a behavioural sense. More precisely, we will identify for each ssOLT-system an ssOL-net that generates essentially the same concurrent reachability graph. As before in, e.g., [13, 14], the evolution rules become transitions and the objects will be places - in this case preserving their (non-)signalling properties; the flow relation preserves the input and output of the evolution rules; and the locality mapping corresponds to compartments and localities in the ssOLT-system. This leads to a natural partition of the constructed places with a subset for each different object and each place in that subset corresponding to one of the compartments where the object may reside. Conversely, given a tissue structure and an ssOL-net that has input and output relations between transitions and places ‘consistent’ with their localities, we will be able to construct an ssOLT-system with the same concurrent reachability graph.

Let γ be a tissue structure, $N = (P, P^{\text{sgl}}, T, F, \ell, M_0)$ be an ssOL-net, and Π be a partition of the set of places P such that, for every $\pi \in \Pi$, ℓ is injective on π, and $\pi \subseteq P \setminus P^{\text{sgl}}$ or $\pi \subseteq P_\text{STR}^{\text{sgl}}$. Then N is spanned over γ w.r.t. Π if, for all $p \in P$, $t \in T$, and $\pi \in \Pi$ such that $p \in \pi$, the following hold:
• \(\ell(p), \ell(t) \subseteq \gamma_{\text{nodes}} \),
• \((p, t) \in F \) implies \(\ell(p) \subseteq \ell(t) \) and, for every \(i \in \ell(t) \), there is \(p' \in \pi \) such that \((p', t) \in F \) and \(\ell(p') = \{i\} \),
• \((t, p) \in F \) implies one of the following:
 - \(\ell(p) \subseteq \ell(t) \) and, for every \(i \in \ell(t) \), there is \(p' \in \pi \) such that \((t, p') \in F \) and \(\ell(p') = \{i\} \), or
 - \(\ell(p) \cap \ell(t) = \emptyset \) and \((\ell(t) \times \ell(p)) \cap \gamma_{\text{edges}} \neq \emptyset \) (i.e., there is an edge in \(\gamma \) between some \(i \) and \(j \), where \((i, j) \in \ell(t) \times \ell(p) \)).

4.2.1 **SSOL-nets corresponding to SSOLT-systems**

Let \(\Sigma = (V, V^{\text{sgl}}, \gamma, w_0^0, \ldots, w_m^0, \mathcal{R}) \) be an arbitrary, but fixed, SSOLT-system. The SSOL-net corresponding to \(\Sigma \) is \(\text{ts2pn}(\Sigma) = (P, P^{\text{sgl}}, T, F, \ell, M_0) \), where:

- \(P = \{p_a^i \mid i \in \gamma_{\text{nodes}} \land a \in V\}, \quad P^{\text{sgl}} = \{p_a^i \mid i \in \gamma_{\text{nodes}} \land a \in V^{\text{sgl}}\} \),
- \(T = \{t^r \mid r \in \mathcal{R}\} \),
- \(\ell(p) = \{i\} \) and \(\ell(t) = e^r \), for all \(p = p_a^i \in P \) and \(t = t^r \in T \); moreover:
 \[t^* = \{p_a^i \mid i \in e^r \land a \in \text{lhs}^r\} \]
 \[t_{\ell} = \{p_a^i \mid i \in e^r \land a \in \text{rhs}^r\} \cup \{p_a^i \mid a_{vi} \in \text{rhs}^r\} \]

- \(M_0 = \{p_a^0 \mid i \in \gamma_{\text{nodes}} \land a \in w_i^0\} \).

Proposition 4.1 \(\text{ts2pn}(\Sigma) \) is an SSOL-net spanned over the tissue structure \(\gamma \) w.r.t. the partition \(\Pi = \{\{p_a^i \mid i \in \gamma_{\text{nodes}}\} \mid a \in V\} \) of the places of \(\text{ts2pn}(\Sigma) \).

Proof. Follows directly from the definitions. \(\square \)

The configurations of \(\Sigma \) and the markings of \(\text{ts2pn}(\Sigma) \) are related by a mapping \(\nu \) which, for every configuration \(C = (w_1, \ldots, w_m) \) of \(\Sigma \), yields a marking \(\nu(C) = \{p_a^i \mid i \in \gamma_{\text{nodes}} \land a \in w_i\} \) of \(\text{ts2pn}(\Sigma) \). Moreover, \(\phi(r) = t^r \) is the transition of \(\text{ts2pn}(\Sigma) \) corresponding to rule \(r \in \mathcal{R} \).

Proposition 4.2 The mappings \(\nu \) and \(\phi \) are bijections, and
\[
\nu^{-1}(M) = (\{a \in V \mid p_a^0 \in M\}, \ldots, \{a \in V \mid p_a^m \in M\})
\]
for every marking \(M \) of \(\text{ts2pn}(\Sigma) \).

Proof. Follows directly from the definitions. \(\square \)

Proposition 4.3 \(\nu(C_0) = M_0 \), where \(C_0 \) is the initial configuration of \(\Sigma \).

Proof. Follows directly from the definitions. \(\square \)
The strong behavioural relationship between the operation of SSOLT-systems and the corresponding SSOL-nets is established in the next result.

Proposition 4.4 Let C and C' be configurations, $R \subseteq \mathcal{R}$ be a set-rule of Σ, and μ be an execution mode. Then:

\[
C \xrightarrow{R_\mu} C' \quad \text{if and only if} \quad \nu(C) \ [\phi(R)]_\mu \nu(C')
\]

in $\Sigma\ $\hspace{1cm} \text{in } ts2pn(\Sigma)$.

Proof. Below, for a configuration $C = (w_1, \ldots, w_m)$ of Σ and a set-rule R of Σ, we denote:

\[
\text{set}(C) = \{a@i \mid i \in \gamma_{\text{nodes}} \land a \in w_i\}
\]

\[
\text{in}(R) = \{a@i \mid i \in c^R \land a \in \text{lhs}_i^R\}
\]

\[
\text{out}(R) = \{a@i \mid i \in c^R \land a \in \text{rhs}_i^R\},
\]

where $a@i$ denotes an object a in compartment i (an extended name).

Then R is res-enabled at a configuration C iff

\[
\text{in}(R) \setminus \text{set}(C) \subseteq \text{out}(R) \cap \{a@i \mid i \in \gamma_{\text{nodes}} \land a \in V^{sgl}\}.
\]

The latter is equivalent to $^\cdot \phi(R) \setminus \nu(C) \subseteq \phi(R)^* \cap P^{sgl}$ since each p^i can be identified with $a@i$, and, for each $R \subseteq \mathcal{R}$, the set of input places of $\phi(R)$ can be identified with $\text{in}(R)$ and the set of output places of $\phi(R)$ with $\text{out}(R)$.

Hence a set-rule R is res-enabled at C iff $\phi(R)$ is res-enabled at $\nu(C)$. Moreover, $c^r = \ell(t^r)$, for every $r \in \mathcal{R}$, and so we have $c^R = \ell_{\phi(R)}$. Hence R is ctrl$_\mu$-enabled at C iff $\phi(R)$ is ctrl$_\mu$-enabled at $\nu(C)$. It therefore remains to show that the results of the executions of R at C and of $\phi(R)$ at $\nu(C)$ correspond to each other.

Suppose that $C \xrightarrow{R_\mu} C'$. Then

\[
\text{set}(C') = (\text{set}(C) \setminus \text{in}(R)) \cup (\text{out}(R) \setminus (\text{in}(R) \setminus \text{set}(C)))
\]

and so $\nu(C') = (\nu(C) \setminus ^\cdot \phi(R)) \cup (\phi(R)^* \setminus (^\cdot \phi(R) \setminus \nu(C)))$. Hence we obtain $\nu(C) [\phi(R)]_\mu \nu(C')$ which completes the proof. \Box

Together with Propositions 4.2 and 4.3, this means that the concurrent reachability graphs of Σ and $ts2pn(\Sigma)$ are isomorphic if we identify each rule with the corresponding transition. Hence we obtain

Theorem 4.5 Let μ be an execution mode. Then $CRG_\mu(\Sigma)$ and $CRG_\mu(ts2pn(\Sigma))$ are ϕ-isomorphic step transition systems.
4.2.2 SSOLT-systems corresponding to SSOL-nets

Let \(N = (P, P^{\text{sgl}}, T, F, \ell, M_0) \) be an arbitrary, fixed, SSOLT-net spanned over the tissue structure \(\gamma \) of degree \(m \) w.r.t. a partition \(\Pi \) of \(P \). The SSOLT-system corresponding to \(N \) w.r.t. \(\Pi \) is \(\text{pn2ts}(N, \Pi) = (V, V^{\text{sgl}}, \gamma, w^0_1, \ldots, w^0_m, R) \), where:

- \(V = \{ a^\pi | \pi \in \Pi \} \) and \(V^{\text{sgl}} = \{ a^\pi | \pi \in \Pi \land \pi \subseteq P^{\text{sgl}} \} \).
- \(w^0_i = \{ a^\pi | \pi \in \Pi \land \pi \cap \ell^{-1}(\{i\}) \neq \emptyset \} \), for every \(i \leq m \). We then define \(v'(M) = (w_1, \ldots, w_m) \), where \(w_i = \{ a^\pi | \pi \in \Pi \land \pi \cap \ell^{-1}(\{i\}) \neq \emptyset \} \), for every marking \(M \) of \(N \).
- \(R = \{ r^t | t \in T \} \), where each \(r^t = \phi'(t) = (\ell(t) : \text{lhs} \to \text{rhs}) \) is such that:

\[
\text{lhs} = \{ a^\pi | \pi \in \Pi \land \pi \cap t^* \neq \emptyset \}
\]

\[
\text{rhs} = \{ a^\pi | \pi \in \Pi \land \exists p \in \pi \cap t^* : \ell(p) \subseteq \ell(t) \} \cup
\{ a_{vi}^\pi | \pi \in \Pi \land \exists p \in \pi \cap t^* : \ell(p) \cap \ell(t) = \emptyset \land \ell(p) = \{i\} \}.
\]

Proposition 4.6 \(\text{pn2ts}(N, \Pi) \) is an SSOLT-system over the tissue structure \(\gamma \).

Proof. Follows from the definitions. \(\square \)

The translation results in a very close behavioural correspondence between the chosen classes of Petri nets and tissue systems. By proceeding similarly as in the case of the previous translation, we obtain

Theorem 4.7 Let \(\mu \) be an execution mode. Then the step transition systems \(\text{CRG}_\mu(N) \) and \(\text{CRG}_\mu(\text{pn2ts}(N, \Pi)) \) are \(\phi' \)-isomorphic.

We can therefore conclude, by Theorems 4.5 and 4.7, that SSOLT-systems and SSOL-nets spanned over tissue structures are essentially equivalent semantic models. This means, in particular, that the synthesis of SSOLT-systems from step transition systems can be approached as the synthesis of SSOL-nets spanned over tissue structures.

5 Net-types

As discussed in, e.g., \([3, 15]\), several Boolean Petri net classes (i.e., those types of nets where markings are subsets of places) can be distinguished on the basis of individual connections between places and transitions. Moreover, the effect of the simultaneous execution of a certain combination of transitions on a place can be calculated using a commutative monoid which returns the composite connection between the place and the given step. The resulting formalism, based on the generic notions of net-type \(\tau \) and \(\tau \)-net, provides an alternative
presentation of net theory which is particularly suitable for dealing with the net synthesis problem. In this section we demonstrate that SSOL-nets are a class of τ-nets.

A net-type is supposed to capture the behaviour of a place of a net of a particular kind. It is an LT-system $\tau = (Q, S, \delta)$ such that: Q is a set of states; S is a connection monoid (a set of connections equipped with a commutative and associative binary composition operation \oplus and a neutral (identity) element 0); and δ is a partial function satisfying $\delta(q, 0) = q$, for all $q \in Q$. In the case of SSOL-nets considered here, $Q = \{0, 1\}$ indicating whether a place is marked or not, and $S = \{0, \text{ins}, \text{rem}, \text{lp}\}$, i.e., there are four kinds of possible connections between places and transitions: ‘no connection’, ‘insert’, ‘remove’ and ‘loop’.

The above connections give rise to two different interpretations in terms of net-types, depending on the intended ‘signalling’ status of a place. We therefore consider two net-types, $\tau_{\text{nsgl}} = (Q, S, \delta_{\text{nsgl}})$ and $\tau_{\text{sgl}} = (Q, S, \delta_{\text{sgl}})$, with δ_{nsgl} and δ_{sgl} given respectively in Figure 4(a) and Figure 4(c), and the common table, shown in Figure 4(b), defining the composition operation used.

Proposition 5.1 (S, \oplus), where $S = \{0, \text{ins}, \text{rem}, \text{lp}\}$ and \oplus is defined in Figure 4(b), is a commutative monoid with 0 as neutral element, lp an absorbing element, and ins and rem idempotent elements.

Proof. \oplus is commutative as the table in Figure 4(b) is symmetric, and the listed properties of individual elements clearly hold. Hence, to show the associativity of \oplus, we only need to observe that $\text{ins} \oplus (\text{ins} \oplus \text{rem}) = \text{lp} = (\text{ins} \oplus \text{ins}) \oplus \text{rem}$, $\text{ins} \oplus (\text{rem} \oplus \text{ins}) = \text{lp} = (\text{ins} \oplus \text{rem}) \oplus \text{ins}$, and $\text{rem} \oplus (\text{ins} \oplus \text{ins}) = \text{lp} = (\text{rem} \oplus \text{ins}) \oplus \text{ins}$.

The only difference between the net-types τ_{nsgl} and τ_{sgl} is in the ‘loop’ connection which in the signalling case is non-blocking (enabled) also for 0. However, it is not the case that $0 = \text{lp}$ for signal places since they behave differently in compositions as 0 is the neutral element whereas lp is an absorbing element.

A class of nets can be rendered as a class of τ-nets if we can find a suitable net-type τ to describe the behaviour of its places. Unlike in the standard definitions of τ-nets, the class of τ-nets corresponding to SSOL-nets, will employ two net-types, τ_{nsgl} and τ_{sgl}, to accommodate both signal and non-signal places as they have different semantical properties.

As before, we let $Q = \{0, 1\}$ and $S = \{0, \text{ins}, \text{rem}, \text{lp}\}$.
A signal set τ-net with overlapping localities (or SSOL-τ-net) is a tuple $Z = (P, P_{\text{sgl}}, T, G, \ell, M_0)$, where P, P_{sgl}, T and ℓ are as in the definition of an
ssol-net, G : (P × T) → S is the connection mapping, and M₀ : P → Q is the initial marking (in general, any mapping M : P → Q is a marking).

Below, for p ∈ P and U ⊆ T, we denote G(p, U) = \(\bigoplus_{t \in U} G(p, t)\) with G(p, ∅) = 0 and \(\bigoplus_{t ∈ \{t₁, ..., tₙ\}} G(p, t) = G(p, t₁) \oplus ... \oplus G(p, tₙ)\), where \(\oplus\) is as defined in Figure 4(b).

A step U ⊆ T of Z is resource enabled (or res-enabled) at a marking M if, for every p ∈ P \ Psgl, G(p, U) ∈ enbld,rsig(M(p)), and, for every p ∈ Psgl, G(p, U) ∈ enbld,rsig(M(p)).

Let U be a step res-enabled at a marking M. Then U is:

- all-control enabled (or ctrl_all-enabled) at M if there is no step U′ ⊃ U which is res-enabled at M with \(ℓ_U = ℓ_{U′}\), and
- any-control enabled (or ctrl_any-enabled) at M if there is no step U′ ⊃ U which is res-enabled at M with \(ℓ(t) ∩ ℓ_U \neq ∅\), for every t ∈ U′ \ U.

A step U which is ctrl_\(μ\)-enabled at M can be \(μ\)-executed leading to the marking M′ such that, for every p ∈ P \ Psgl, M′(p) = \(δ^{rsig}(M(p), G(p, U))\), and, for every p ∈ Psgl, M′(p) = \(δ^{s gl}(M(p), G(p, U))\). We denote this by M[U]_\(μ\)M′. A \(μ\)-computation of Z is then a finite sequence of \(μ\)-executions starting from M₀, and any marking which can be obtained through such a computation is \(μ\)-reachable. Moreover, the \(μ\)-concurrent reachability graph of Z is the step transition system CRG_\(μ\)(Z) = ([M₀]_\(μ\), 2T, δ, M₀), where [M₀]_\(μ\) is the set of all \(μ\)-reachable markings which are the states of the graph, M₀ is the initial state, and

\[δ = \{(M, U, M′) \mid M, M′ ∈ [M₀]_\(μ\) \land U ⊆ T \land M[U]_\(μ\)M′\} \]

Again, we can assume that all transitions are useful.

Let \(γ\) be a tissue structure and Π be a partition of the set of places P such that, for very \(π \in Π\), \(ℓ\) is injective on \(π\), and \(π ⊆ P \setminus Psgl\) or \(π ⊆ Pst\). Then \(Z\) is spanned over \(γ\) w.r.t. Π if, for all p ∈ P, t ∈ T, and \(π \in Π\) such that p ∈ \(π\), the following hold:
\[\ell(p), \ell(t) \subseteq \gamma_{nodes}, \]

- \(G(p, t) \in \{\text{rem, lp}\} \) implies \(\ell(p) \subseteq \ell(t) \) and, for every \(i \in \ell(t) \), there is \(p' \in \pi \) such that \(G(p', t) = G(p, t) \) and \(\ell(p') = \{i\} \),

- \(G(p, t) = \text{ins} \) implies one of the following:
 - \(\ell(p) \subseteq \ell(t) \) and, for every \(i \in \ell(t) \), there is \(p' \in \pi \) such that \(G(p', t) = \text{ins} \) and \(\ell(p') = \{i\} \), or
 - \(\ell(p) \cap \ell(t) = \emptyset \) and \((\ell(t) \times \ell(p)) \cap \gamma_{edges} \neq \emptyset \).

Theorem 5.2 There is a bijection \(\psi \) from \(\text{ssol-nets} \) to \(\text{ssol-}\tau\)-nets such that \(\text{CRG}_\mu(N) = \text{CRG}_\mu(\psi(N)) \), for every \(\text{ssol-net} \) \(N \) and every execution mode \(\mu \). Moreover, the sets of places of \(N \) and \(\psi(N) \) are the same, and \(N \) is spanned over \(\gamma \) w.r.t. \(\Pi \) iff \(\psi(N) \) is spanned over \(\gamma \) w.r.t. \(\Pi \), for every tissue structure \(\gamma \) and every partition \(\Pi \) of the common set of places of \(N \) and \(\psi(N) \).

Proof. Let \(N = (P, P^{\text{sgl}}, T, F, \ell, M_0) \) be an \(\text{ssol-net} \). We then define the \(\text{ssol-}\tau\)-net \(\psi(N) = (P, P^{\text{sgl}}, T, G, \ell, M_0) \), where, for all \(p \in P \) and \(t \in T \):

\[
G(p, t) = \begin{cases}
0 & \text{if } (p, t) \notin F \land (t, p) \notin F \\
\text{ins} & \text{if } (p, t) \notin F \land (t, p) \in F \\
\text{rem} & \text{if } (p, t) \in F \land (t, p) \notin F \\
\text{lp} & \text{if } (p, t) \in F \land (t, p) \in F.
\end{cases}
\]

It is easy to check that, for all \(M \subseteq P \) and \(U \subseteq T \), \(U \) is \(\text{RES-enabled at } M \) in \(N \) iff \(U \) is \(\text{RES-enabled at } M \) in \(\psi(N) \). Hence, for every execution mode \(\mu \), \(U \) is \(\text{CTRL}_\mu\text{-enabled at } M \) in \(N \) iff \(U \) is \(\text{CTRL}_\mu\text{-enabled at } M \) in \(\psi(N) \). As a result, \(\text{CRG}_\mu(N) = \text{CRG}_\mu(\psi(N)) \). Moreover, the second part of the theorem is obvious. \(\square \)

Thanks to Theorems 4.7 and 5.2, the problem of synthesising an \(\text{SSOLT-system} \) from a given \(\text{ST-system} \) can be replaced by the problem of synthesising an \(\text{SSOL-}\tau\text{-net} \) from a given \(\text{ST-system} \).

6 Synthesis

To specify the behaviour of a net to be synthesised, we use \(\text{ST-systems} \). As the semantics of the nets we intend to synthesise, \(\text{SSOL-nets} \), can be expressed by two net-types, it is possible to adapt the approach developed for the general theory of Petri net synthesis investigated, e.g., in [2, 3, 4, 16, 15].
We consider the following problem:

SYNTHESIS

Let $STS = (Q, 2^T, \delta, q_0)$ be an st-system, γ be a tissue structure, $\ell : T \to 2^{\nodes} \setminus \emptyset$ be a locality mapping for T, and μ be an execution mode.

Provide necessary and sufficient conditions for STS to be μ-realisable by some ssol-τ-net Z, i.e., $STS \cong CRG_{\mu}(Z)$, so that Z is spanned over γ w.r.t. some partition of its places, and the locality mapping of Z extends ℓ.

Moreover, construct a suitable Z and a partition of its places if STS is μ-realisable.

In what follows, STS, γ, ℓ, and μ are fixed.

Existing solutions to similar net synthesis problems tend to use some notion of a *region* of STS whose definition depends on the net-type of the nets for which it is defined. Each region represents a place in the net to be constructed and contains all the information about its marking (local state) at every $q \in Q$, and its connection to every $t \in T$ given by an element of the connection monoid of the net-type. Therefore, in the definition of a region, we will have two mappings σ and η to calculate such markings and connections. Moreover, the specific notion of a region defined below will comprise the locality of the place it represents, and we will need to ensure that this locality is consistent with the fact that the net being constructed has to be spanned over the tissue structure γ. Finally, we will also need to define two kinds of regions to reflect the difference in behaviour of signal and non-signal places.

Let $\xi \in \{nsgl, sgl\}$ and $\tau^\xi = (Q, S, \delta^\xi)$. A τ^ξ-*region* of STS in the SYNTHESIS problem is a triple $\rho = (k \in \gamma_{\nodes} \setminus \emptyset, \sigma : Q \to Q, \eta : T \to S)$ such that, for all $t \in T$, $q \in Q$, and $U \in \text{enbld}_{\tau^\xi}(\sigma(q))$:

- $\eta(t) \in \{\text{rem, lp}\}$ implies $k \notin \ell(t)$,
- $\eta(t) = \text{ins}$ and $k \notin \ell(t)$ implies $(\ell(t) \times \{k\}) \cap \gamma_{\edges} \neq \emptyset$, and
- $\bigoplus \eta(U) \in \text{enbld}_{\tau^\xi}(\sigma(q))$ and $\delta^\xi(\sigma(q), \bigoplus \eta(U)) = \sigma(\delta(q,U))$,

where $\bigoplus \eta(\emptyset) = 0$ and $\bigoplus \eta(U) = \eta(t_1) \oplus \cdots \oplus \eta(t_n)$, for $U = \{t_1, \ldots, t_n\}$.

Below we denote $\rho = (k_\mu, \sigma_\mu, \eta_\mu)$. The set of τ^ξ-regions is denoted by $\text{Reg}_{\tau^\xi}^{\mu}$, and $\text{Reg}_{STS} = \text{Reg}_{STS}^{nsgl} \cup \text{Reg}_{STS}^{sgl}$ denotes the set of τ-regions of STS.

By comparing the diagrams of net-types τ^{nsgl} and τ^{sgl} in Figure 4, we immediately obtain

Proposition 6.1 $\text{Reg}_{STS}^{nsgl} \subseteq \text{Reg}_{STS}^{sgl}$.

Hence, checking whether a triple (k, σ, η) is a τ-region means checking it first for the non-signalling case, and only if this fails, checking the signalling case.
Having introduced \(\tau \)-regions, one may now introduce a derived notion of step enabledness. For every \(q \in Q \), \(\text{enbld}_{STS,q}(q) \) is the set of all \(\tau \)-enabled steps \(U \subseteq T \) meaning that \(\bigoplus \eta_p(U) \in \text{enbld}_\tau(\sigma_p(q)) \), for each \(\tau \)-region \(\rho \) of \(STS \). Directly from the definitions, we obtain

Proposition 6.2 \(\text{enbld}_{STS}(q) \subseteq \text{enbld}_{STS,q}(q) \), for every \(q \in Q \).

We then obtain a complete characterisation of the positive instances of the SYNTHESIS problem.

Theorem 6.3 The SYNTHESIS problem has a solution iff there exists a non-empty family \(\Omega \) of non-empty sets of \(\tau \)-regions of \(STS \) such that the following hold, for all \(\omega \in \Omega \), \(\rho \in \omega \), \(t \in T \), \(q, q' \in Q \), and \(U \subseteq T \):

1. \(\ell \) is injective on \(\omega \), and \(\omega \subseteq \text{Reg}^{\text{ngl}}_{STS} \) or \(\omega \subseteq \text{Reg}^{\text{ngl}}_{STS} \).
2. If \(\eta_p(t) \in \{ \text{rem}, \text{ins}, \text{lp} \} \) and \(k_{\rho} \in \ell(t) \), then, for every \(i \in \ell(t) \), there is \(\rho' \in \omega \) with \(k_{\rho'} = i \) and \(\eta_{\rho'}(t) = \eta_p(t) \).
3. \text{AXIOM I: STATE SEPARATION}

 If \(q \neq q' \) then there is \(\rho \in \bigcup \Omega \) with \(\sigma_\rho(q) \neq \sigma_\rho(q') \).
4. \text{AXIOM II: FORWARD CLOSURE}

 If \(U \notin \text{enbld}_{STS}(q) \cup \text{cds}_\mu(\text{enbld}_{STS,q}(q)) \) then there is \(\rho \in \bigcup \Omega \) with \(\bigoplus \eta_p(U) \notin \text{enbld}_\tau(\sigma_\rho(q)) \), where, for every \(\mathcal{X} \subseteq 2^T \):

\[
\text{cds}_{\text{all}}(\mathcal{X}) = \{ U \in \mathcal{X} \mid \exists U' \in \mathcal{X}: U \subseteq U' \land \ell_{U'} = \ell_U \} \\
\text{cds}_{\text{any}}(\mathcal{X}) = \{ U \in \mathcal{X} \mid \exists U' \in \mathcal{X}: U \subseteq U' \land (\forall t \in U' \setminus U : \ell(t) \cap \ell_U \neq \emptyset) \}.
\]

Moreover, if (1)–(4) above hold, then \(Z = (P, P^{\text{ngl}}, T, G, \ell, M_0) \), where:

- \(P = \{ p_\rho^\omega \mid \rho \in \omega \in \Omega \} \) and \(P^{\text{ngl}} = \{ p_\rho^\omega \mid \rho \in \omega \in \Omega \land \omega \subseteq \text{Reg}^{\text{ngl}}_{STS} \} \),
- \(G(p_\rho^\omega, t) = \eta_p(t) \), for all \(p_\rho^\omega \in P \) and \(t \in T \), and
- \(\ell(p_\rho^\omega) = \{ k_{\rho} \} \) and \(M_0(p_\rho^\omega) = \sigma_\rho(q_0) \), for every \(p_\rho^\omega \in P \),

is a SSOL-\(\tau \)-net solving the SYNTHESIS problem. In addition, a suitable partition of \(P \) is given by \(\Pi = \{ \{ p_\rho^\omega \mid \rho \in \omega \} \mid \omega \in \Omega \} \).

Proof. Note that \(\Pi \) is a partition of \(\bigcup \Omega \) even if \(\Omega \) was not a partition of \(\bigcup \Omega \). Moreover, \(Z \) is spanned over \(\gamma \) w.r.t. \(\Pi \) which follows from (1) and (2) above and the definition of a \(\tau \)-region.

The theorem follows by a straightforward adaptation of the results presented in [4] and [5]. The only property we need to verify is that \(\text{cds}_\mu \) defines a step firing policy in the sense of [4]. This means that we need to show that, for all \(\mathcal{X} \subseteq 2^T \) and \(\mathcal{Y} \subseteq \mathcal{X} \):

\(^3\) It is always the case that \(\emptyset \notin \text{cds}_{\text{all}}(\mathcal{X}) \) and \(\emptyset \notin \text{cds}_{\text{any}}(\mathcal{X}) \). The notation ‘cds’ comes from [4] and is meant to indicate ‘control disabled steps’.

23
(i) $\text{cds}_\mu(X) \subseteq X$.
(ii) $\text{cds}_\mu(Y) \subseteq \text{cds}_\mu(X)$.
(iii) $X \subseteq 2^T$ and $X \setminus \text{cds}_\mu(X) \subseteq Y$ imply $\text{cds}_\mu(X) \cap Y \subseteq \text{cds}_\mu(Y)$.

Clearly, (i) and (ii) hold. To show (iii), let $\mu = \text{all}$, $X \setminus \text{cds}_{\text{all}}(X) \subseteq Y \subseteq X \subseteq 2^T$ and $U \in \text{cds}_{\text{all}}(X) \cap Y$. Since $U \in \text{cds}_{\text{all}}(X)$ and T is finite, there is a maximal (w.r.t. \subseteq) set $U' \in X$ such that $U \subseteq U'$ and $\ell_{U'} = \ell_U$. Clearly, $U' \notin \text{cds}_{\text{all}}(X)$, and so $U' \in X \setminus \text{cds}_{\text{all}}(X) \subseteq Y$. As $U \in Y$ by assumption, we have $U \in \text{cds}_{\text{all}}(Y)$.

For $\mu = \text{any}$ the proof is similar. \Box

Note that we only need to consider a minimal Ω, i.e., such that deleting any of its components would make at least one instance of AXIOMS I or II unsatisfied.

It is interesting to observe the relationship between signal and non-signal places in the constructed net. By Proposition 6.1, $\text{Reg}_{\text{STS}}^{\text{nsgl}} \subseteq \text{Reg}_{\text{STS}}^{\text{sgl}}$. If $\rho \in \text{Reg}_{\text{STS}}^{\text{nsgl}}$ then its ‘witnessing power’ w.r.t. AXIOM I is the same as for $\rho \in \text{Reg}_{\text{STS}}^{\text{sgl}}$. However, considering AXIOM II, the same is no longer the case as ρ will have a strictly greater witnessing power when interpreted as included in $\text{Reg}_{\text{STS}}^{\text{nsgl}}$ than when interpreted as included in $\text{Reg}_{\text{STS}}^{\text{sgl}}$ (this follows from the fact that the LT-system in Figure 4(c) enables at least as many connections as that in Figure 4(a) at the corresponding states). Hence, whenever we have a witnessing $\rho \in \text{Reg}_{\text{STS}}^{\text{nsgl}}$ there is no need to add its counterpart $\rho \in \text{Reg}_{\text{STS}}^{\text{sgl}}$ to the solution being constructed.

7 Conclusion

In this paper we have introduced a new class of set tissue systems by formalising the idea that the computational process progresses in synchronised overlapping localities. This feature has been shown to properly extend the expressive power of the original systems. Currently, Theorem 3.8 provides a full picture of relative expressiveness of tissue systems for each of the all and any modes separately. We plan to investigate the relationships between the two modes.

Next SSOLT-systems have been related to SSOL-nets with the same behaviour. Since SSOL-nets can be rendered as τ-nets, their synthesis problem is solvable and thus also that of SSOLT-systems. In fact, to establish the class of τ-nets that corresponds to SSOL-nets it was necessary to introduce two net-types rather than one as is standard. We consider this further evidence for the solidity and flexibility of the general region-based approach to synthesis of Petri nets based on τ-nets.
Acknowledgement

We are grateful to the reviewers for their careful reading of the paper and in particular for all suggestions that helped to improve the presentation.

References

