Lord S, Galna B, Yarnall AJ, Coleman S, Burn D, Rochester L.

Have we been overestimating fall rates in Parkinson's disease?.


Copyright:

This is the peer reviewed version of the following article: Lord S, Galna B, Yarnall AJ, Coleman S, Burn D, Rochester L. Have we been overestimating fall rates in Parkinson's disease?. Movement Disorders 2017, 32(5), 803-804, which has been published in final form at https://doi.org/10.1002/mds.27009. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

DOI link to article:

https://doi.org/10.1002/mds.27009

Date deposited:

11/07/2017

Embargo release date:

21 April 2018
Reply to Letter: Have we been overestimating fall rates in Parkinson's disease?

Sue Lord, PhD, Brook Galna, PhD, Alison J. Yarnall, PhD, Shirley Coleman, PhD, David Burn, PhD, and Lynn Rochester, PhD

1Institute of Neuroscience, Newcastle University Institute for Aging, Newcastle upon Tyne, UK
2UK and Industrial Statistics Research Unit, Newcastle University, Newcastle upon Tyne, UK

Corresponding author

Prof Lynn Rochester PhD
Professor Human Movement Science,
Institute of Neuroscience,
Newcastle University Institute for Aging,
Newcastle University
Newcastle upon Tyne
NE4 5PL

Financial Disclosure/Conflict of Interest Nothing to report

Word Count 438
Dear Editor

We thank Drs Beaulieu, Muller and Bohnen for their comments concerning fall rate in Parkinson’s disease (PD) which they suggest, based on our study, may be lower than currently perceived and in fact similar to falls rates in older adults. The authors arrive at this view by calculating falls frequency over 12 and 36 months using our data as well as previously published data from two studies, one in PD and one in older adults. We can confirm (not reported in our publication) that in our study 26 PD participants (33%) fell over the first 12 months, which concurs with the lower estimate provided by the authors in Table 1. However, this does not suggest that prospective falls rates in PD (which are broadly stated as twice that of older adults, around 60%) have been over-estimated in earlier studies. To generalise from these two data sets to the wider PD population is problematic and even cautious interpolation can be misleading. Cohorts vary widely, as does methodology for ascertaining prospective falls. The ICICLE falls cohort was unique in that our 121 participants were newly diagnosed, falls-naïve, young (mean age 68 years), with few co-morbidities and only mild cognitive impairment. By contrast, participants in Wood’s\(^1\) study were 75 years old with a median disease duration of six years. Also, in our study, falls ascertainment was carried out according to best practice guidelines (monthly falls diary with annotated details of any fall, telephone follow up, and prompt identification of non-returns)\(^3\) which is not a universal standard.

Falls data were collected retrospectively for ICICLE control participants (n = 189, average age 69 years) by asking participants whether they had fallen in the past 6 months. Only four participants (2.1%) reported a fall, and although there are obvious weaknesses in this approach it does suggest the need to control for age when comparing falls cohorts. Falls prevalence increases with age\(^4\), and participants in Allan’s cohort were on average 75 years old. Also, the older adult estimates provided by Beaulieu and colleagues are based on a sample of only 39 participants.

The primary goal of our study was to identify predictors of first fall to inform primary prevention and ultimately delay time to first fall. Future work on larger PD cohorts is required to inform falls epidemiology. Falls have been documented over 72 months for the ICICLE cohort and future publications will describe falls evolution. In our view understanding falls trajectory from disease onset in PD is critical, and our results will need to be replicated in larger samples. Then we can turn our attention towards primary prevention in an informed manner.
References


