
Copyright:

This document is the Accepted Manuscript version of a Published Work that appeared in final form in *Environmental Science & Technology*, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.7b02191

Date deposited:

18/09/2017

Embargo release date:

13 July 2018
Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone

*Odeta Qafoku¹, Carolyn I. Pearce¹, Anke Neumann², Libor Kovari³, Mengqiang Zhu⁴, Eugene S. Ilton¹, Mark E. Bowden³, Charles T. Resch¹, Bruce W. Arey³, Elke Arenholz⁵, Andrew R. Felmy¹,⁶, Kevin M. Rosso¹

¹Pacific Northwest National Laboratory, P.O. Box 999, MS K8-96, Richland, Washington, 99352, U.S.A.
²Newcastle University, Newcastle, U.K.
³Environmental Molecular Sciences Laboratory, PNNL, U.S.A.
⁴University of Wyoming, Laramie, Wyoming, U.S.A.
⁵Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
⁶Washington State University, Pullman. Washington, U.S.A.

*Corresponding author: odeta.qafoku@pnnl.gov; Phone: + 509-371-6353; Fax: + 509-371-6354.

To be submitted to Environmental Science & Technology
ABSTRACT

Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important source of electron equivalents limiting the transport of redox active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced clays in field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) content, but FeTOTAL remains constant demonstrating no Fe loss during reduction-oxidation cyclings. At native pH of 8.6 the anoxic fraction despite its significant Fe(II), ~23% of FeTOTAL, exhibits minimal reactivity with TcO₄⁻ and CrO₄²⁻ and much slower reaction kinetics than that measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II)ₜₒ₅₆ >8% clay Fe(II)LABILE), however the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)ₜₒ₅₆ and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within clay mineral.
INTRODUCTION

Clay minerals rich in iron play a unique role in biogeochemical and environmental reduction-oxidation (redox) reactions in soils and subsurface environments, acting as a recyclable sink or source of electron equivalents. The structure of clay minerals enables Fe structural to alternate valence between Fe(III) and Fe(II) while charge neutralization mechanisms intrinsic to these materials maintain overall charge balance and phase stability. Consequently, many studies have been devoted to understanding linkages between redox processes occurring in aqueous solution and the Fe(II)/Fe(III) redox couple found in a variety of phyllosilicates from clays to micas. Examples include demonstrating that phyllosilicate structural Fe(III) is an accessible electron acceptor for a wide range of microbial communities and that a structural Fe(II) in phyllosilicates can reduce redox-active contaminants.

Of particular interest to the present study, the transport of radioactive 99Tc(VII) and toxic Cr(VI) contaminants could be strongly retarded by redox reaction with reduced Fe-clay minerals. These hazardous and problematic subsurface contaminants are typically found at historic nuclear processing facilities, such as the Hanford Nuclear Reservation, USA. In oxic subsurface and groundwater, pertechnetate (TcO_4^-) and chromate (CrO_4^{2-}) are the stable species, and in these forms they are highly mobile due to limited sorption to geomedia at neutral and alkaline environments. However, their mobility could substantially decrease if donors capable of reducing Tc and Cr oxyanions to their respective insoluble precipitates Tc(IV)$\cdot n\text{H}_2\text{O}_\text{(s)}$ ($10^{-8.2}$ mol/L) and Cr(II)(OH)$_3$ (10^{-7} mol/L) are present. For Tc(VII) and Cr(VI) reduction, previous research highlights the contrasting importance of homogeneous and heterogeneous pathways. Homogeneous Tc(VII) reduction by aqueous Fe(II) is unlikely at circumneutral pH whereas the rate and the extent of heterogeneous Tc(VII) reduction is increased by Fe(II)$_\text{SORBED}$.
or by Fe(II)$_{\text{STRUCTURAL}}^{21}$. In contrast, in neutral and basic pH’s homogeneous Cr(VI) reduction is nearly instantaneous$^{17,22-25}$ while heterogeneous reduction is significantly slower and depends on Fe(II) content in structural sites as well as mineralogy.$^{17,26-29}$ Many studies have demonstrated the reduction capacity of Fe(II)-bearing crystalline solids, including iron-rich clay minerals.$^{7,8,21,22,26-28,30-37}$ Thus, if Fe(II)-bearing clay minerals are capable of reducing Tc(VII) and Cr(VI), a conceptual model of an Fe-clay rich stratum acting as a natural semi-permeable reactive barrier can be developed; a natural reduction layer that can be episodically recharged with reducing equivalents by seasonal fluctuations in the water table at the redox boundary.

To explore this prospect, pathways for electron exchange between reservoirs of Fe within clay minerals and redox-active contaminants need to be better understood. Under reducing conditions, this includes resolving the separate roles of bulk structural Fe(II), edge-bound Fe(II), and interlayer/basal surface exchangeable Fe(II) in heterogeneous electron transfer (ET). The role of associated aqueous Fe(II) that would comprise both a competitive homogeneous reduction pathway and/or a regeneration pathway for mineralogic Fe(II) must also be considered. For example, biogenic Fe(III)-(oxyhydr)oxide reduction produces aqueous Fe(II)38,39 that can, in turn, sorb strongly onto clay minerals5,30,40,41 binding to –OH edge complexation sites or basal exchange sites.$^{34,42-45}$ This sorbed Fe(II) can exchange electrons with structural Fe(III), primarily via edge-bound sites, with lesser participation from Fe(II) sorbed on basal/interlayer exchangeable sites.$^{44,46-48}$ As a result, disentangling the pathways for ET across the Fe-clay/sorbate/solution interface is complicated by these self-exchange dynamics of electrons between structural, sorbed, and aqueous Fe.

The present study examines the reduction of Tc(VII) and Cr(VI) by the clay-sized fraction of a fine-grained sediment that is dominated mineralogically by a naturally reduced ferruginous
smectite. The sediment comprises a distinct low permeability lithologic facies that contains the redox transition zone (RTZ) in the Ringold formation at the 300 Area of the Hanford site. Our study is motivated to address several persisting knowledge gaps. First, the majority of bespoke previous work has been performed on reference clay minerals from standard sources, many of which had above average Fe content and/or were prepared in the laboratory using a one-cycle chemical or biological reduction approach outside of a specific environmental context (e.g., up to 100% pre-reduction by dithionite). In one exception a reference clay was subjected to multiple biogenic redox cycles, with each subsequent redox cycle showing accelerated Tc(VII) reduction rates. However, very few studies have been conducted with naturally reduced clays, expectedly distinct both in terms of reduction extent and numbers of redox cycles, which can impact clay mineral reduction potential. Thus it is of interest to determine if Fe-rich clays in their native settings follow the same redox behavior as the model analogs. Secondly, we build on prior work that examined a coarser, mixed-mineralogic fraction of an adjacent sediment facies containing the ferruginous clay fraction isolated and studied here. That study indicated that this phase, along with other Fe(II)-bearing mineral phases present, were reactive with Tc(VII). We also build on a recent study which showed negligible reactivity in nitrate bioreduction by the anoxic whole intact sediment of the identical facies; reactivity that was enhanced by sediment amendment with external bioavailable carbon. Finally, to address reactivity of clay subsequent to surface recharging with reducing equivalents, we explore the role of addition of aqueous Fe(II) to pristine anoxic ferruginous clay with regard to Tc(VII) and Cr(VI) reduction.

MATERIALS AND METHODS

Sediments from core samples were collected from above and below the oxidized-reduced interface in the RTZ at Hanford’s 300 Area. These fine sand to silt textured, clay-rich sediments
provided the initial materials for our study, collected from oxic ~ 18.0 – 18.3 m and anoxic ~ 18.6 – 18.9 m sediment profiles that differed sharply in coloration from light brown (oxic) to bluish-gray (anoxic). The stratigraphic, geochemical, mineralogic, and microbial characteristics of whole sediments and size fraction < 5 mm have been described elsewhere. In this study we characterized < 2 µm size fraction.

Isolation and preparation of the clay-sized fraction. Prior to size fractionation, the oxic sediment was dried in air while the anoxic sediment was dried in a N₂ chamber (P_{O_2} < 0.1 ppm). All procedures with the naturally reduced material were performed inside this chamber with N₂ degassed solutions. After gentle crushing, the sediments were passed through a sieve (0.5 mm size) with no remaining fraction above this size. Alteration of natural cation distribution was minimized by dispersing the materials via sonication in deionized water. Fractionation to clay-sized particles (< 2 µm) was completed by sedimentation under gravity (Supporting Information, S1). Samples were freeze-dried and BET (Brunauer-Emmett-Teller) specific surface areas were determined by measuring N₂ adsorption isotherms.

X-ray diffraction (XRD). The mineralogies of the oxic and anoxic clay fractions were determined by XRD using a Philips X'Pert MPD system with a vertical goniometer on randomly oriented powder mounts, with an internal standard (ZnO) for phase quantification. Individual clay minerals were identified in oriented specimens after oxic clay was equilibrated with Mg- and K- solutions (Supporting Information, S2-S3).

Chemical Characterization. Total chemical composition, including Fe(II)/(III) speciation, was determined by HF-H₂SO₄ acid digestion in the presence of 1, 10-phenanthroline monohydrate as the chromophore (Supporting Information, S4). Further characterization
included cation exchange capacity, exchangeable cations, Fe(II) most reactive fraction20, Fe crystalline component, and inorganic C (Supporting Information, S5). Chemical and mineralogical data was used to derive an approximate clay structural unit full-cell formula assuming that the ideal clay formula consists of 44 positive charges (Table 1). Further, the extent of reduction in native oxic clay was determined using anthraquinone-2,6-disulfonic acid (AQDS/AH\textsubscript{2}DS) as an electron source (Supporting Information, S6).

Spectroscopic and microscopic analyses. Clay samples were characterized by a combination of spectroscopic and microscopic techniques as follows.

Fe K-edge extended X-ray absorption fine structure spectra with linear combination fitting (EXAFS/LCF) analysis were collected from clay samples in transmission mode at beamline 4-3 equipped with a Si (111) monochromator (Stanford Synchrotron Radiation Lightsource, Menlo Park, CA). EXAFS/LCF analysis was used for data fitting with spectra of known Fe-containing solids summed at certain proportions to match sample spectra (Supporting Information, S7).

Fe L-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) data for oxic and anoxic samples were measured on beamline 4.0.2 at the Advanced Light Source (ALS) in Berkeley, California, using the eight-pole resistive magnet end station55. The XAS signal was monitored in total-electron-yield (TEY) mode with an effective probing depth of ~4.5 nm. The experimental spectra (Supporting Information, S7) were normalized with respect to the background so that the L_3 main peak intensity was equal to 1.

Mössbauer spectra of clay samples were collected at room temperature and 14 K for the oxic fraction and at 18 K for the anoxic fraction (Supporting Information, S9). The spectra were
measured in transition mode with constant acceleration on a spectrometer supplied by Web Research, Inc. and equipped with a closed-cycle cryostat (CCS-850 System, Janis Research Co.)

Scanning electron microscopy (SEM) analyses were performed on Quanta 3D FEG equipped with an energy-dispersive X-ray detector (EDS) for semiquantitative analysis at an acceleration voltage of 20 kV. High resolution transmission electron microscopy (TEM) analyses were performed on a Jeol-JEM microscope with operating voltage of 200 kV. TEM specimens from post-reacted samples were prepared using field emission focused ion beam FIB-SEM, Helios 600 (Supporting Information, S10).

Tc(VII) and Cr(VI) batch reduction.

Interaction with the anoxic clay alone. Anoxic clay fraction was used to investigate Tc(VII) and Cr(VI) reduction over a 2 month period. The freeze-dried clay was suspended in de-ionized water to preserve native cation distribution. A density of 9 g/L was selected consistent with a study that investigated the reactivity of coarser fraction (<0.5 mm) of RTZ anoxic sediment. The pH was allowed to equilibrate to the natural buffering capacity of the sediment, ~ 8.6.

Reduction experiments, in triplicates, were conducted at 2.5 µM and 10 µM for Tc(VII) and, 2.5 µM and 50 µM for Cr(VI) (Supporting Information, S11).

Interaction with the anoxic clay augmented with aqueous Fe(II). A second set of experiments identical to those described were performed after anoxic clay suspensions were pre-equilibrated with aqueous Fe(II) for 0.5 h; respectively with 10 µM aqueous Fe(II) prior to addition of 2.5 µM Tc(VII) or Cr(VI), 30 µM aqueous Fe(II) prior to addition of 10 µM Tc(VII), and 150 µM aqueous Fe(II) prior to addition of 50 µM Cr(VI). Experiments were conducted at conditions nominally undersaturated with respect to Fe(OH)₂; for verification control.
experiments in the absence of clay were also carried out. Following FeCl₂ addition, and preceding Cr(VI) and Tc(VII) spikes, clay suspensions were analyzed for Fe(II) using ferrozine method⁻⁵⁹. Selected post-reaction solids including a precipitate from homogeneous reaction 150 \(\mu \text{M Fe(II) / 30 } \mu \text{M Cr(VI) at pH 8} \), were characterized with SEM/EDS, XAS, and FIB-TEM. Following 0.5 h Fe(II) sorption experiments, a series of extractions were performed on clay suspensions to probe sorbed Fe(II); these included extraction in NaCl, CaCl₂, MgCl₂, NaH₂PO₄, NH₄-acetate, and HCl at pH ~4. The extracting solutions aimed to differentiate whether sorbed Fe(II) was bound to basal/interlayer exchangeable sites, OH-complexation sites or precipitated as Fe-hydroxide.

RESULTS

RTZ clay characterization

Bulk Mineralogy. Particle size fractionation of oxic and anoxic RTZ sediments reveals that the clay sized fraction (< 2 \(\mu \text{m} \)) accounts for 6.1 and 8.6% of sediments by mass, respectively (Table S1). The mineralogy of the two clay fractions is very similar, as shown by XRD analysis (Figure S1), and is dominated by the clay minerals, smectite and kaolinite. The smectite component (82-84%) was calculated based on the difference from the other mineral components (kaolinite, albite, quartz, anorthoclase, and cristobalite) quantified by Rietveld refinement with ZnO as the added standard. The XRD background implies presence of an amorphous component that is more significant in anoxic sample. Citrate/ascorbate (Fe⁺ca) chemical extraction combined with post-extraction XRD analysis (data not shown) demonstrates only minor quantities of poorly crystalline Fe oxides (Fe⁺ca < 1% FeTOTAL, Table 1). The amorphous component is therefore likely a silica-based by-product of reductive dissolution, a process that can be expected
to have been more prevalent in the anoxic sediments. In general, the mineralogy is similar to that described in previous research for coarser fractions of the Hanford 300 Area sediments.

Chemical composition and phase identification. The RTZ oxic and anoxic clay fractions have similar properties and composition with respect to total Fe content, type and concentration of exchangeable cations, CEC, and surface area (Table 1). The major difference is the significantly higher Fe(II) content in the anoxic clay fraction (22.4% of Fe$_{\text{TOTAL}}$); yet it appears that clay reduction events did not result in a net loss of Fe, as the Fe$_{\text{TOTAL}}$ is similar for the two fractions. We observed that the maximum reducible Fe by AH$_2$DS in oxidized clay approximates to 24% Fe(II)/Fe$_{\text{TOTAL}}$ (Table S2), effectively the same proportion of Fe(II) as found in native anoxic clay. Furthermore, results suggest that Fe(II) in the anoxic clay is not present as an exchangeable cation (Table 1). Based on 1 h, 0.5 M HCl extraction data, nearly 15% of Fe(II) solid-bound species are in the most reactive fraction. This fraction represents the contribution from both Fe(II) bound to siloxane edge sites and structural Fe(II), as some dissolution of ultrafine grained silicate minerals had occurred (~ 1% of total Si dissolved, data not shown). However, there is no contribution from FeCO$_3$ (siderite) as the inorganic C content in the clay fraction is insignificant (Table 1). The clay mineral unit cell formula (Table 1), estimated from the chemical composition after accounting for the impurities identified by XRD (Figure S1, Table S1), is representative of a dioctahedral smectite (owing to d_{006} 62° 2θ reflection) and more specifically a montmorillonite (based on the extent of expansion in the d_{001} spacing, Table S4) with predominantly Ca and K, and minor Mg and Na, in interlayer/exchangeable basal sites. Compositional and structural data identify the clay mineral in both RTZ oxic and anoxic horizons as ferruginous montmorillonite, with the origin of the layer charge primarily in the octahedral sheet, where Mg and Fe substitute for Al.
Microscopic characterization. Backscattering SEM images of oxic and anoxic samples display typical 100-200 µm clay aggregates (Figure S2). Clay aggregates from the anoxic horizon also contain several 0.4 to 1.2 µm high Z-contrast crystallites, with equant cubic to octahedral morphologies incorporated into the matrix. Local EDS and elemental distributions mapping in these areas revealed particles composed of Fe and S, with Fe:S ratio that varies from 1:1.6 for cubic to 1:1.1 for octahedral crystals. Collectively, from SEM data the sulfide particles in anoxic samples are a minor component below the detection limit for XRD quantitative analysis. By far, the largest reservoir of Fe(II) in the anoxic clay fraction is associated with the clay particles.

Fe K-edge (EXAFS), Fe L-edge (XAS/XMCD), and Mössbauer Spectroscopy. Fe K-edge EXAFS/LCF analysis on the oxic and anoxic clay was performed to further characterize local Fe coordination environment (Figure S3, Table S5). The key observation from EXAFS analysis is that the two clay samples have quite similar Fe local atomic structures and although within the margin of error of the XAFS measurements, the data may possibly indicate a difference in the Fe oxidation state, (Figure S4, Table S6). Comparison of Fe L-edge XAS performed on the oxic RTZ clay (~1.3 mmol/g Fe) and on a Fe-rich reference clay mineral, nontronite NAu-2 (4 mmol/g Fe), suggest similar Fe site symmetry and valence (Figure S5, panel a). XAS fitting and normalization of data to Fe\textsubscript{TOTAL} of 1.33 gives 0.06 Fe(II) and 1.27 Fe(III) in octahedral coordination (Figure S5, panel b). For the anoxic RTZ clay, XAS analysis reveals a slightly more reduced state than nontronite NAu-2 exposed to sufficient sodium dithionite to reduce ~10% of the Fe6+ (Figure S5, panel c). Fitting the XAS for the anoxic clay (Figure S5, insert d) and normalizing the data to an Fe\textsubscript{TOTAL} of 1.33 gives 0.28 Fe(II) and 1.05 Fe(III) in octahedral coordination, resulting in a value of 21% Fe(II). The XAS spectra for both the oxic and anoxic
clay show no evidence for Fe in tetrahedral coordination, and the obtained values for Fe(II) and Fe(III) are very similar to that determined by chemical composition analysis (Table 1).

Mössbauer spectra obtained for the oxic and anoxic clays at 18 K showed that magnetically ordered Fe phases such as Fe-(oxyhydr)oxides, sulfides or carbonates, which would appear as sextets, were below the detection limit of 1-2% Fe. The oxic clay fraction (Figure S6, panel A) exhibited one large doublet around 0.5 mm/s, consistent with the presence of octahedral Fe(III) in a non-magnetically ordered environment such as a clay mineral, and the absence of detectable tetrahedral Fe. Similarly, the low temperature Mössbauer spectrum of the reduced clay fraction showed no indication of tetrahedral Fe (Figure S6, panel B). Furthermore, the fit yielded the same Fe(III) and Fe(II) components with almost identical hyperfine parameters, suggesting that the clays are very similar in their Fe mineral composition and binding environments. In contrast to the oxic clay, the octahedral Fe(II) component in the anoxic clay comprised almost 18% of the spectral area. Because the spectral component of the distorted octahedral Fe(III) in the anoxic clay is the same as in the oxic clay, regular octahedral Fe(III) sites were the most likely sites for reduction, accounting for the increase in octahedral Fe(II) in the anoxic clay.

Tc(VII) and Cr(VI) reduction by pristine and Fe(II) augmented anoxic clay

Interaction with pristine anoxic clay. Tc(VII) and Cr(VI) reduction, measured by loss from solution from the point of initial contact with the anoxic clay until ~ 50 d, showed sluggish kinetics overall, with barely significant amounts of Tc(VII) reduction and slow linear Cr(VI) reduction (Figure 1,a-c). Yet, experimental solid to solution ratio and the concentrations of oxyanions were selected to ensure an excess of the most reactive Fe(II), based on 0.5M HCl
extraction (Table 1), by more than a factor of three. To illustrate, reduction of Tc(VII) by the anoxic clay from solutions containing 2.5 µM or 10 µM (data not shown) after ~ 50 d was limited to < 6%, (no significant differences in Tc(VII) reduction were observed among two Fe(II) amendments). In contrast, reduction of 2.5 µM Cr(VI) solution was ~ 46% after 50 d while at the higher concentration of 50 µM, ~ 23% Cr(VI) was reduced (Figure 1,b-c). At the termination of the experiments, no Cr species associated with the reacted clay particles were detected by SEM/EDS analysis. However, Fe L-edge XAS analysis showed a decrease in intensity on the low energy side of Fe L\textsubscript{3} peak after clay reaction with 50µM Cr(VI) (Figure 2A) suggesting Cr(VI) loss from solution due to reduction, coupled to oxidation of near surface Fe(II). Overall, despite the substantial excess of Fe(II), the pristine anoxic RTZ clay fraction displayed only very limited capacity for Tc(VII) removal, and a more significant but kinetically slow capacity for Cr(VI) removal from solution (Figure 1, b-c). Within the errors of measurements, the kinetics of Cr(VI) removal displayed similar trends at low, 2.5 µM, and high, 50 µM, concentrations.

Fe(II) uptake by the anoxic clay. Addition of 10, 30, or 150 µM FeCl\textsubscript{2} to the anoxic clay suspension resulted in the removal of Fe(II) down to detection limit, presumably by sorption, within 0.5 h of equilibration consistent with literature-based precedent44-46,64,65 (Table 2, columns 3&4). After adjusting for pH change, sorption of 150 µM FeCl\textsubscript{2} or ~33 µmol(reducing)equivalents/g_clay from solution was followed by the release of ~ 21 µmolequivalents/g_clay exchangeable cations from interlayer sites, respectively Ca2+, K+, and Mg2+ (Table 2, columns 4&5). This implies that remaining fraction of Fe(II) ~12 µmolequivalents/g_clay, was sorbed onto clay edge sites, which at experimental pH have the largest affinity for iron but limited capacity.34,44 Indeed, experiments conducted at 10 µM Fe(II)
show that concentration of exchangeable cations before and after Fe sorption were nearly equal (within 1 standard deviation), indicating that sorption at edge sites preceded that of exchangeable sites (Table 2, columns 2&3). The release of exchangeable cations in the order of Ca>K>Mg from clay interlayer/exchangeable sites, is indicative that Fe(II) largely sorbed into clay sites and not on organic C species, whose presence in < 2 µm fraction of Hanford sediment is very low and ineffective in reducing NO$_3^-$ in prior work52,53. Overall, these results indicate that ~ 2/3 of Fe(II) was exchanged for interlayer and basal sites while ~ 1/3 of Fe(II) was likely sorbed into edge sites. We further investigated the actual partitioning of Fe(II), using a series of extractions (Table 2, columns 6-8), selected as follows. The monovalent cation Na$^+$ was selected to probe cation exchange reactions that could occur upon addition of Na$_2$CrO$_4$ during subsequent reactivity experiments. The divalent cations Ca$^{2+}$ and Mg$^{2+}$, and the complex cation NH$_4^+$ were selected based on their ability to exchange with Fe(II) sorbed onto clay basal planes. Finally, NaH$_2$PO$_4$ was chosen to target Fe(II) sorbed on edge sites.44 Despite the nature of extracting solutions, little or no Fe(II) was released into solution after 24h equilibration (Table 2) demonstrating that Fe(II) sorbed by the anoxic clay was not exchangeable. Even more perplexing, Fe L-edge XAS analysis revealed that no significant change in oxidation state of Fe in the clay occurred after exposure to 150 µM Fe(II) compared to the pristine anoxic clay (Figure 2B). This result likely indicates that, after sorption, the Fe(II) redox-active component was not localized at near surface within the ~5 nm probing depth of L-edge XAS but possibly stored within clay interiors (bulk). Even so, Fe(II) augmented clay was more reactive with Cr(VI) than the pristine anoxic clay, as is shown in subsequent reduction experiments.

Interaction with the anoxic clay augmented with Fe(II)aqueous. The reduction capacity of anoxic clay fraction augmented with sorbed Fe(II) was contingent on the type of the contaminant
and on the amount of $\text{Fe(II)}_{\text{SORBED}}$ (Figure 1,d-f). Compared to reduction by anoxic clay alone, the reduction of 2.5 μM and 10 μM Tc(VII) (data not shown) increased only marginally, by \sim2% for 10 μM Fe(II) added (Figure 1,d) and by 6% for 30μM Fe(II) added (data not shown). Likewise, reduction of 2.5 μM Cr(VI) increased by \sim3% for 10 μM Fe(II)$_{\text{SORBED}}$ (Figure 1,e). However, the redox capacity of anoxic clay augmented with 150 μM Fe(II) was enhanced considerably, as indicated by near complete reduction of 50 μM Cr(VI) at \sim50d (Figure 1f).

Solid post-reaction SEM/EDS mapping revealed formation of high Z-contrast micron-size discrete particles with a non-specific morphology, rich in Cr and Fe (Figure 3). Examination by FIB-TEM indicated that these particles were composed of individual 10-50 nm crystallites, with electron diffraction showing a ring pattern corresponding to an ensemble of randomly oriented crystallites (Figure S7). Despite substantial reduction, Cr concentration was too low to obtain a Cr L-edge XAS spectrum. The Fe L-edge XAS of the anoxic clay pre-equilibrated with 150μM Fe(II) before and after reaction with 50 μM Cr(VI) showed no change in Fe oxidation state (Figure 2,C), suggesting that same Fe(II)$_{\text{SORBED}}$ redox active pool that did not contribute to the XAS signal (Figure 2,B) participated in Cr(VI) reduction. Lastly, although Cr(VI) reduction was significantly enhanced by Fe(II)$_{\text{SORBED}}$, the kinetics were considerably slower, by a factor of about 5000, compared to homogeneous reduction by the equivalent aqueous Fe(II). Examination of homogeneous reduction product by FIB-TEM (Figure S8) revealed amorphous nanometer-sized Cr(III)-Fe(III) rich particles that from XAS analysis contain goethite-like Fe L-edge, Cr L-edge, and O K-edge features (Figure S9).

DISCUSSION

Removal of redox active contaminants in solution (in the absence of solubility-controlling solids) proceeds via two major pathways: i) adsorption into mineral surfaces; and ii) reduction reactions.
Specific to this study, removal of oxyanions by adsorption would be an essential pathway if mineral surface complexation sites are positively charged. At the experimental pH ~ 8.6 the positively charged sites in montmorillonite and kaolinite minerals, that dominate the <2 µm clay fraction (Table S7), would be absent or minimal resulting in negligible chromate adsorption.\(^{18,66}\) We further discuss the removal of oxyanions by reduction pathway.

Identification of reactive mineral phases for Tc(VII) and Cr(VI) reduction

Effect of minor Fe-sulfide component. The coexistence of very small quantities of Fe-sulfides, with the ferruginous montmorillonite, raises the question as to whether sulfides contribute to Tc(VII) and/or Cr(VI) reduction at the experimental pH.\(^{20,67-72}\) In fact, at pH values ranging from 5 to 8, slow Cr(VI) reduction kinetics are linked to pyrite while fast kinetics are linked to metastable mackinawite.\(^{68}\) Both solid phases possibly are present in the RTZ anoxic clay fraction (Figure S2). Another work\(^{20}\) with mixed mineral phases including ferruginous smectite, identified pyrite as the most reactive Fe(II)-bearing mineral for Tc(VII) reduction, even though pyrite was a minor component. Yet the present study reveals no correlation between contaminant reduction products and Fe-sulfide particulates (Figure 3b). Presumably, the first step in the oxidation of Fe-sulfides at circumneutral pH is the adsorption of oxidant molecules from solution onto the mineral surface.\(^{68,73,74}\) Redox reactions could be inhibited if surface coatings restrict diffusion and bonding of soluble oxidant moieties.\(^{75,76}\) Elemental SEM-EDS mapping shows Fe-sulfide particles nearly encapsulated within clay aggregates (Figure 3,b; Supplemental Information Figure S2); non-reactivity therefore could be due to lack of immediate interaction between oxyanions, Tc(VII) and Cr(VI), and Fe-sulfide surfaces.\(^{76,77}\)
Reduction of Tc(VII) and Cr(VI) by ferruginous montmorillonite. Ferruginous montmorillonite, with its considerable natively reduced state of Fe(II)/Fe_{TOTAL} \sim 0.23, is the primary Fe(II) bearing mineral and evidently the most redox reactive phase in the RTZ anoxic clay fraction. However, it displays insignificant redox reactivity with Tc(VII) and only partially reduces Cr(VI) (Figure 1,a-c). The difference in reactivity with Tc(VII) compared to Cr(VI) is likely related to the difference in redox potential between Cr(VI)/Cr(III) (E^o = 1.51V) and Tc(VII)/Tc(III) (E^o=0.746 V).78 Given the reduction results, we deduce that the redox potential of the naturally anoxic clay is within these bounds (0.746 < E^{RTZ\text{anoxic}} < 1.51). Furthermore, based on maximum reduction observed in 50 µM Cr(VI) experiment (Figure 1,c) we estimate the redox capacity of the anoxic clay in its pristine state to be \sim 3.3 µmol reducing-equivalents/g clay. This value is significantly lower than the expected 45 µmol reducing-equivalents/g clay based on 0.5 M HCl extraction of Fe(II)\textsubscript{LABILE} (Table 1). It suggests that except for Fe(II) in the outermost clay surface (Figure 2,A), the majority of Fe(II)\textsubscript{LABILE} does not participate in redox reactions.

These combined results demonstrate that native anoxic clay displays considerably lower redox reactivity than would be projected from studies with biologically or chemically reduced analogs.27,33-36,79,80 In such studies, model clays typically have undergone a single reduction event, except for one study wherein two cycles of bioreduction/reoxidation were applied to a model clay49, that likely resulted in a surplus of surface-bound Fe(II) in newly transformed mineral phases accelerating clay redox kinetics.33,80-82 In contrast, numerous redox cycles required to fully equilibrate structural Fe(II) content, can result in clay structural changes that decrease its redox reactivity.50 In the case of the RTZ stratum, it is reasonable to assume that clay minerals have been subjected to several redox cycles arising from seasonal water table
fluctuations, resulting in slow transformation to an Fe-clay containing more stable and less reactive structural Fe(II).

Fe(II) retention by RTZ anoxic clay. Fe(II) sorption by RTZ anoxic clay is characterized by fast kinetics and strong retention. Competitive desorption experiments show no release of aqueous Fe(II) from clay edge or basal/interlayer sites, suggesting that Fe(II) sorption is irreversible (Table 2). Observed irreversibility can perhaps be linked to heterogeneous oxidation/precipitation reactions, i.e., formation of Fe(OH)$_2$(s) despite undersaturation; or oxidation of Fe(II) to Fe(III) by trace O$_2$ despite rigorous anoxic conditions followed by Fe(OH)$_3$(s) precipitation. However, comparison of acid extractions at pH ~4 before and after Fe(II) sorption (Table S7) reveals only minor differences in Fe(II) or Fe(III) concentration. Furthermore, the absence of iron hydroxide precipitates is corroborated by Fe L-edge XAS data that show no alteration in clay Fe valence or site symmetry after Fe(II) uptake (Figure 2,B). Another hypothesis for sorption irreversibility could be related to Fe(II) adsorption-induced interfacial ET reactions, from highly reactive surface-bound Fe(II) to clay structural Fe(III).42,44,45,81 We suggested previously that Fe(II) initially adsorbs to clay edge sites, a suggestion corroborated by density functional theory (DFT) calculations, which demonstrate that edge sites are most energetically favorable for adsorption of Fe(II) in nontronite, particularly if the sites are Fe-O(H) terminated.48 Presumably, these termination sites are available in the RTZ clay, based on Fe substitution for Al in the clay octahedral sheet (Table 1). DFT calculations further predict that interfacial ET reactions proceed predominantly through the resulting Fe(II)-Fe(III)-O48 edge surface complexes and, albeit to a much lesser extent, ET contributions from Fe(II) in basal/interlayer sites across tetrahedral sheets have not been ruled out.44,81 Based on our observations, including Fe L-edge XAS data showing that the anoxic clay oxidation state remains
unchanged at near surface after Fe(II) uptake, we hypothesize that added Fe(II) sorbs in a form that is not preserved as redox reactive species at the outermost clay surface, due to sorption-induced ET reactions.

Linking Fe(II) retention to contaminant reduction.

Natural anoxic clay that contains 45 μmol/g Fe(II)\textsubscript{LABILE}, exhibits a finite reduction capacity for Tc(VII) and Cr(VI) that is only marginally increased by Fe(II) uptake (if Fe(II)\textsubscript{SORBED} is up to 8% of Fe(II)\textsubscript{LABILE}) (Figure 1). However, if Fe(II) added constitutes ~37% of Fe(II)\textsubscript{LABILE}, the extent of Cr(VI) reduction is enhanced significantly. Despite that FeCl\textsubscript{2} addition decreased the experimental pH, from pH 8.6 to 7.3 (Table 2), we argue that removal of Cr(VI) from solution was due to reduction and not due to enhancement in chromate adsorption at the lower pH. In fact, Cr(VI) adsorption on smectite is negligible above pH 6.518. Meanwhile adsorption by kaolinite at circumneutral pH 7 varies between 5 to 10%18,66 contingent on kaolinite pre-treatment and on solid to Cr(VI) ratio. In either case these values that cannot account for Cr(VI) removal from solution as indicated in Figure 1,f.

The observation that Fe(II) is non-exchangeable after sorption suggests that reduction of Cr(VI) is surface mediated. This assumption at first seems contradictory considering the presence of micron-sized discrete Cr-Fe particles, which could indicate homogeneous Cr(VI) reduction by Fe(II) exchanged in solution.26 However the appearance of isolated Cr-Fe particles as nanometer-sized crystallites contrasts the amorphous nature of precipitates formed homogeneously (Figure S6-S9) implying that reduction of Cr(VI) was mediated at localized sites, near or at the clay surface. We further speculate that the Cr-Fe nano-crystallites likely aggregated into larger particles during centrifugation, due to their higher solid density. This
reasoning is based on two observations i) absence of Cr-Fe discrete particles in non-centrifuged samples; and ii) a significant increase in clay matrix aggregation after centrifugation (Figure S10). Further, the difference between Cr-Fe crystallites in the heterogeneous system and the amorphous Cr(III)-Fe(III) precipitate in the homogenous system (Figure S7, S8) supports the surface-mediated mechanism.

Lastly, reduction of Cr(VI) by sorbed Fe(II) is slow, compared to literature-based precedent.40 The slow kinetics arguably could be related to Coulombic repulsion forces between the oxyanions, Tc(VII) and Cr(VI), and the negatively charged clay surface at slightly basic pH. Additionally, slow kinetics could be indicative of the sluggishness of extracting electron equivalents retained within clay interiors. Our analyses provide clear evidence that although surplus Fe(II) is not present as redox reactive species within the outermost few nanometers of clay surfaces likely due to ET, the reducing equivalents remain stored in the clay interiors. Addition of a strong oxidant in solution is a test of the ET reversibility of the resulting system and emphasizes a significant contrast between fast kinetics of electron uptake and sluggish kinetics of electron release by the native anoxic clay. The slow reduction kinetics thus may arise from diffusion-limited rates of electron hopping from the inner surface of clay minerals back to edge, or perhaps basal, sites where weakly interacting oxyanions can accept electrons. The findings here improve our understandings of RTZ’s geochemical redox kinetics with Tc(VII) and Cr(VI), which lead to better predict the mobility of single or multiple contaminants that infiltrate subsurface sediments and compete for available electrons in naturally reduced zones.84,85 The presence of clay minerals, with large sorption capacities in sediment composites, effects Fe(II) adsorption and leads to ET reactions within clay mineral that can renew the natural redox boundaries in poorly drained sediments and soils.86 We showed that in fact only a small
increase, between 0.4 to 5.6% of added/sorbed Fe(II) (over Fe(II)_{STRUCTURAL}) renewed the redox capacity of anoxic clay fraction with respect to chromate reduction. This type of redox capacity recharging by adsorbed Fe(II) is of particular significance in mitigating contaminant transport in systems with low total organic carbon or in environments deficient in bacterial colonies.\(^{86}\)

ENVIRONMENTAL IMPLICATIONS

The present study examines reduction of oxyanions, Tc(VII) and Cr(VI), by the anoxic clay fraction of a fine-grained sediment from an RTZ that is dominated mineralogically by a naturally reduced ferruginous montmorillonite. In doing so it fills an important knowledge gap pertaining to the real-world applicability of the many laboratory studies on model Fe-clay isolates motivated to understand natural system behavior. Minor amounts of Fe-sulfide that coexist in clay fraction appear not to participate in redox reactions likely because they are encapsulated within clay particles. Contaminant reduction kinetics, by the ferruginous montmorillonite at its native pH of 8.6, are sluggish, despite the significant reduced state of clay mineral (Fe(II)/Fe_{TOTAL} \approx 0.23) and expectations derived from model system studies. Reduction rate and extent are enhanced by sorption of aqueous Fe(II), if the concentration of Fe(II)_{SORBED} surpasses the finite reduction capacity of the native clay. Probable redox pathways, upon exposure to aqueous Fe(II) and then to redox active contaminants, appear to include: i) fast sorption induced ET from Fe(II)_{SORBED} to Fe(III)_{STRUCTURAL}; and ii) slow reverse ET induced by addition of a strong redox but weakly adsorbed species in solution e.g. Cr(VI), resulting in contaminant reduction.

For the Hanford site in particular, this study builds on previous RTZ work performed on the hosting coarser fraction\(^{20}\) and its partner whole sediment\(^{52}\) from a nearby location, by reinforcing
that faster Tc(VII) reduction kinetics reported therein are solely due to the contributions of other Fe(II)-rich minerals (siderite/pyrite) and not of Fe(II)-rich smectite. Present study establishes that the redox capacity of the clay component is significantly lower than that expected from studies with reduced model clays. This raises important issues regarding contaminant mobility in analogous sites that undergo numerous redox fluctuations, including the accuracy of contaminant retardation predictions based on laboratory studies of model systems that are chemically or biologically reduced in limited redox cycles.

ACKNOWLEDGEMENTS

This work is based upon research supported by the U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research (OBER), through its Subsurface Biogeochemical Research (SBR) Science Focus Area (SFA) program at Pacific Northwest National Laboratory. Microscopic analyses were performed in the William R. Wiley Environmental Molecular Science Laboratory (EMSL), a national user facility supported by the OBER and located at PNNL. XAS and XMCD measurements were performed at the Advance Light Source supported by the DOE Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. We thank Drew Latta (University of Iowa) for Mössbauer measurements.

ASSOCIATED CONTENT

Supporting Information

Description of analytical methods, which include sediment separation, total digestion, elemental analysis, XRD, microscopy, and EXAFS/XAS/Mössbauer spectroscopy and spectra analysis. Tables show sediment mineralogy, clay redox capacity, Mössbauer spectral fitting,
EXAFS /LCF fitting, and sediment acid extraction. Figures show pre-reaction XRD data, SEM mapping of anoxic clay, EXAFS, and Mössbauer spectra; post-reaction XAS data, TEM diffraction patterns of heterogeneous/homogeneous Cr-Fe reaction product, SEM micrographs of clay aggregates.

AUTHOR INFORMATION

Corresponding Author

*E-mail: odeta.qafoku@pnnl.gov. Tel: 509-371-6383
Table 1: Chemical analysis of $< 2 \mu m$ clay fractions of Hanford sediments collected from RTZ oxic and anoxic interface. Both horizons have same total Fe content, yet differ significantly by Fe(II) concentration. Calculated clay unit formula reveals that Fe and Mg substituted for Al in the octahedral sheet.

<table>
<thead>
<tr>
<th>RTZ Horizon</th>
<th>SA (m2/g)</th>
<th>Inorganic C (%)</th>
<th>CEC (meq/g)</th>
<th>Exchangable cations (mmol/g)</th>
<th>aFe$_{dig}$ speciation (mmol/g)</th>
<th>bFe(II)$_{HCl}$ (mmol/g)</th>
<th>cFe$_{ca}$ (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 – 18.3 m</td>
<td>141.8</td>
<td>< 0.02</td>
<td>0.811</td>
<td>0.261 0.08 0.027 0.016</td>
<td>0.062 1.281</td>
<td>n.a.</td>
<td>0.005</td>
</tr>
<tr>
<td>Reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6 – 18.9 m</td>
<td>104.7</td>
<td>0.0238</td>
<td>0.862</td>
<td>0.239 0.081 0.021 0.023</td>
<td>0.298 1.032</td>
<td>0.045</td>
<td>0.011</td>
</tr>
</tbody>
</table>

aFe digestion

b1h 0.5M HCl extractable Fe(II)

cCitrate/ascorbate extractable Fe

dApproximate structural formula for clay mineral after complete digestion of clay fraction in HF/H$_2$SO$_4$ mixture. The minor phase impurities identified by XRD (Figure S1) were taken into account prior to unit formula calculation.

Oxidized Clay: $\text{Ca}_{0.28} \text{K}_{0.29} \text{Mg}_{0.08} \text{Na}_{0.03} (\text{Al}_{2.17} \text{Fe}^{3+}_{1.21} \text{Fe}^{2+}_{0.06} \text{Mg}_{0.61}) (\text{Si}_{7.36} \text{Ti}_{0.09} \text{Al}_{0.55}) \text{O}_{20} (\text{OH})_{4}$

Reduced Clay: $\text{Ca}_{0.29} \text{K}_{0.29} \text{Mg}_{0.07} \text{Na}_{0.09} (\text{Al}_{2.34} \text{Fe}^{3+}_{0.87} \text{Fe}^{2+}_{0.25} \text{Mg}_{0.60}) (\text{Si}_{7.43} \text{Ti}_{0.12} \text{Al}_{0.45}) \text{O}_{20} (\text{OH})_{4}$
Figure 1: Tc(VII) and Cr(VI) reduction over time (~50d) by native (a,b,c) and Fe(II) (10µ and 150µM) amended anoxic clay fraction. Panels a,d show reduction kinetics of 2.5µM Tc(VII). Panels b,e and c,f respectively, show reduction kinetics of 2.5 µM and 50 µM Cr(VI). Equilibration pH varied between 8.7-8.9 for native anoxic clay fraction and between 7.6-8.0 for Fe(II)-amended anoxic clay fraction.
Figure 2: A. XAS spectra of native anoxic clay before reaction (black line) and post reaction with 50 µM Cr(VI) (red line), show a decrease in peak intensity on the low energy side of the Fe L_3 spectrum after reaction. B. XAS spectra of anoxic clay before and after exposure to 150 µM Fe(II) shows no signal change in the XAS spectra (detection limit 1-2%). C. XAS spectra of reduced Hanford clay exposed to Fe(II) before and after reaction with 50 µM Cr(VI) (no signal change was observed in the XAS spectra despite the significant Cr(VI) removal.)
Table 2: 150μM Fe(II) sorption is associated with release of exchangeable cations (Mg$^{2+}$, K$^+$, Ca$^{2+}$) from clay interlayer sites. Competitive desorption experiments (Column 6-8) show no release of sorbed Fe(II) from clay sites, suggesting that Fe(II) sorption is irreversible.

<table>
<thead>
<tr>
<th>Hanford Anoxic Clay</th>
<th>Suspension density: 9g/L</th>
<th>24h extractions post 150μM Fe$^{2+}$ sorptioncd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deionized H$_2$O</td>
<td>10μM Fe$^{2+}$, ½ h equilibration</td>
</tr>
<tr>
<td>Suspension pH</td>
<td>8.6</td>
<td>8.5</td>
</tr>
<tr>
<td>Fe$^{2+}$ (μmol/g)</td>
<td>b.d.b</td>
<td>0.03± 0.04</td>
</tr>
<tr>
<td>Total Fe (μmol/g)</td>
<td>0.67± 0.04</td>
<td>0.73± 0.12</td>
</tr>
<tr>
<td>aqMg$^{2+}$ (μmol/g)</td>
<td>2.31± 0.12</td>
<td>2.48± 0.10</td>
</tr>
<tr>
<td>aqCa$^{2+}$ (μmol/g)</td>
<td>5.76± 0.14</td>
<td>5.89± 0.28</td>
</tr>
<tr>
<td>aqK$^+$ (μmol/g)</td>
<td>6.66± 0.02</td>
<td>7.05± 0.08</td>
</tr>
<tr>
<td>aqNa$^+$ (μmol/g)</td>
<td>5.10± 0.05</td>
<td>5.30± 0.09</td>
</tr>
</tbody>
</table>

a0.150 mM Fe$^{2+}$ control experiments showed no oxidation of Fe$^{2+}$ during the course of experiment; b b.d. below detection with ferrozine method; c further extractions in 10mM NaCl, 1M CaCl$_2$ and 1M MgCl$_2$, showed no release of Fe$^{2+}$ after 24h equilibration; d Fe$^{2+}$ release in 1M NaH$_2$PO$_4$ was monitored at 18hours of equilibration; e at pH 5, the solution phase of 150μM Fe$^{2+}$ and 1M PO$_4^{3-}$, is undersaturated with respect to vivianite f. n/a non available.
Figure 3: 50 μM Cr(VI) post-reaction SEM-EDS compositional mappings of anoxic clay fraction amended with 150 μM Fe(II). Micrographs show high Z-contrast discrete particles rich in Cr and Fe (a,b) that were not found in natural anoxic clay fraction. Cr-Fe rich particles have irregular shapes and non-specific morphology. No association was found between Cr and Fe-sulfide particles after analyzing sixteen FeS₅ particulates. Clay minerals are depicted by light grey background.

57. Amonette , J.E.; Templeton, J.C. Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-Phenantholine. *Clays Clay Miner.* **1998**, *46*, 51-62

Supporting information for:

Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone

*Odeta Qafoku¹, Carolyn I. Pearce¹, Anke Neumann², Libor Kovarík³, Mengqiang Zhu⁴, Eugene S. Ilton¹, Mark E. Bowden³, Charles T. Resch¹, Bruce W. Arey³, Elke Arenholz⁵, Andrew R. Felmy⁶, Kevin M. Rosso¹

¹Pacific Northwest National Laboratory, P.O. Box 999, MS K8-96, Richland, Washington, 99352, U.S.A.

²Newcastle University, Newcastle, U.K.

³Environmental Molecular Sciences Laboratory, PNNL, U.S.A.

⁴University of Wyoming, Laramie, Wyoming, U.S.A.

⁵Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.

⁶Washington State University, Pullman Washington, U.S.A.

*Corresponding author: odeta.qafoku@pnnl.gov; Phone: + 509-371-6353; Fax: + 509-371-6354.

Number of pages 25
Number of Tables 7
Number of Figures 10

Qafoku et al., Supplemental Material, Page S1
S1. Fractionation to clay-sized particles. The sediment (~10 g) was added to deionized water (2 L) and thoroughly mixed. Top 15 cm of the slurry column was collected using a J-tube after the suspension was allowed to settle for 12 h during the first day and 8 h for the following 5 days. Each time after slurry collection, the suspension was replenished with de-ionized water to bring the volume to 2 L. All oxidized clay suspensions were combined, clear supernatant removed by pipetting to a final volume 1 L that was further concentrated by air-drying to a reduced volume of ~ 250 mL. The suspension was then freeze-dried. The anoxic clay suspensions were reduced to ~ 250 mL inside the N2-chamber by freezing/thawing procedure. Lastly, the anoxic clay suspension was freeze-dried in vessels containing O2-traps (Fe0/Fe2+ enclosed mixtures).

S2. X-ray diffraction (XRD). The X-ray source is a long-fine-focus ceramic X-ray tube with a Cu anode. Quantitative compositions were determined by whole-pattern Rietveld fitting of the XRD patterns using TOPAS v4.2 (Bruker AXS). Data were collected at a 2θ range of 0 to 100° with a scan step of 0.01°, acceleration voltage of 50 kV, and beam current of 40 mA. The clay fractions after the removal of amorphous or poorly crystalline iron oxides following ascorbic acid extraction were also examined by XRD.

S3. Oriented Specimens preparation. The oriented specimens were prepared by quickly vacuum filtering the K- and Mg- clay suspensions through a membrane filter (Millipore 0.45 μm). The filtrate was gently inverted onto an aluminum slide and the filter membrane was removed to leave a homogeneous clay layer. Clay slides were equilibrated overnight at 30% relative humidity (saturated MgCl2 solution) and at full humidity before and after solvation in ethylene glycol. The X-ray for basal reflections were collected by XRD over a 2θ range of 2 to 40° with 2 seconds intervals. Identification of the end-member of the dioctahedral smectite was resolved from preferred orientation XRD diffraction analysis. The large extent of expansion in the d001 spacing with increasing of the relative humidity (RH) and glycolation (Table S1) points toward montmorillonite as the dioctahedral smectite opposed to beidellite that would swell to a lesser degree due to layer charge located in the tetrahedral sheet.
S4. **Acid digestion method for determining RTZ clay fraction chemical composition.** To determine chemical composition, acid digestion of both the oxic and anoxic clay fractions was conducted in the N$_2$-chamber to avoid sample oxidation. All solutions were prepared with degassed and de-ionized water that was boiled under vacuum for 30 minutes followed by overnight N$_2$ sparging. The dissolved O$_2$ concentration in such solutions was measured to be <20 ppb. Ferrous ethylenediamine sulfate (standard grade) with known Fe(II)/(III) was used as the standard, while clay samples with known compositions such as smectite SWa-1, nontronite NAu-2 (Source Clays Repository of The Clay Minerals Society), and Panther Creek bentonite (American Colloid Company, Chicago, IL) were used as reference materials. After digestion, 1mL sample was fully reduced by addition of 1% Na-citrate and 1% (NH$_2$OH)$_2$·H$_2$SO$_4$ (10 mL). Concentration of Fe(II) in the original and reduced digests was measured by UV-vis (Shimadzu UV-2501 PC). Fe(III) content was calculated by difference. Total Fe, Si, Al, K, Mg, Ca, and Na concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES, Perkin Elmer Optima 2100).

S5. **Cation exchange capacity (CEC), exchangeable cations, and Fe components.** The type and concentration of exchangeable cations in clays was determined by extraction in 1M NH$_4$CH$_3$CO$_2$ at pH 71. CEC was determined by saturating the clay sample (50 mg) in a mixture of CH$_3$COONa (0.4 M), NaCl (0.1 M), and ethanol (60%) at pH 8.2 followed by extraction in Mg(NO$_3$)$_2$ (0.5 M)2. The most reactive Fe(II) pool was determined after extraction (1 h) of anoxic clay in HCl (0.5 M)3. Poorly crystalline Fe components were determined after equilibration (24 h) of clay powders in ascorbate-citrate solution at pH 8.0. Clay fractions were also analyzed for inorganic carbon (Shimadzu 5000a) and organic carbon (Elementar Vario TOC cube).

S6. **Extent of reduction of the RTZ oxidized clay fraction.** Increments of bioreduced AH$_2$DS (5 mM), generated using *S.*oneidensis strain MR-1 in 10mM PIPES buffer (pH 7)4 were added to 0.1 g clay suspension to produce a final volume of 10mL. After equilibration for 10 days in the dark the pH, Eh, solid Fe(II)/Fe(III), and aqueous AQDS/AH$_2$DS speciation were measured as follows. Suspension pH was determined using a combination glass electrode (Orion, ThermoScientific) while Eh was measured using a Pt band Broadley-James redox
To determine solid and aqueous species, aliquots of well mixed clay suspension (1.4 mL) were centrifuged at 13,000 rpm for 20 min. The precipitate was digested (see section 2.3) while the remaining solution was passed through pre-rinsed Whatman® VectaSpin 3 centrifuge tube filters (0.45 µm pore size). Fe(II) and Fe(III) content in the solid was determined as described in S4. Aqueous filtrate, transferred to 1 cm pathlength glass cuvette with an airtight Teflon seal screw top, was taken outside of N₂ anoxic chamber to measure AQDS/AH₂DS species with a Shimadzu UV-2501PC spectrometer. Absorbance data measured at 326 and 388 nm for respectively AQDS and AH₂DS were converted to concentration using the extinction coefficient (ε) values previously reported⁵. Lastly, a control sample without clay and with a known AH₂DS concentration was subjected to same experimental method described above to confirm that no sample oxidation occurred during the entire procedure.

S7. Extended X-ray absorption fine structure with linear combination fitting (EXAFS/LCF). For EXAFS analysis, each dried powder sample was mounted into a plastic cell sealed with Kapton window. Iron metal foil was measured concurrently with the samples for internal energy calibration (E₀ = 7112 eV). To prevent oxidation, reduced clay sample was mounted inside anaerobic glovebox prior to measurements, while Helium gas was purged into the sample chamber during the EXAFS data collection. Each scan took about 25 mins and 3 scans were collected per sample. Energy calibration and scan average were conducted using SixPack⁶ with the Athena program⁷ used for background removal, normalization, and extraction of EXAFS data. Sediment samples typically contain a mixture of multiple Fe species therefore EXAFS shell-by-shell fitting analysis is unable to identify and quantify each Fe species. LCF fitting was performed by a least-squares combination of EXAFS spectra of relevant Fe-bearing reference solids, including nontronite, vermiculite, Fe-(oxy)hydroxides, and ferrous compounds such as pyrite and siderite. For the oxic clay experimental spectra fitting indicates that vermiculite, nontronite, and ferrihydrite are required to ensure a good LCF fit (Figure 3). Known Fe species were tested for the LCF analysis, including Fe-bearing clay minerals, Fe oxides and oxyhydroxides, and ferrous iron compounds (pyrite and siderite). For the reduced clay only a combination of vermiculite and

Qafoku et al., Supplemental Material, Page S4
nontronite is needed to match the measured EXAFS spectrum although the fit was improved marginally by pyrite addition.

S8. **X-ray absorption spectroscopy (XAS) spectral fitting.** The spectral resolution for the XAS data was sufficient to fit two peaks in the Fe L_3 region equivalent to crystallographic sites for Fe d6Oh (~710 eV) and Fe d5 Oh (~712 eV). Powders were pressed into iridium foil attached to a copper measurement probe using silver paint to improve conductivity. To obtain the cation distribution over the Fe sites, the experimental XAS spectra were fitted by means of a nonlinear least-squares analysis, using the calculated spectra for each site8,9; the 10Dq crystal field parameters were taken as 1.4 eV for Fe Oh sites. The intensity ratio between the two L_3 peaks was not perfectly reproduced by the calculated spectra, with the intensity of the leading peak too low in the calculation9,10. Further experimental and spectrum fitting details can be seen elsewhere11.

S9. **Mössbauer spectroscopy and Spectral fitting.** Reduced clay samples for Mössbauer analysis were sealed between two pieces of Kapton tape to avoid oxidation. Mössbauer spectra center shift is reported with reference to α-Fe(0) foil. Voigt-based fitting12, as implemented in the software Recoil (Ottawa, Canada), was used to derive the Mössbauer parameters from the experimental data. The spectra were fit using the least number of spectral components possible. When adding an additional spectral component, the statistical significance of the additional phases was assessed by a) an improved overall goodness of fit (χ^2) for the case including the phase in question vs. excluding the component, and b) the obvious presence of an additional phase when fitting the spectrum without this phase. The Fe(III) spectral feature was fit with two individual components, with hyperfine values characteristic for octahedral Fe(III) (Table S3). While the quadrupole split value of the main component Oct$_1$ Fe(III) (76% of the spectral area) is consistent with octahedral Fe(III) in many phyllosilicates, the large quadrupole split observed for Oct$_2$ Fe(III) (20% of the spectral area) is often associated with octahedral Fe(III) in a distorted binding geometry13 and outside the range expected for quadrupole split values in iron sulfides such as pyrite14. In addition to the Fe(III) components, a third component consistent with octahedral Fe(II) had to be included in the fit (red doublet in Figure S5, A), which comprises almost 3.5% of the spectral
area and is consistent with digestion results that showed 4.6% Fe(II) in the oxic clay fraction. The presence of octahedral Fe(II) could be due to trioctahedral regions in the dioctahedral montmorillonite, that are stable even in an oxidized environment.

S10. Scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and focused ion beam transmission electron microscopy (FIB-TEM) sample preparation and analysis. SEM elemental distribution mapping and EDS compositional analysis were performed on thin sections prepared by mixing freeze dried clay (~100 mg) with epoxy resin transferred into a 10mm base mount. After degassing and curing overnight under vacuum the dried mount was cut and polished into 4mm thin sections. The thin sections were carbon coated (10 nm) prior to SEM analysis. For TEM analysis, we initially identified the area of interest using SEM. Then a Pt layer ~0.5 µm followed by C layer ~3 µm were deposited for protecting sample integrity during ion beam milling. Gallium ion beam was used to prepare an electron transparent wedge with < 100 nm in thickness which was mounted into a TEM Cu grid.

S11. Tc(VII) and Cr(VI) analysis from the reactivity with RTZ anoxic clay. Reduction experiments were conducted in glass serum bottles (30 mL) sealed with rubber stoppers and crimp seals. An aliquot of 6.16 mM Tc(VII) (NH₄TcO₄, Perking Elmer) or 6.16 mM Cr(VI) (Na₂CrO₄, Sigma Aldrich) was added to the well-suspended clay to achieve concentrations of 2.5 µM and 10 µM for Tc(VII) and, 2.5 µM and 50 µM for Cr(VI). Following addition, the suspensions were hand shaken periodically and at each sampling time. Samples were analyzed for Tc(VII) or Cr(VI) several times during the duration of the experiments and pH values were monitored periodically. Sampling consisted into removing 2 mL clay suspension and filtering through 0.22 µm PVDF syringe filters (Fisher Scientific). An 1 mL filtrate was mixed with 9mL PerkinElmer scintillation cocktail and the mixture was analyzed for Tc(VII) by counting 99Tc activity for 10 min in a liquid scintillation counter (Packard 2500TR). For 2.5 µM Cr(VI) experiments, 1mL filtrate was acidified and analyzed with ICP-OES for while for 50 µM Cr(VI) experiments 1 mL filtrate was mixed with diphenylcarbazide and the absorbance of Cr(VI) complex was measured at 540nm with UV-vis spectrometer¹⁴ (Shimadzu UV-2501 PC). Control experiments in absence of clay
confirmed no loss of Tc(VII) or Cr(VI) due to adsorption to glass bottles or syringe filters. At 2 months, post-reaction solids were separated by centrifugation, rinsed with deionized water, and freeze-dried or dried under N₂ for characterization (SEM/EDS, XMCD, FIB-TEM). To investigate homogeneous reduction kinetics 10 µM Tc(VII) was reacted with 30 µM Fe(II) and 50 µM Cr(VI) was reacted with 150 µM Fe(II) in absence of the solid phase.

REFERENCES:

Table S1. Mineralogical components and phase quantification determined by Rietveld refinement using external ZnO as a standard

<table>
<thead>
<tr>
<th>RTZ Horizon</th>
<th>Clay Size Fraction (% of whole sediment)</th>
<th>Clay minerals (%)</th>
<th>Minor phases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*Smectite</td>
<td>Kaolinite</td>
</tr>
<tr>
<td>Oxidized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 – 18.3 m</td>
<td>6.1</td>
<td>84</td>
<td>5</td>
</tr>
<tr>
<td>Reduced</td>
<td></td>
<td>8.6</td>
<td>82</td>
</tr>
<tr>
<td>18.6 – 18.9 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Smectite values are somewhat overestimated due to presence of unquantifiable amorphous component that appeared to be more significant in the anoxic fraction. Uncertainty for the amount of oxidized smectite is 5% and for the amount of reduced smectite is 6%, calculated based on the sum of uncertainties for remaining crystalline phases.
<table>
<thead>
<tr>
<th>added AH₂DS mmol/L</th>
<th>pH</th>
<th>pe</th>
<th>measured AQDS mmol/L</th>
<th>AH₂DS mmol/L</th>
<th>Fe(II) mmol/g clay</th>
<th>Fe(III) mmol/g clay</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6.90</td>
<td>4.02</td>
<td>0.49</td>
<td>0.01</td>
<td>0.099</td>
<td>1.168</td>
<td>7.8</td>
</tr>
<tr>
<td>1</td>
<td>6.85</td>
<td>-0.65</td>
<td>0.95</td>
<td>0.03</td>
<td>0.153</td>
<td>1.155</td>
<td>11.7</td>
</tr>
<tr>
<td>1.5</td>
<td>6.91</td>
<td>-1.94</td>
<td>1.40</td>
<td>0.09</td>
<td>0.224</td>
<td>1.076</td>
<td>17.3</td>
</tr>
<tr>
<td>2</td>
<td>6.93</td>
<td>-2.62</td>
<td>1.69</td>
<td>0.35</td>
<td>0.270</td>
<td>1.043</td>
<td>20.6</td>
</tr>
<tr>
<td>2.5</td>
<td>6.88</td>
<td>-2.89</td>
<td>1.74</td>
<td>0.79</td>
<td>0.278</td>
<td>0.989</td>
<td>21.9</td>
</tr>
<tr>
<td>3</td>
<td>6.90</td>
<td>-3.00</td>
<td>1.82</td>
<td>1.21</td>
<td>0.270</td>
<td>0.931</td>
<td>22.5</td>
</tr>
<tr>
<td>3.5</td>
<td>6.96</td>
<td>-3.10</td>
<td>1.85</td>
<td>1.59</td>
<td>0.287</td>
<td>0.958</td>
<td>23.1</td>
</tr>
<tr>
<td>4</td>
<td>6.97</td>
<td>-3.16</td>
<td>2.02</td>
<td>2.03</td>
<td>0.309</td>
<td>0.982</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Table S2. The extent of reduction of native oxic clay determined using anthraquinone 2,6 disulfonic acid (AQDS) as an electron mediator. Results show that maximum reducible Fe by AH₂DS in oxidized clay approximates to 24% Fe(II)/Fe total.
Table S3: Mössbauer parameters for fitted spectra of oxic and anoxic clay fractions from the RTZ, Hanford site. \(^a\)Center shift relative to \(\alpha\)-Fe(0). \(^b\)Quadrupole splitting. \(^c\)Standard deviation.

<table>
<thead>
<tr>
<th>Sample ((\chi^2))</th>
<th>component</th>
<th>CS(^a) (mm/s)</th>
<th>QS(^b)(σ)(^c) (mm/s)</th>
<th>area(σ)(^c) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxic, 290 K (0.81)</td>
<td>Oct(_1) Fe(III)</td>
<td>0.37</td>
<td>0.43(0.26)</td>
<td>76.9(0.7)</td>
</tr>
<tr>
<td></td>
<td>Oct(_2) Fe(III)</td>
<td>0.40</td>
<td>1.22(0.47)</td>
<td>19.1(0.6)</td>
</tr>
<tr>
<td></td>
<td>Fe(II)</td>
<td>1.05</td>
<td>2.59(0.23)</td>
<td>3.9(0.5)</td>
</tr>
<tr>
<td>Oxic, 14 K (0.87)</td>
<td>Oct(_1) Fe(III)</td>
<td>0.48</td>
<td>0.45(0.28)</td>
<td>76.0(0.5)</td>
</tr>
<tr>
<td></td>
<td>Oct(_2) Fe(III)</td>
<td>0.46</td>
<td>1.25(0.45)</td>
<td>20.6(0.4)</td>
</tr>
<tr>
<td></td>
<td>Fe(II)</td>
<td>1.26</td>
<td>2.71(0.26)</td>
<td>3.4(0.4)</td>
</tr>
<tr>
<td>Reduced, 18K (2.05)</td>
<td>Oct(_1) Fe(III)</td>
<td>0.47</td>
<td>0.47(0.28)</td>
<td>61.5(0.6)</td>
</tr>
<tr>
<td></td>
<td>Oct(_2) Fe(III)</td>
<td>0.48</td>
<td>1.34(0.55)</td>
<td>20.6(0.5)</td>
</tr>
<tr>
<td></td>
<td>Fe(II)</td>
<td>1.28</td>
<td>2.83(0.27)</td>
<td>17.9(0.4)</td>
</tr>
</tbody>
</table>
Table S4: The d-spacing of Mg- and K- saturated oxic clay displaying large swelling properties. The extent of expansion in the d_{001} spacing is indicative of montmorillonite as the dominant mineralogical component.

<table>
<thead>
<tr>
<th>Oxidized Clay</th>
<th>Random orientation RT*</th>
<th>Basal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d-spacing (Å)</td>
<td>30% RH**</td>
</tr>
<tr>
<td>Mgsat</td>
<td>14.42</td>
<td>15.28</td>
</tr>
<tr>
<td>Mgsat. glycolated</td>
<td>n.a.</td>
<td>16.75</td>
</tr>
<tr>
<td>Ksat</td>
<td>12.23</td>
<td>12.93</td>
</tr>
<tr>
<td>Ksat glycolated</td>
<td>n.a.</td>
<td>14.36</td>
</tr>
</tbody>
</table>

*Room temperature

**Relative Humidity
Table S5: Tabulation of Fe species tested in the EXAFS linear combination analysis and the linear combination fitting (LCF) in RTZ clay fractions

<table>
<thead>
<tr>
<th></th>
<th>Ferrihydrite</th>
<th>Vermiculite</th>
<th>Nau2Red10</th>
<th>R</th>
<th>Reduced χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OxiSed</td>
<td>0.16 ± 0.03</td>
<td>0.46 ± 0.03</td>
<td>0.38 ± 0.02</td>
<td>0.021</td>
<td>0.195</td>
</tr>
<tr>
<td>RedSed</td>
<td>---</td>
<td>0.68 ± 0.03</td>
<td>0.32 ± 0.02</td>
<td>0.032</td>
<td>0.250</td>
</tr>
</tbody>
</table>
Table S6: Tabulated EXAFS parameters for the nearest O-shell in RTZ clay fractions

<table>
<thead>
<tr>
<th>Samples</th>
<th>R</th>
<th>Shell</th>
<th>CN</th>
<th>Dist(Å)</th>
<th>σ^2</th>
<th>ΔE(ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermiculite</td>
<td>0.0007</td>
<td>Fe-O</td>
<td>5.3(3)</td>
<td>2.014(4)</td>
<td>0.009(1)</td>
<td>0.6(7)</td>
</tr>
<tr>
<td>Nau2Red10</td>
<td>0.0016</td>
<td>Fe-O</td>
<td>5.5(5)</td>
<td>2.005(6)</td>
<td>0.003(3)</td>
<td>0(1)</td>
</tr>
<tr>
<td>RedSed</td>
<td>0.0001</td>
<td>Fe-O</td>
<td>5(1)</td>
<td>2.02(2)</td>
<td>0.006(2)</td>
<td>0(3)</td>
</tr>
<tr>
<td>OxSed</td>
<td>0.0035</td>
<td>Fe-O</td>
<td>5.8(8)</td>
<td>2.00(1)</td>
<td>0.006(6)</td>
<td>2(2)</td>
</tr>
</tbody>
</table>
Table S7: HCl extraction at pH ~4 of RTZ anoxic clay before and after Fe(II) sorption showing insignificant changes in aqueous concentration after the Fe(II) uptake.

<table>
<thead>
<tr>
<th>RTZ Anoxic Clay fraction</th>
<th>24h HCl extraction<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>native</td>
</tr>
<tr>
<td></td>
<td>~ 4</td>
</tr>
<tr>
<td>pH</td>
<td>~ 4</td>
</tr>
<tr>
<td>Fe<sup>2+</sup> (µmol/g)</td>
<td>7.66</td>
</tr>
<tr>
<td>Total<sub>aq</sub> Fe (µmol/g)</td>
<td>8.01</td>
</tr>
<tr>
<td>Mg<sup>2+</sup> (µmol/g)</td>
<td>44.33</td>
</tr>
<tr>
<td>Ca<sup>2+</sup> (µmol/g)</td>
<td>114.36</td>
</tr>
<tr>
<td>K<sup>+</sup> (µmol/g)</td>
<td>25.54</td>
</tr>
<tr>
<td>Na<sup>+</sup> (µmol/g)</td>
<td>9.97</td>
</tr>
</tbody>
</table>

^aSuspension density 7.6g/L
Figure S1. The XRD pattern and mineralogy of clay size fraction (< 2 µm) separated by sedimentation from whole oxidized and reduced sediment. Reflection at 62° 2θ that correspond to d_{060} spacing is representative of a dioctahedral smectite. The external standard ZnO reflections are greyed out for clarification.
Figure S2. Backscattering SEM micrographs of RTZ anoxic clay showing high Z-contrast crystallites with cubic to octahedral equant morphologies incorporated into clay matrix. The particles were composed of Fe and S with a ratio varying from 1:1.6 to 1:1.1.
Figure S3. EXAFS spectra of the Fe species tested in the linear combination analysis and the linear combination fitting (LCF) analysis of Fe species in RTZ clay fractions.
Figure S4. Comparison of fitted EXAFS spectra to the experimental data for the nearest O shell.
Figure S5: Room temperature Fe L-edge XAS showing: (a) similarities between the oxidized RTZ clay fraction and the oxidized Fe-clay standard (nontronite NAu-2); (b) data and fit for oxic clay XAS with 0.06 Fe(II) and 1.27 Fe(III) in octahedral coordination; (c) similarities between the reduced RTZ clay fraction and the reduced Fe-clay standard (nontronite NAu-2), the spectra of reduced RTZ clay falls between that of 10% and 100% reduced NAu-2; and (d) data and fit for reduced clay XAS with 0.28 Fe(II) and 1.05 Fe(III) in octahedral coordination.
Figure S6: ^{57}Fe-Mössbauer spectra of oxic (A) and reduced (B) clay fractions from RTZ at Hanford site. The data were fitted with two octahedral Fe(III) clay mineral-bound components and one octahedral Fe(II) component, which occupies 3% and 18% of the spectral area for the oxic and reduced clay sample, respectively.
Figure S7. CrFe rich particles formed at ~50d post reaction of 50 µM Cr(VI) and anoxic clay pre-equilibrated with 150 µM Fe(II): (a) SEM left to right, compositional mapping; (b) FIB-TEM diffraction pattern of CrFe particles showing that the micron-size particle is composed of individual 10-50 nm crystallites, with electron diffraction displaying a ring pattern corresponding to random orientation of crystallites.
Figure S8. CrFe rich precipitates sampled at 30 minutes post-reaction between 50 μM Cr(VI) and 150 μM Fe(II) (in absence of solid phase). The SEM (a, b) and TEM (c, d) data reveal that the precipitate that formed during homogeneous reaction is of amorphous nature based on the diffused rings of TEM diffraction pattern.
Figure S9: XAS of CrFe rich precipitate sampled at 30 minute post-reaction between 50 μM Cr(VI) and 150 μM Fe(II): (a) Fe L-edge, (b) O K-edge and (c) Cr L-edge. The data reveal that solid formed during homogeneous precipitation is composed of goethite-like Cr(III)-Fe(III) rich particles.\(^\text{14}\)
Figure S10: Post reaction samples of RTZ anoxic clay pre-equilibrated with 150 µM Fe(II) and reacted for ~50d with 50 µM Cr(VI): (a) SEM micrograph of clay particles dried under N₂ (no centrifugation); (b, c) SEM micrograph of clay particles after centrifugation showing significant aggregation and formation of large clay particles.