
Copyright:
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:
https://doi.org/10.1016/j.rse.2017.09.018

Date deposited:
10/10/2017

Embargo release date:
26 September 2018

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence
Forest canopy structure and reflectance in humid tropical Borneo: a physically-based interpretation using spectral invariants

Hadi 1,*, Marion Pfeifer 2, Lauri Korhonen 3, Charlotte Wheeler 4, Miina Rautiainen 1,5

1 Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, 00076 Aalto, Finland
2 School of Biology, Newcastle University, Ridley Building 2, Newcastle Upon Tyne, NE1 7RU, UK
3 University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
4 Department of Geography, University College London, London WC1E 6BT, UK
5 Aalto University, School of Electrical Engineering, Department of Electronics and Nanoengineering, P.O. Box 15500, 00076 Aalto, Finland

*Corresponding author. Email: hadi.hadi@aalto.fi, tel. +358449362350
Abstract

South East Asia region is a triple hotspot of carbon, biodiversity, and forest degradation. The latter is leading to heterogeneous forest landscapes with predominant and varying intensity of human modification. Optical Earth observation data offers the most feasible and accessible means of mapping and monitoring the forest cover heterogeneity in this region. Further, difficulties in ground data collection in this region present the need for more robust physically-based interpretation of satellite data which extends beyond simple empirical correlations of reflectance data with forest characteristics. We present an application of forest reflectance parameterization based on spectral invariants in lowland humid tropical forests of Malaysian Borneo. Our framework combined field measurements (hemispherical photos) of canopy structure, radiative transfer modelling at leaf (PROSPECT) and canopy scale (PARAS), and assessments using satellite data (Landsat-7 Enhanced Thematic Mapper Plus, ETM+). Field data were collected representing a gradient of forest degradation within a large-scale experimental landscape. Results showed limited ability of Landsat-class satellites to uncover the full gradient of forest degradation in this biome due to similarity in canopy structure as characterized by effective canopy cover, leaf area index, and angular profile of canopy gap fraction. Our findings, however, showed strong expression of leaf optical properties at canopy level. This supports the feasibility to remotely measure canopy biochemistry in dense humid tropical rainforests at medium spatial resolution using freely available Landsat-class satellites, and forthcoming hyperspectral satellite missions.

Keywords: rainforest, South East Asia, degradation gradient, reflectance model, Landsat, canopy cover, leaf area index
1. Introduction

Central to the prescribed solutions in the 2015 historical Paris Climate Agreement (United Nations Framework Convention on Climate Change, 2015) are activities relating to reducing emissions from deforestation and forest degradation (REDD+), the second largest source of global CO$_2$ emission after burning of fossil fuels (Van der Werf et al., 2009). Tropical regions are well known deforestation hotspots (Hansen et al., 2013; Rudel et al., 2009). It has been estimated that tropical forest conservation and restoration could provide half of the target net emission reduction (Houghton et al., 2015). In particular, the humid tropical rainforests of insular South East Asia region, which are among the world’s most carbon-rich forests (Avitabile et al., 2016; Sullivan et al., 2017), are also historically and presently under the largest threat of deforestation and forest degradation (Gaveau et al., 2016; Koh et al., 2011; Margono et al., 2014). This region’s forests have been shown to have higher aboveground biomass (Slik et al., 2010) and deforestation rate (Margono et al., 2014) than the Amazonian.

Most developing countries, which are home to the majority of the world’s tropical forests, lack the financial capacity to undertake regular ground-based national forest inventory and monitoring. Remote sensing using the suite of operational passive optical Earth observation (EO) satellites is presently the most viable technology to map and monitor (also in near-real-time) tropical forests structure in operational manner (DeVries et al., 2015; MacDicken, 2015; Popkin, 2016). As an example, in Brazilian Amazon several operational forest monitoring systems based on Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) satellites are in place (Wheeler et al., 2014). Furthermore, the recent launch of new generation optical satellite Sentinel 2 (A and B), with unprecedented spatial (10 meters in visible bands) and temporal (5 day revisit time at the equator) resolution among its class, would potentially provide improved tropical forests mapping and monitoring capabilities in the near future.
Additionally, synergic use of both Sentinel 2 and Landsat is currently under development (see https://hls.gsfc.nasa.gov/) and when ready, will further increase the temporal resolution and consequently improve cloud-free data availability in tropical regions. Other types of remote sensing such as active radar and lidar are also actively developed, but their operational use for large area mapping and monitoring in tropical regions is not foreseeable in the near future. In addition to data availability, processing and interpretation (e.g., visual) of radar and lidar data can be technically more demanding, and thus not as accessible as optical data to local management staff in the tropics.

Optical EO data has been used in South East Asian rainforests primarily to map deforestation (Hansen et al., 2013; Margono et al., 2014) and to discriminate basic forest classes i.e., primary (intact) and disturbed (logged) forests (Wijedasa et al., 2012) or, with visual interpretation, forest and oil palm (Carlson et al., 2012; Gaveau et al., 2016). Beyond classification-based analysis, optical EO data has been used, to a smaller extent, in the estimation of forest above ground biomass (Basuki et al., 2012; Langner et al., 2012; Pfeifer et al., 2016; Propastin, 2013), fractional vegetation cover and leaf area index (Pfeifer et al., 2016; Propastin and Erasmi, 2010). The latter type of analysis estimating forest structure as a continuous variable is particularly important to uncover the spatial heterogeneity of modern forest landscape in insular South East Asia, the result of widespread forest degradation (i.e. the second “D” in REDD+).

Man-made degradation processes such as selective logging at different intensities alter canopy structure through partial sub-canopy removal of tree cover. Canopy structure refers to the amount and organization of phytoelement in the canopy (Welles and Cohen, 1996). The amount is typically characterized with canopy cover or leaf area index. A recent study in Sabah, Borneo using airborne lidar data showed canopy cover, or its complementary canopy gap fraction, to
be closely related to basal area, which improved aboveground carbon density estimation (Coomes et al., 2017). The phytolement organization is mainly observed as the different degrees of foliage clumping in the canopy. The clumping in turn influences canopy gap fraction in different directions as trees organize their branches and leaves to capture lights, while co-occupying the canopy space with other trees. Information on canopy structure (amount and organization) is essential on one hand to characterize the light (radiation) regime within the forest (Ross, 1981) as well as forest microclimate (Hardwick et al., 2015), and on the other hand for interpretation of remotely sensed forest reflectance (Nilson, 1999). Directional gap fraction determines how much light gets intercepted by the canopy, how much gets transmitted to forest floor, and how much is scattered escaping the canopy towards the sensor. Further, the angular profile of gap fraction allows to quantify the daily integration of light interception as sun zenith angle changes. To our knowledge, the gap fraction profiles of South East Asia rainforest canopy, especially the human-modified forest areas, have not been reported in previous studies.

Estimation of forest structural variables in humid tropical South East Asia using optical satellite data has been primarily done by empirical statistical modelling with spectral vegetation indices, and semi-empirical spectral mixture analysis. Although simple to implement, empirical methods are at best locally accurate i.e., they are site and sensor specific. In other words, empirical predictive models cannot be easily transferred to other forest areas, especially in the highly heterogeneous tropical forest environment (Foody et al., 2003). More robust physically-based remote sensing interpretation methods are needed for large scale extrapolation mapping, especially for complex tropical forests where sizable field data collection is challenging. Equally importantly, physically-based models also provide mechanistic understanding of factors driving forest reflectance (Verstraete et al., 1996), another missing knowledge concerning South East Asian tropical forest. Unsurprisingly, physically-based models are the
preferred retrieval approach in operational satellite-based global vegetation parameters products, such as the MODIS LAI/FPAR (Myneni et al., 2002) and SPOT-VEGETATION GEOV1 LAI/FAPAR/FCOVER (Baret et al., 2013). However, physically-based approaches are very rarely applied in tropical forest (see e.g., application review of the widely-used PROSAIL model in Jacquemoud et al., 2009).

A small number of attempts on physically-based forest reflectance modelling have been carried out within tropical forest context. Asner and Martin (2008) applied canopy reflectance model designed for high resolution (< 3 m) airborne hyperspectral imaging data to upscale measured leaf optical properties to canopy level in Australian rainforests, using canopy structural variations which are typical in humid tropical forests as identified from literature sources. Their aim was to investigate the impact of the prescribed canopy structural properties on leaf constituents (e.g., pigments) retrieval from canopy spectra. In another study Féret and Asner (2011a) upscaled leaf optical properties (simulated using measured leaf chemicals and a leaf radiative transfer model) to canopy level (using literature values of canopy structural variations) in humid forests of Hawaii to investigate species classification from canopy spectra. To our knowledge, application of physically-based forest reflectance models at the spatial and spectral resolution of currently operational Landsat-class sensors has not been demonstrated. Furthermore, the results of reflectance modelling in previous studies were not always validated with satellite data.

The limited application of physically-based forest reflectance models in the tropical region owes to a large extent the many model parameters not all readily measured in the field. For example, the SLC (Soil-Leaf-Canopy) or 4SAIL2 model (Verhoef and Bach, 2007) requires as input, among others, the leaf angle distribution parameters and tree shape factor which are likely
species specific and thus difficult to parameterize in tropical forest with high species diversity. Complex reflectance models require a large set of independent free parameters (state variables), which in turn require prior expert guesses or ancillary information of their values. Due to this, complex reflectance models are more likely to not have a unique and ecologically meaningful inversion solution (i.e., different combination of inputs producing similar forest reflectance), and are much more computationally expensive (Verstraete et al., 1996). To this end, the recently introduced forest bidirectional reflectance factor (BRF) parameterization based on the novel spectral invariants theory (Stenberg et al., 2016) called the PARAS model (Rautiainen and Stenberg, 2005) is particularly advantageous within tropical forest context owing to its alternative simple parameterization requiring minimum expert guesses for the inputs. An additional advantage of PARAS forest reflectance parameterization lies in its ability to explicitly and intuitively decouple the contribution to canopy-level BRF from phytoelement (e.g., leaf) optical properties, and from canopy structure (Knyazikhin et al., 2013; Latorre-Carmona et al., 2014) at different scales of phytoelement organizations (Schull et al., 2011). The leaf-level contribution i.e. the extent that leaf optical properties are expressed at the remotely sensed canopy scale is especially of interest within the context of tropical forests as they serve as a proxy to leaf biochemistry (Asner and Martin, 2016). To date the use of spectral invariants in modelling canopy BRF has been demonstrated in a wide range of forest in temperate and boreal region (Stenberg et al., 2016). The method is operationally used in the MODIS global leaf area index (LAI) algorithm (Myneni et al., 2002) and for the ongoing development of a Landsat-based global LAI product (Ganguly et al., 2012).

In this study, we present the first application and validation of physically-based forest canopy BRF parameterization based on spectral invariants (PARAS model) in humid tropical forests of insular South East Asia. We used field measurements of canopy structure by the means of
hemispherical photography from a forest fragmentation landscape in Malaysian Borneo, providing a dataset encompassing forests which have experienced varying degrees of degradation, as well as oil palm plantations. We first examined canopy structure of the different forest degradation classes, and their relationship with canopy BRF (surface reflectance) recorded by Landsat-7 Enhanced Thematic Mapper Plus (ETM+). Second, we modelled BRF of the closed-canopy forest plots at the operational Landsat-class spatial (i.e., stand level of 30 × 30 m) and (multi)spectral resolution using PARAS. Third, we subsequently assessed the modelled BRF against satellite BRF via root mean squared difference and analyzed the variability in BRF induced by variability in leaf optical properties. Fourth, we applied a global sensitivity analysis to the PARAS model in order to simultaneously quantify the relative contribution from leaf optical properties and canopy structure to remotely sensed canopy-level BRF.

2. Materials and method

2.1. Field measurements
Field measurements of canopy structure were carried out in the Stability of Altered Forest Ecosystem (SAFE) forest degradation landscape located in Sabah, lowland Malaysian Borneo (Ewers et al., 2011; Figure 1a). The climate at the equatorial SAFE landscape is aseasonal and no dry months were recorded between September 2011 and January 2013 (Pfeifer et al., 2016). The SAFE project area consists of unlogged forest (in the Maliau Basin Conservation Area), logged forest, and oil palm plantation. Field measurement plots were established in sampling blocks (Figure 1b), namely primary old growth forest (blocks OG1 and OG2), lightly logged forests in a virgin jungle reserve and multi-use forest (VJR and OG3), twice logged forests in mount Louisa Forest reserve (LFE, LF1, LF2, and LF3), salvage logged forest (A, B, C, D, E, and F), and oil palm plantation (OP1, OP2, and OP3). Canopy hemispherical photos were
acquired in 172 permanent sampling plots (25 × 25 m, 12–13 photos per plot) following standard protocols as implemented in the Global LAI project (https://globallai.files.wordpress.com/2015/09/pfeifer_2015_protocol_lai_measurements_v3-0.pdf). The combined survey area covered more than two hectares. The plots were located avoiding slopes and preserving distance from forest edges. Canopy photographs were taken between August 2012 and August 2013. The camera system used was Canon EOS 5D Mark II with sigma 8mm f3.5 EX DG circular fisheye lens. The photos were acquired 1 m above ground level, the upper margin facing northward. As large canopy openings were not often available on site, we primarily relied on exposure adjustment in reference to the measured in-stand automatic exposure (Pfeifer et al., 2014, 2012; Zhang et al., 2005). At each sampling point, three photos were taken at three different exposures i.e., 0 (Auto), -1 (Underexposure), and +1 (Overexposure). We then visually selected the photos which gave the best contrast between the canopy and background sky.

Figure 1. Map of study area. (a) Insular South East Asia showing Borneo island and SAFE project site (blue rectangle, not to scale). Land boundaries are from www.thematicmapping.org provided by Bjorn Sandvik. Areas in red show Landsat-derived forest loss during 2000-2012. (b) Distribution of vegetation plots used in this study. The label shows their respective sampling blocks explained in text. Background image is Landsat 7 cloud-free composite (SWIR1, NIR, red) ca. 2012. The red areas are forest loss as in (a). Forest loss map and Landsat image
composite obtained from Hansen et al. (2013, data source Hansen/UMD/Google/USGS/NASA version 1).

Due to limited availability of cloud- and haze-free satellite observations, as well as gaps in image due to scan line failure of ETM+ sensor used, 88 plots could be used in this study (Figure 1b). Our plots covered both forest and plantation biomes. The forest overstory was dominated by tree species belonging to the *Dipterocarpaceae* family. The plots were classified into six forest classes based on degradation status: primary forest, lightly logged forest, twice logged forest, salvage logged forest stage 1, salvage logged forest stage 2, and oil palm plantation. The forest classes are described in Table 1. Figure A1 in Appendix A shows example hemispherical photos of the different forest classes.

Table 1. Description of forest degradation classes.

<table>
<thead>
<tr>
<th>Forest classes</th>
<th>No. of plots</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>5</td>
<td>Mature and undisturbed forest.</td>
</tr>
<tr>
<td>Lightly logged</td>
<td>8</td>
<td>Lightly or illegally logged forests inside multi-use or protected areas.</td>
</tr>
<tr>
<td>Twice logged</td>
<td>14</td>
<td>Forest area that has been selectively logged once during 1970s, followed by a second logging round from the late 1990s to the early 2000s.</td>
</tr>
<tr>
<td>Salvage logged stage 1</td>
<td>26</td>
<td>Forest area that has been logged with lifted restrictions on type of tree, size limits and volume in advance of outright conversion to a new land use type such as agriculture.</td>
</tr>
<tr>
<td>Salvage logged stage 2</td>
<td>23</td>
<td>Salvage logged forests which were being converted to fragmented agricultural landscape (“poor” and “very poor” forest quality, see Ewers et al., 2011).</td>
</tr>
<tr>
<td>Oil palm</td>
<td>13</td>
<td>Managed oil palm plantation planted in 2000 (2 plots) and 2006 (11 plots).</td>
</tr>
</tbody>
</table>
2.2. Satellite data

We used the available Landsat-7 Enhanced Thematic Mapper Plus (ETM+) surface reflectance (i.e., bidirectional reflectance factor, BRF) Climate Data Record (US Geological Survey, 2016) obtained from the USGS on-demand processing system EROS Science Processing Architecture (ESPA, https://espa.cr.usgs.gov/). The surface reflectance product is processed from Level 1 radiometric, geometric, and terrain corrected (L1T) top-of-atmosphere reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) processing (Masek et al., 2006). The ETM+ sensor records reflected radiance in seven (7) spectral bands namely blue (450 – 520 nm), green (520 – 600 nm), red (630 – 690 nm), near-infrared (NIR, 770 – 900 nm), shortwave-infrared 1 (SWIR1, 1550 – 1750 nm), and shortwave-infrared 2 (SWIR2, 2090 – 2350 nm). These bands have 30 m spatial resolution.

Three image scenes from the same period as field measurements were used (Table 2). After filtering out all pixels not flagged as ‘clear’ (i.e. cloud, cloud-shadow, water pixels) in the ‘cfmask’ layer provided with the SR product, we further filtered out hazy pixels using the accompanying atmosphere opacity layer (values > 0.3 are interpreted as hazy observation, Claverie et al., 2015). This ensured only pixels with as minimum atmospheric noise residual as possible were used, considering forest fire is a recurring event in the surrounding region. BRFs were then extracted from the pixel corresponding to field plot location using “raster” library (Hijmans, 2016) in R statistical environment (R Core Team, 2016).

Table 2. Satellite data (Landsat-7 ETM+).

<table>
<thead>
<tr>
<th>Field date of used plots</th>
<th>Image date</th>
<th>Scene ID</th>
<th>Sun zenith angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2012 – Dec 2012</td>
<td>27 Aug 2012</td>
<td>LE71170572012240EDC00</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>1 Dec 2012</td>
<td>LE71170572012336EDC00</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td>17 Dec 2012</td>
<td>LE71170572012352EDC00</td>
<td>37.8</td>
</tr>
</tbody>
</table>
2.3. Estimation of canopy structural variables from hemispherical photos

The digital hemispherical photos were thresholded (i.e., classified into canopy vs. background sky pixels) using the global clustering method (Ridler and Calvard, 1978) as recommended in Jonckheere et al. (2005). We rigorously checked each classified (binary) image visually, and noticed that six plots had 1-3 photos excluded due to severe misclassification or sunfleck problem. Next we calculated annular canopy gap fraction in five view zenith rings (0 – 15°, 15 – 30°, 30 – 45°, 45 – 60°, and 60 – 75°) pertaining to the LAI-2000 Plant Canopy Analyzer (Li-Cor Inc., Nebraska, USA) instrument. Effective leaf area index, LAI_{eff} (Chen et al., 1991) was calculated from the gap fraction using the method employed by LAI-2000 (Welles and Norman, 1991). We note that the LAI-2000 algorithm may partially account for clumping with the Lang and Xiang (1986) logarithmic gap averaging method, as shown from the extensive database from other vegetation biomes compiled by Ryu et al. (2010). We also calculated effective canopy cover, ECC (Rautiainen et al., 2005) approximated as one minus canopy gap fraction in the near-vertical direction i.e. first ring (0 – 15°), and angular canopy closure over 0 – 75° view zenith angles (rings 1 – 5), ACC_{75} (Korhonen et al., 2011). The photos were processed using a self-written Matlab (MathWorks) routine (Korhonen et al., 2011).

LAI_{eff} assumes random spatial distribution of canopy phytoelements. To correct for natural non-randomness (clumping) of canopy elements i.e., to obtain ‘true’ leaf area index (LAI_{true}), we calculated canopy clumping index (CI) so that LAI_{true} = LAI_{eff} / CI. CI ranges from 0 to 1, the smaller value indicates higher degree of clumping. CI was calculated using the method by Chen and Cihlar (1995) and Leblanc (2002) which utilizes both gap fraction and gap size information. This method is advantageous over the Lang and Xiang (1986) method in that it does not assume spatial distribution pattern of foliage clumps and is therefore suitable for all types of
canopy. In principle, it computed CI by comparing the measured accumulated canopy gap
fraction against the gap fraction for a theoretical canopy with the same LAI$_{eff}$ but with randomly
distributed foliage elements (i.e., removing large canopy gaps not theoretically possible in a
random canopy). We used the freeware CIMES with batch processing (Gonsamo et al., 2011,
http://jmnw.free.fr/) to calculate CI. Note that the above estimated LAI strictly speaking refers
to total plant area index as it included both foliage and woody (non-photosynthetic) canopy
elements. We did not apply a woody area correction as it was not measured. Measurements of
woody area index require direct harvest (which was not practically possible in our study sites)
and there are no reported values in the literature for the studied forest area and tree family.

2.4. Modelling forest reflectance

In the PARAS model, photon-vegetation interactions within forest canopy medium are
modelled using a single spectrally invariant parameter called the photon recollision probability
p (Smolander and Stenberg, 2005) which is a summary descriptor of canopy structure.
Importantly, the p parameter can be estimated mainly from canopy gap fraction, which in turn
can be relatively quickly measured with digital hemispherical (fisheye) camera or LAI-2000
Plant Canopy Analyzer. The simple analytical formulation of the PARAS model provides
another advantage in terms of computational speed, allowing simulations for a large number of
scenarios (e.g., forest structure and species). Despite the simplification, in its previous
applications PARAS model has been shown to achieve similar or even better accuracy
compared to more complex reflectance models, such as DART (Gastellu-Etchegorry, 1996) for
estimating spruce leaf chlorophyll content (Yáñez-rausell et al., 2015), and FRT (Kuusk and
Nilson, 2000) for estimating coniferous forest total shortwave albedo (Stenberg et al., 2013;
Kuusinen et al., 2014).
In the PARAS model (Rautiainen and Stenberg, 2005), the canopy-level BRF is calculated as the sum of BRF originating from the ground, and canopy components:

\[
\text{BRF} = \text{cgf}(\theta_{\text{view}}) \cdot \text{cgf}(\theta_{\text{sun}}) \cdot \rho_{\text{ground}} + Q \cdot i_0(\theta_{\text{sun}}) \cdot \omega_C
\]

(1)

The first term in Eq. (1) represents the ground contribution to canopy BRF. \(\text{cgf}(\theta_{\text{view}})\) and \(\text{cgf}(\theta_{\text{sun}})\) are canopy gap fraction (direct, uncollided transmittance) in, respectively, sensor viewing \(\theta_{\text{view}}\) and Sun illumination \(\theta_{\text{sun}}\) zenith angles. The bidirectional gap probability, that is the probability of the sensor viewing sunlit ground, is thus \(\text{cgf}(\theta_{\text{view}}) \times \text{cgf}(\theta_{\text{sun}})\). \(\rho_{\text{ground}}\) is reflectance factor of ground. See Table 3 for complete formulae description.

The second term in Eq. (1) represents the BRF contribution from the canopy. \(i_0(\theta_{\text{sun}})\) is canopy direct (zero order) interceptance in Sun direction \(\left(i_0(\theta_{\text{sun}}) = 1 - \text{cgf}(\theta_{\text{sun}})\right)\). \(\omega_C\) is the canopy scattering coefficient linked to leaf single scattering albedo \(\omega_L\) through photon recollision probability \(p\). \(p\) is defined as the mean probability that a photon scattered by a leaf (phytolement) within the canopy will again interact with another leaf within (instead of escaping) the canopy. \(Q\) is the fraction of radiation scattered upwards from the canopy towards the sensor.

Table 3. List of inputs and formulas used to simulate forest BRF with the PARAS model.

<table>
<thead>
<tr>
<th>Model inputs</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy gap fraction in sun illumination direction</td>
<td>(\theta_{\text{sun}}) is identified from satellite image metadata i.e., sun zenith angle in Table 2; (\text{cgf}(\theta_{\text{sun}})) was linearly interpolated based on (\text{cgf}(\theta_{0-15^\circ})) and (\text{cgf}(\theta_{15-30^\circ})).</td>
</tr>
<tr>
<td>(\text{cgf}(\theta_{\text{sun}}))</td>
<td></td>
</tr>
<tr>
<td>Canopy direct (zero order) interceptance ((i_0(\theta_{\text{sun}})))</td>
<td>(i_0(\theta_{\text{sun}}) = 1 - \text{cgf}(\theta_{\text{sun}}).)</td>
</tr>
</tbody>
</table>
Canopy gap fraction in sensor view direction ($\text{cgf}(\theta_{\text{view}})$)
- Nadir view direction for Landsat i.e. $\text{cgf}(\theta_{\text{view}}) = \text{cgf}(\theta_{0-15^\circ})$.

Diffuse non-interceptance (DIFN)
- $\text{DIFN} = 0.066 \text{cgf}(\theta_{0-15^\circ}) + 0.189 \text{cgf}(\theta_{15-30^\circ}) + 0.247 \text{cgf}(\theta_{30-45^\circ}) + 0.249 \text{cgf}(\theta_{45-60^\circ}) + 0.249 \text{cgf}(\theta_{60-75^\circ})$; based on LAI-2000 method.

Effective leaf area index (LAI$_{\text{eff}}$)
- Calculated from annular gap fractions estimated from hemispherical photos using the LAI-2000 method.

Canopy clumping index (CI)
- Gap size distribution method of Chen and Cihlar (1995). Calculated using CIMES software (Gonsamo et al., 2011), routine LAIMIL.

True leaf area index (LAI$_{\text{true}}$)
- $\text{LAI}_{\text{true}} = \frac{\text{LAI}_{\text{eff}}}{\text{CI}}$.

Average photon recollision probability (p)
- $p = 1 - \frac{1 - \text{DIFN}}{\text{LAI}_{\text{true}}}$; Stenberg (2007).

Leaf single scattering albedo (ω_L)
- Albedo = reflectance + transmittance. Simulated using PROSPECT-4 leaf reflectance and transmittance model (Feret et al., 2008) and published leaf constituents measurements of dominant tree family Dipterocarpaceae (Asner et al., 2012).

Fraction of upward scattered radiation (Q)
- $Q = \frac{1}{2} + \frac{q}{2} \left(\frac{1 - p}{1 - p q \omega_L} \right)$; asymmetry parameter
- $q = 1 - e^{-0.1684 \text{LAI}_{\text{true}}}$; Mõttus & Stenberg (2008).

Canopy scattering coefficient (ω_C)
- $\omega_C = \omega_L \frac{1 - p}{1 - p q \omega_L}$; Smolander and Stenberg (2005).

Ground reflectance (ρ_{ground})
- Obtained from ISRIC world soil information database (plot code ID 15).

For the forest reflectance modelling, canopy structural inputs were obtained from field measurements with digital hemispherical photography, while ground and leaf spectral inputs were obtained from literature (Table 3). Ground reflectance ρ_{ground} was obtained from the available ISRIC (International Soil Reference and Information Center) world soil information database, global VNIR soil spectral library (World Agroforestry Center). Soil reflectance spectra collected in Bukit Raya Nature Reserve primary forest, Central Kalimantan (Indonesian...
Borneo) was used (Van Reuler, 1987 in Bruijnzeel et al., 1995). The spectra (6 samples) were measured from 350 to 2500 nm at 10 nm interval. The spectra (Figure 2) were resampled to Landsat-7 ETM+ bands using ETM+ sensor response function.

Figure 2. Measured forest soil reflectance (minimum, mean, maximum) in Borneo.

Leaf albedo (ω_L) for forest plots was modelled using the leaf reflectance and transmittance model PROSPECT version 4 (Jacquemoud et al., 2009) using as inputs the measured leaf constituents of family *Dipterocarpaceae* collected at Lambir Hills National Park, Sarawak, Borneo (Asner et al., 2012). *Dipterocarpacea* is the dominant family, and largely accounts for leaf biochemical diversity in the area (Asner et al., 2012). Unfortunately, we could not carry out modelling for oil palm plots due to unavailability of needed leaf optical or biochemical constituents data.

PROSPECT models leaf directional-hemispherical reflectance ($R_{mod}(\lambda)$) and transmittance ($T_{mod}(\lambda)$) over the optical domain from 400 to 2500 nm at 1 nm interval. PROSPECT-4 requires as input chlorophyll a and b content (C_{ab}), equivalent water thickness (EWT or C_w), dry matter content (C_m, equals leaf mass per area, LMA) and leaf mesophyll structure N:
\[[R_{\text{mod}}(\lambda), T_{\text{mod}}(\lambda)] = \text{PROSPECT-4} \ (N, C_{\text{ab}}, C_{\text{m}}, C_{\text{w}}) \] (2)

We converted the mean leaf constituents reported in Asner et al. (2012) on per mass (concentration) basis, to per area (content) basis required by PROSPECT model:

\[C_{\text{ab}} (\mu g \ cm^{-2}) = C_{\text{ab}} (mg \ g^{-1}) \times C_{\text{m}} (g \ m^{-2}) \times 0.1; \]
\[C_{\text{m}} (g \ cm^{-2}) = C_{\text{m}} (g \ m^{-2}) \times 0.0001; \]
\[C_{\text{w}} (g \ cm^{-2}) = C_{\text{m}} (g \ cm^{-2}) \times C_{\text{w}} (% \ fresh \ mass) \times 0.01 \times (100 / (100 - C_{\text{w}})). \]

N was fixed to 1.7 which was the value used for fresh leaves in Jacquemoud et al. (1996). We compared the modelled Dipterocarpaceae family leaf albedo \((= R_{\text{mod}}(\lambda) + T_{\text{mod}}(\lambda))\), and leaf albedo modelled with the only publicly available (to our knowledge) tropical leaf constituents data from Hawaii (Feret et al., 2008) to preliminarily verify that the modelled leaf albedo was not unrealistic (Figure 3).

Figure 3. Leaf albedo modelled using PROSPECT-4. The spectra are resampled to Landsat-7 ETM+ bands.

Next, we modelled variability in leaf albedo by varying leaf constituents (i.e., PROSPECT inputs). According to the publicly available ANGERS leaf database (obtained from http://opticleaf.ipgp.fr/index.php?page=database, Feret et al., 2008) the leaf constituents
variability reported on per-mass basis does not equal variability on per-area basis. Therefore, we applied the range of leaf constituents reported on per-area basis, as required by PROSPECT, for the only publicly available leaf dataset of tropical tree species from Hawaii in Feret et al. (2008). In practice, we calculated the Hawaii leaf constituent minimum and maximum values as percentages from the mean, and applied these percentages to the Dipterocarpaceae family mean leaf constituent to estimate its minimum and maximum leaf constituents (Table 4). The range (minimum, maximum) relative to mean values were 37.4%, 155.2% for C_{ab}; 46.2%, 259.3% for C_{w}; and 51.2%, 183.2% for C_{m}. Based on the minimum and maximum leaf constituents, we generated 2500 samples of leaf constituents combinations from the multivariate uniform distribution of leaf constituents. To exclude unrealistic leaf constituents combinations, we applied the global leaf constituents (per area) correlation published in Feret et al. (2011b).

Table 4. Leaf constituents of Dipterocarpaceae family used in PROSPECT-4 to model leaf albedo. C_{ab} is chlorophyll a and b content, C_{w} equivalent water thickness, C_{m} dry matter content.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>C_{ab} (μg cm(^{-2}))</th>
<th>C_{w} (g cm(^{-2}))</th>
<th>C_{m} (g cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>75.09</td>
<td>0.0152</td>
<td>0.0139</td>
</tr>
<tr>
<td>Minimum</td>
<td>28.08</td>
<td>0.0070</td>
<td>0.0071</td>
</tr>
<tr>
<td>Maximum</td>
<td>116.54</td>
<td>0.0393</td>
<td>0.0254</td>
</tr>
</tbody>
</table>

PROSPECT modelling was implemented using “Rprospect” library (Serbin, 2013) in R (R Core Team, 2016). Spectral resampling was done using “hsdar” library (Lehnert et al., 2016) in R (R Core Team, 2016). PARAS model was implemented in R (R Core Team, 2016).

2.5. Data analysis and validation of PARAS simulations
First, we tested statistical significance of differences in canopy structure among forest classes. Due to unequal sample sizes (number of plots) among the groups (forest classes) which may cause non-homogeneity of variances in each of the groups (tested using Bartlett’s K-squared test), we compared the means of canopy structural variables between forest classes using t-test with Welch correction in R “stats” library (R Core Team, 2016). The Bartlett’s test was used to compare variances in canopy structural variables.

Next, we evaluated the performance of PARAS model using satellite data. The satellite-measured (Landsat-7 ETM+) BRF is at best an approximation of true surface reflectance due to possible residual errors such as from atmospheric correction. We assessed the BRF modelled with PARAS model against the BRF measured by Landsat-7 satellite based on root mean square difference (RMSD), mean difference (MD, i.e., bias), and RMSD corrected for bias (RMSDC):

\[
\text{RMSD} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\text{BRF}_{\text{mod}} - \text{BRF}_{\text{obs}})^2} \quad (3)
\]

\[
\text{MD} = \frac{1}{n} \sum_{i=1}^{n} (\text{BRF}_{\text{mod}} - \text{BRF}_{\text{obs}}) \quad (4)
\]

\[
\text{RMSDC} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\text{BRF}_{\text{mod}} - \text{BRF}_{\text{obs}} - \text{MD})^2} \quad (5)
\]

The overall discrepancy (RMSD) between modelled and observed BRF is therefore decomposed into systematic bias (MD, overall difference in levels of BRF) and random unsystematic discrepancy (RMSDC) i.e., \(\text{RMSD} = \sqrt{\text{MD}^2 + \text{RMSDC}^2} \).

2.6. Global sensitivity analysis
We quantified the relative contribution of PARAS model inputs to the modelled canopy-level BRF using global sensitivity analysis (GSA) which simultaneously varies all inputs and accounts for non-linear output-input dependence (Iooss and Lemaître, 2015). We computed the variance-based (sobol) total effect indices (Saltelli et al., 2010; Sobol, 1993) which measure the contribution of each input to the variability in output, accounting for the input’s interactions with other inputs (first and higher order effects). The PARAS (first order) inputs considered were LAI_{eff}, canopy direct intercectance \(i_{0}(\theta_{\text{sun}}) \), gap fraction in sensor view direction \(\text{cgf}(\theta_{\text{view}}) \), leaf albedo \(\omega_{L} \), and ground reflectance \(\rho_{\text{ground}} \); the first three represent canopy structural attributes which influence canopy BRF. We generated 20000 sobol (quasi-Monte Carlo) sequences (samples) of the investigated model inputs based on the range of inputs’ values obtained from measurements (canopy structural attributes derived from hemispherical photos) or literature (soil reflectance, PROSPECT-modelled leaf albedo). GSA was implemented using ‘sobolJansen’ (Jansen, 1999) routine in the ‘sensitivity’ package (Pujol et al., 2017) in R statistical environment (R Core Team, 2016).

3. Results

3.1. Canopy structure

Overall, the canopy of primary, lightly logged, and twice logged forest plots were structurally similar, with very little (not significant, \(P > 0.01 \)) difference in all of the canopy structural variables (Table 5). Compared to primary, lightly logged, and twice logged forests, salvage logged forests had lower canopy cover and LAI (significant, \(P < 0.01 \)). Intensively salvage logged forests ("Stage 2") also had more clumped canopies, as indicated by lower CI values (significant, \(P < 0.01 \)). Salvage logged stage 2 plots also displayed noticeably larger (significant, \(P < 0.01 \)) variability (std.) in canopy structure in terms of both density (ECC and ACC_{75}) and canopy level clumping (CI), than the other forest classes (primary, lightly logged,
twice logged forest, and salvage logged stage 1). Compared to all forest plots, oil palm canopy was more (significant, \(P < 0.01 \)) open (lower values of all canopy structural variables) with the largest variation in cover, as well as having the most clumped canopy (lowest mean CI).

Comparing the canopy structural variables, vertical cover was more variable than hemispherically-integrated cover. That is, for different forest classes ECC had higher coefficient of variation (CV = 5.5 – 45.1%) than ACC\(_{75}\) (CV = 0.7 – 31.2%). LAI in turn varied more than ACC\(_{75}\). That is, CV of LAI\(_{\text{eff}}\) was higher by 3.8 – 13.6% than ACC\(_{75}\), while CV of LAI\(_{\text{true}}\) was higher by 4.0 – 9.4% than ACC\(_{75}\).

Table 5. Mean canopy structural variables (standard deviation in parentheses) derived from hemispherical photos: effective canopy cover (ECC), angular canopy closure 0 – 75° (ACC\(_{75}\)), effective leaf area index (LAI\(_{\text{eff}}\)), canopy clumping index (CI) and true leaf area index (LAI\(_{\text{true}}\)).

<table>
<thead>
<tr>
<th>Forest classes</th>
<th>No. of plots</th>
<th>ECC %</th>
<th>ACC(_{75}) %</th>
<th>LAI(_{\text{eff}})</th>
<th>CI</th>
<th>LAI(_{\text{true}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary forest</td>
<td>5</td>
<td>84.9 (4.7)</td>
<td>90.5 (0.7)</td>
<td>2.88 (0.13)</td>
<td>0.87 (0.02)</td>
<td>3.32 (0.15)</td>
</tr>
<tr>
<td>Lightly logged forest</td>
<td>8</td>
<td>85.7 (2.4)</td>
<td>90.9 (2.4)</td>
<td>2.99 (0.36)</td>
<td>0.83 (0.03)</td>
<td>3.60 (0.43)</td>
</tr>
<tr>
<td>Twice-logged forest</td>
<td>13</td>
<td>85.4 (5.4)</td>
<td>90.9 (1.9)</td>
<td>2.97 (0.23)</td>
<td>0.85 (0.03)</td>
<td>3.48 (0.23)</td>
</tr>
<tr>
<td>Salvage logged forest stage 1</td>
<td>26</td>
<td>80.8 (7.0)</td>
<td>88.0 (2.7)</td>
<td>2.65 (0.28)</td>
<td>0.82 (0.03)</td>
<td>3.25 (0.34)</td>
</tr>
<tr>
<td>Salvage logged forest stage 2</td>
<td>23</td>
<td>67.1 (18.0)</td>
<td>79.9 (11.4)</td>
<td>2.25 (0.53)</td>
<td>0.72 (0.11)</td>
<td>3.04 (0.49)</td>
</tr>
<tr>
<td>Oil palm plantation</td>
<td>13</td>
<td>52.1 (23.5)</td>
<td>60.3 (18.8)</td>
<td>1.42 (0.64)</td>
<td>0.64 (0.14)</td>
<td>2.00 (0.64)</td>
</tr>
<tr>
<td>All</td>
<td>88</td>
<td>74.3 (17.7)</td>
<td>82.6 (13.8)</td>
<td>2.45 (0.65)</td>
<td>0.77 (0.11)</td>
<td>3.08 (0.64)</td>
</tr>
</tbody>
</table>

Next, we examined more closely how the canopy gap fraction was distributed in different view zenith angles. Overall, directional canopy gap fraction tends to decrease with view zenith angle, being the highest in nadir direction (Figure 4). Salvage logged stage 2 and oil palm showed more variable directional gap fraction. Directional gap fraction also tends to decrease in variability towards horizon (or, in other words, the larger the mean gap fraction, the larger its
variability, in absolute term), with the exception of oil palm which showed relatively smaller decrease in canopy gap fraction variability across zenith angles.

Figure 4. Angular profile of canopy gap fraction calculated from hemispherical photos. ACC75 is angular canopy closure 0 – 75°. Filled circles are the mean. Error bars represent one standard deviation. The lower triangles are minimum, the upper triangles maximum values.

To better appreciate the angular dependency, we calculated the shape function (Figure 5), which is defined as the normalized value of the canopy light extinction coefficient at a given zenith angle (Rautiainen and Stenberg, 2015). The shape function is based on the modified Beer’s law equation so that the extinction coefficient is equal the product of mean projection of unit foliage area \(G(\theta) \) and the directional clumping index \(\beta(\theta) \). Variation in the shape function is induced by differences in leaf orientation and directional clumping indices. Similar angular pattern in the shape function was observed for primary, lightly logged, twice logged, and salvage logged...
stage 1 plots; small decrease in shape function from the first (0 – 15°) to second (15 – 30°) zenith rings (note that sun zenith angle at Landsat overpass is 27 – 38°, Table 2), followed by progressively larger shape function decrease towards the horizon. In contrast, the angular shape function profile of salvage logged stage 2 and oil palm appeared to differ from the rest. Second and third (30 – 45°) ring shape function remained as high or was higher than vertical gap fraction in salvage logged stage 2 plots. Oil palm plots showed somewhat linear trend of shape function decrease as a function of view zenith angles. Shape functions of all vegetation types converged near horizon.

Figure 5. Average shape function, defined as the normalized value of the canopy light extinction coefficient at a given zenith angle for all forest classes. Calculated from hemispherical photos.

Plot-wise relationship between derived canopy structural variables (Figure 6) showed that for the same vertical cover (ECC), oil palm consistently had lower LAI$_{\text{true}}$ (Figure 6a) and ACC$_{75}$ (Figure 6b). For the same LAI$_{\text{true}}$, salvage logged stage 2 plots had lower ECC. ECC increased with LAI$_{\text{true}}$ up to when LAI$_{\text{true}}$ reached around 3, beyond which ECC stayed below ~92% whereas LAI$_{\text{true}}$ continued to increase up to more than 4. Similarly ACC$_{75}$ showed an asymptote.
at ~93%. For all plots, ECC was usually lower than ACC\textsubscript{75}. The bidirectional gap probability in the sun and sensor direction showed that sunlit ground visibility largely diminished at LAI\textsubscript{true} approximately 3 (Figure 6d).

Figure 6. Relationship between canopy structural variables. (a) Effective canopy cover (ECC) and true leaf area index (LAI\textsubscript{true}). (b) ECC and angular canopy closure 0 – 75° (ACC\textsubscript{75}). (c) ACC\textsubscript{75} and LAI\textsubscript{true}. (d) Bidirectional gap probability and LAI\textsubscript{true}. Bidirectional gap probability is calculated from canopy gap fraction in sun illumination and sensor view direction (\text{cgf}(\theta_{\text{view}}) \times \text{cgf}(\theta_{\text{sun}})).

3.2. Satellite BRF response to canopy structure
Even after filtering pixels based on atmosphere opacity (haziness), very weak negative relationship ($r < 0.3$) was observed between ETM+ BRF and canopy structural variables for forest plots (Figure 7, Table 6). Sample size was deemed not adequate for assessing correlation by forest class. Moderate negative correlation ($r > 0.7$) was observed for oil palm plots (slightly higher with LAI_{true} than with ECC), except in near-infrared. Looking at spectral differences between forest classes while considering canopy density, oil palm plots were brighter in red and shortwave-infrared, and at the same ECC, brighter than salvage logged stage 2. Among the forest plots, salvage logged stage 2 plots (which were being converted to fragmented agriculture) were brighter despite having similar ECC and LAI_{true}. Lightly logged plots were slightly darker in near-infrared and shortwave-infrared. Spectral vegetation indices did not correlate with ECC or LAI_{true} better than individual band (Table A1 Appendix A).
Figure 7. Landsat-7 ETM+ surface reflectance (BRF) response to effective canopy cover (ECC) and true leaf area index (LAI_true).

Table 6. Correlation coefficient between satellite BRF and true leaf area index (LAI_true) or effective canopy cover (ECC).

<table>
<thead>
<tr>
<th>Forest classes</th>
<th>BRF vs. LAI_true</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>BRF vs. ECC</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>green</td>
<td>red</td>
<td>NIR</td>
<td>SWIR1</td>
<td>SWIR2</td>
<td>green</td>
<td>red</td>
<td>NIR</td>
<td>SWIR1</td>
<td>SWIR2</td>
</tr>
<tr>
<td>All forests (N = 75)</td>
<td>-0.18</td>
<td>-0.17</td>
<td>-0.12</td>
<td>-0.19</td>
<td>-0.21</td>
<td>-0.29</td>
<td>-0.23</td>
<td>-0.21</td>
<td>-0.22</td>
<td>-0.22</td>
</tr>
<tr>
<td>Oil palm (N = 13)</td>
<td>-0.75</td>
<td>-0.77</td>
<td>0.19</td>
<td>-0.72</td>
<td>-0.78</td>
<td>-0.72</td>
<td>-0.74</td>
<td>0.12</td>
<td>-0.72</td>
<td>-0.76</td>
</tr>
</tbody>
</table>

3.3. Forest BRF simulation and validation

We focused the BRF modelling on closed-canopy forests i.e., excluding oil palm, and salvage logged forest stage 2 which structurally resembles more agricultural land. In our first forest BRF simulations with PARAS model, we fixed leaf albedo (i.e. PROSPECT simulations were based on mean leaf constituents), and thus, forest BRF was driven by solely canopy structure. The modelled BRF showed lack of variability in near-infrared and shortwave-infrared, as compared to in visible domain (Figure 8). Overall the levels of the modelled BRF were within the range of observed satellite BRF. Concerning overall BRF levels, PARAS simulations underestimated green BRF (mean difference MD -24.2%) and overestimated SWIR1 BRF (MD 23.8%), with closer level to observed ETM+ in NIR (MD 2%) and red (Table 7). All plots considered, relative RMSD was largest in red band (65%), smallest in NIR (16%), and moderate in green and SWIR1 (30-36%). In the red domain where the level and variability best matched ETM+-observed BRF (Figure 8), a number of salvage logged plots had their BRF overestimated, causing larger overall error than other forest classes. Overall, no apparent
differences in the agreement between modelled and observed BRF between forest classes were observed (Figure 8).

Figure 8. Comparison of modelled BRF (leaf albedo fixed to PROSPECT simulation with mean Dipterocarpaceae family leaf constituents) to measured Landsat-7 ETM+ surface reflectance, with respect to true leaf area index (LAI\text{true}). PARAS-modelled BRFs are shown in blue, ETM+-observed BRFs in orange.

Table 7. PARAS-modelled BRF vs. Landsat-7 ETM+ BRF for closed-canopy forest plots (N = 52; all forest plots excluding salvage logged stage 2). In parentheses are relative (%) to average ETM+ BRF (Mean ETM+). MD is modelled minus observed value. RMSDC is root mean
squared differences corrected for bias (MD). Results for each forest class are shown in Table A2 Appendix A.

<table>
<thead>
<tr>
<th>Band</th>
<th>Mean ETM+</th>
<th>Mean PARAS</th>
<th>Std ETM+</th>
<th>Std PARAS</th>
<th>RMSD</th>
<th>MD</th>
<th>RMSDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>0.033</td>
<td>0.024</td>
<td>0.006</td>
<td>0.006</td>
<td>0.012</td>
<td>-0.008</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(36.4)</td>
<td>(-24.2)</td>
<td>(24.2)</td>
</tr>
<tr>
<td>Red</td>
<td>0.017</td>
<td>0.021</td>
<td>0.005</td>
<td>0.009</td>
<td>0.011</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(64.7)</td>
<td>(23.5)</td>
<td>(58.8)</td>
</tr>
<tr>
<td>NIR</td>
<td>0.343</td>
<td>0.350</td>
<td>0.051</td>
<td>0.009</td>
<td>0.054</td>
<td>0.007</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15.7)</td>
<td>(2.0)</td>
<td>(15.7)</td>
</tr>
<tr>
<td>SWIR1</td>
<td>0.130</td>
<td>0.161</td>
<td>0.022</td>
<td>0.009</td>
<td>0.040</td>
<td>0.031</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(30.8)</td>
<td>(23.8)</td>
<td>(19.2)</td>
</tr>
</tbody>
</table>

In our second set of forest BRF simulations with PARAS model, leaf albedo was not fixed. Structural variables were parameterized based on field measurements as in the first set of simulations. Varying leaf constituents produced larger variability in leaf albedo (ω_L) in green and SWIR, whilst relatively smaller variability in red and NIR (Figure 9). At the canopy level, this ω_L variability produced BRF variability of similar magnitude to variability observed in satellite BRF in green and SWIR, whilst variability in NIR from other sources remained unaccounted (Figure 10). Leaf albedo variation affected red BRF the least.
Figure 9. Variability in modelled leaf albedo of *Dipterocarpaceae* family. Points show the mean of the 2500 PROSPECT simulations, black error bar shows the one standard deviation, and grey error bar shows the minimum and maximum.
Figure 10. Variability (std) in PARAS-modelled BRF resulting from variability in leaf albedo (Figure 9, range from minimum to maximum), and comparison to observed Landsat ETM+ BRF variability, with respect to true leaf area index (LAI_{true}). PARAS-modelled BRFs are shown in blue, ETM+-observed BRFs in orange.

3.4. Global sensitivity analysis: drivers of canopy BRF

Based on the range of measured canopy structural variables (LAI_{eff} 2.17 – 3.48, i_0 0.73 – 0.92, cgf(θ_{view}) 0.08 – 0.32), leaf albedo was found to provide the dominant, largest contribution (> 80%, Figure 11a) to canopy BRF across the optical domain (even with the smaller one standard deviation of simulated leaf albedo i.e., > 50% contribution, Figure 11b). The only exception was in the red band where BRF was most sensitive to canopy gap fraction in sensor view direction (nadir view i.e., 0 – 15°). BRF was more sensitive to directional gap fraction than
hemispherically-integrated cover measures (such as effective LAI). Ground contribution was negligible.

Figure 11. Global sensitivity analysis of PARAS BRF model in closed-canopy humid tropical forests (primary, lightly logged, twice logged, salvage logged stage 1). BRFs were modelled in ETM+ green, red, NIR, SWIR1, and SWIR2 channels. Relative contribution was measured with sobol total effect indices. (a) is based on maximum range of leaf albedo (Figure 9), (b) based on one standard deviation of leaf albedo.

Finally, we tested changing the model inputs one at a time to identify possible ways to improve the agreement between modelled and measured BRF (Table A3 Appendix A). Compared to base case simulation, across the spectral bands, modelled BRF was most sensitive to changes in \(p \) (0.735 ± 0.020 for the modelled closed-canopy). Overall, none of the tested input change brought improvements in PARAS agreement to ETM+-observed BRF across all spectral bands.

4. Discussion

We observed differences in canopy structure between the less degraded forests (lightly-logged, twice-logged, salvage logged stage 1), and the more degraded salvage logged stage 2 and oil
palm plots (Table 5, Figure 4, 5). The less degraded forests, on the other hand, were structurally similar to undisturbed primary forests, indicating that the canopy structure has possibly recovered to pre-disturbance condition. However, whether it was also the case for plant communities remains an open question. They possessed similar total cover (ECC, LAI), as well as similar angular profiles of gap fractions, which was characterized by (1) largest gap fraction near zenith, and (2) decreasing gap fraction and gap fraction variability with view zenith angle towards the horizon. The gap concentration near the zenith where solar radiation flux is the highest at the equator, and less concentrated gaps near horizon (i.e., mid-height in the canopy) where light penetration is low had also been observed by Trichon et al. (1998) in Central Sumatera, Indonesia. The pattern of decreasing variance of gap fraction with view zenith angle is in agreement to theoretical results in Ryu et al. (2010). It is also interesting to note that this angular profile differs from other biomes such as the generally sparser boreal forests (Rautiainen and Stenberg, 2015) which resemble more salvage logged stage 2 forest profile in our data, featuring more or equal gaps in second and third zenith annulus (up to 45°) as in nadir direction (Figure 5). In contrast to the forest plots, oil palm featured highly variable gap fraction across zenith angles (gaps can be found in all directions in the canopy, Figure A1 Appendix A), which resulted in lower LAI at the same vertical cover (ECC, Figure 6a). Structurally, the oil palm canopy appeared different from the most open forest class (i.e., salvage logged stage 2) at the same total cover. The more dispersed and variable gaps across zenith angles in oil palm canopy is expected in typical managed plantations where exclusion distances among trees are larger than in natural forests (Geng et al., 2016). From the remote sensing perspective, sunlit forest floor visibility to nadir-viewing sensor greatly diminished at LAI_{true} around 3 (Figure 6d), beyond which ground impact on canopy-level reflectance therefore likely became negligible.
The satellite data showed overlap in BRFs between forests with similar canopy structure i.e., primary, lightly logged, twice logged, and salvage logged stage 1 (Figure 7). The values of photon recollision probability p were indeed similar for these forest classes i.e., 0.73 ± 0.012 (primary), 0.746 ± 0.024 (lightly logged), 0.740 ± 0.014 (twice logged), and 0.729 ± 0.020 (salvage logged stage 1). The more degraded salvage logged stage 2 was, however, brighter than other forest classes, as well as was spectrally separable (in red and SWIR) from the brightest oil palm plots at the same canopy cover. The former may have been due to the higher gap probability in solar illumination direction at satellite overpass time (sun zenith angle 27–38° i.e., between second and third ring. The oil palm plots were (except 2 plots) younger than 10 years old (planted in 2006) which corresponds to the age when Malaysian oil palm leaf area stabilizes (McMorrow, 2001). Stronger response of satellite BRF to forest aboveground biomass than oil palm had similarly been observed by Morel et al. (2012). They attributed it to the simpler canopy structure of oil palm monoculture in which increasing canopy closure increases shade fraction over the relatively bright ground cover. The flat relation between near-infrared BRF and canopy cover is likely due to the undergrowth in young oil palm plots typically colonized by weeds or sown legumes (McMorrow, 1995). The high species diversity (and thus high variation in leaf biochemical signature) in the tropical forest plots also likely partly explained the low correlation for forest plots as they induced large BRF variability at canopy level (Figure 10).

Based on our results, the green and SWIR appeared to be optimal spectral bands to detect leaf biochemical (and in turn, potentially tree species) diversity from satellite BRF (Figure 10). That is, in green and SWIR, variations in observed canopy BRFs can be largely attributed to variations in leaf albedo. Based on measured leaf spectra and canopy structural variables from literature, Asner et al. (2012, Figure 6D) similarly showed for the Dipterocarpaceae family,
coefficients of variation in canopy BRF is higher in SWIR (~16-20%) and green (~12%) as compared to in red (~7%) and NIR (~6%). In NIR, publicly available leaf spectral measurements showed that, unlike in other spectral domains, leaf reflectance and transmittance are negatively correlated (r: -0.77, based on the published leaf spectra for Sycamore maple, the dominant broadleaved species in ANGERS database, Feret et al., 2008), which may have suppressed variability in leaf NIR single-scattering albedo (= reflectance + transmittance).

Asner et al. (2012) noted the range of C_m, the leaf constituent that mainly drives leaf NIR albedo, for the Bornean lowland tropical species is nearly equal to the range found for global humid tropical forests and other biomes. This further suggests that the limited expression of leaf constituents in NIR BRF of dense canopies applies similarly across vegetation types. C_m also does not strongly co-vary with C_{ab} (r: 0.19) or C_w (r: 0.63) based on global vegetation dataset as reported by Feret et al. (2011b). In red, the relatively much higher photosynthetic pigment content in leaves of Dipterocarpaceae family (mean C_{ab} 75.09 μg cm$^{-2}$)—as compared to the global mean of various vegetation types (32.81 μg cm$^{-2}$, Feret et al., 2011b)—causes relatively lower mean and variability (in absolute term) of leaf albedo in red, where C_{ab} absorbs the strongest. The pigment absorption is not as strong in green. Large variability in SWIR BRF is mainly driven by C_w variability (Jacquemoud et al., 2009).

We modelled BRF focusing on closed-canopy humid tropical forest (undisturbed primary, and forests with subtle degradation i.e., lightly logged, twice logged, salvage logged stage 1), excluding oil palm, and salvage logged stage 2 which structurally resembled less of a forest but more of agriculture landscape. In doing so the impact of uncertainty in ground surface cover and reflectance (which is expected to vary with canopy openness in light-abundant tropical environment) was additionally minimized. Indeed, salvage logged plots with lower LAI had their red BRF overestimated (Figure 8, 10), likely indicating the presence of understory
vegetation (which would have lower red reflectance) underneath not-recent canopy gaps. This potentially complicates identification of degraded forests based on spectrally unmixed soil fractions, and calls for studies monitoring the succession of understory vegetation (ginger, shrubs, ferns, grasses, palms) post-disturbance. Concerning the modelled BRF, Rautiainen and Stenberg (2005) applied PARAS BRF parameterization in boreal forest and obtained absolute RMSD against Landsat ETM+ of 0.009 – 0.010 in red and 0.040 – 0.049 in near-infrared, which is close to RMSD in our study (0.011 in red, 0.054 in NIR). To note is that the RMSD measures the combined uncertainty in modelled BRF, as well as uncertainty in the ETM+ surface reflectance (SR) which is expected to be within 5% × SR + 0.005 (Claverie et al., 2015). Further PARAS applications and hemispherical photos acquisitions in different forest areas in the tropics, as well as in different forest biomes are encouraged to evaluate the generality of the PARAS performance.

The global (as opposed to local, one-factor-at-at-time) sensitivity analysis we performed (Figure 11) revealed the leaf optical properties control dominantly BRF in Bornean closed-canopy humid tropical forests. This supports the assertion that dense (tropical) forests are good candidates for retrievals of foliar and canopy biochemistry using remote sensing (Asner, 1998; Baret et al., 1994). In other words, the assumption that the closed-canopy humid tropical forests are optically thick was not violated based on our findings. Our results showed leaf single scattering albedo was strongly expressed at the canopy level in all ETM+ bands, with the exception of highly absorbing red domain where variability in leaf constituents produced the smallest variability in leaf albedo as modelled by PROSPECT. Leaf optics contributed the most to canopy BRF in shortwave infrared, driven by large variability in leaf water content. Whereas canopy structure has been parameterized based on measurements, we acknowledge the uncertainty in PROSPECT-estimated leaf albedo variability. Nevertheless, we showed the
reduced, but still dominant (from > 80% to > 50% BRF contribution) role of leaf optical properties when we applied one standard deviation of modelled leaf albedo, instead of the modelled full range. However, we note that in the NIR domain, the observed BRF variability was not entirely produced by variability in canopy structure and leaf albedo based on our modelling results. The remaining variability in NIR BRF can originate from unaccounted canopy structure influence on NIR BRF, or from the underestimation of leaf albedo variability in NIR. Studies from the Amazon (e.g., Samanta et al., 2012) suggest the impact of epiphylls growth and film of water which coat the surface of leaves, as well as leaf shedding and flushing mechanisms, on leaf NIR albedo (the latter may also change total leaf area and thus photon recollision probability \(p \)). In the red band, and when leaf optics decreased in their influence on canopy BRF due to lower leaf albedo variability, canopy gap fraction in sensor view direction was the most important canopy structural property. More generally, the directional gap fraction was shown to be more influential than the total, hemispherically-integrated tree cover (i.e., LAI). Asner and Martin (2008) similarly demonstrated minimal effect of random variation in LAI (3.0–6.5) on leaf biochemical signal propagation to canopy level in Australian rainforest. This serves to emphasize the importance of accounting for foliage clumping (which determines angular distribution of canopy gaps) in characterizing the canopy radiative transfer, indicating the severe limitation of models which represent the canopy as a turbid medium in humid tropical forests.

Despite our best efforts in providing ecologically realistic range of the inputs—on which results of sensitivity analysis are dependent—used in the BRF models, the difficulty, and consequently lack of available spectral measurements in humid tropical forest of South East Asia caused unavoidable uncertainties in our modelling experiments. Modelled leaf albedo in this study relied on reliable leaf constituents and accuracy of PROSPECT model; our test applying the
bias reported in Feret et al. (2008) for tropical Hawaii dataset showed minimal impact of the bias on canopy BRF (Table A3 Appendix A). We also tested varying the N mesophyll structure parameter (1.7 – 2.5 for Dicotyledons leaves based on Jacquemoud and Baret, 1990), which produced similar range of leaf albedo (reflectance + transmittance) as when N was fixed in this study. The forthcoming release of Spectranomics database of tropical leaf spectral-chemical libraries (Asner and Martin, 2016; https://cao.carnegiescience.edu/spectranomics) combined with our canopy structural measurements will allow further verification of our findings, as well as modelling for the oil palm (monocotyledonous) tree crop (Elaeis guineensis) currently not possible. In the latter, one needs to consider the different optical properties (and likely biochemical composition) of leaves from young oil palm recently transferred from nursery (i.e. seedling, which is often used in controlled experiment e.g., water treatment), and leaves from the mature oil palm tree (Ritchie and Runcie, 2014).

Concerning the PARAS model (Table 3), the p estimation depends on the reliable ratio between diffuse non-interceptance (DIFN) and true leaf area index ($\text{LAI}_{\text{true}} = \text{LAI}_{\text{eff}} / \text{CI}$). LAI_{eff} (CI) was estimated from gap fraction (gap size distribution) derived from the hemispherical photos, which was subject to uncertainties caused by image acquisition (sampling, weather, exposure) and automatic thresholding steps. ECC estimation was also probably less than ideal with only 12 photos per plot (Korhonen and Heikkinen, 2009). Ideally, complementary LAI measurements with LAI-2000 would allow evaluating the accuracy of estimated LAI_{eff}, while LAI_{true} could be measured by litter trap or direct leaf harvest sampling. Operating LAI-2000 which requires taking sky irradiance readings from above the canopy (or in sufficiently large clearing area) would, however, be impractical in our studied dense and tall tropical forest. Harvesting leaves (and woody elements for wood area correction) from the tall canopy, for many sample plots, would also require enormous efforts, not possible without tower platform,
in this ecosystem. Nevertheless, clumping index estimated in this study for closed-canopy forests i.e., 0.74 – 0.88 is close to the only available estimate in old-growth tropical rainforest in Costa Rica i.e., 0.71 – 0.82 (Olivas et al., 2013). A test (Table A3 Appendix A) of incorporating 11% woody element (from total plant area) based on direct harvest in the same study and woody stem reflectance from Asner (1998) showed relatively minor influence on our simulated BRF. Asner (1998) similarly found minor role of stem area index in Brazilian tropical woodlands (LAI 3.1 – 5.9). Replacing soil with darker litter reflectance in tested spectra decreased RMSD in red (which was most sensitive to vertical gap and thus ground visibility to sensor) because it reduced the modelled BRF for the overestimated salvage-logged plots (Figure 8, 10). Overall our experiments from Table A3 (Appendix A) indicated that improving PARAS BRF agreement to the observed ETM+ BRF requires mainly adjustment of spectral inputs.

Summarizing, the physically-based forest reflectance interpretation presented in this study offers insights into the limitations, but also opportunities in how well optical Earth observation data from operational Landsat-class satellites can be used to uncover structural variation along a gradient of forest degradation in humid tropical forests. On one hand, our findings showed the limited capability of optical remote sensing in revealing the full forest structural variation (i.e., difficulty in discriminating the less intensively logged forests from primary forests due to canopy structure similarity) of forest landscapes in this region with predominant human modification. On the other hand, the findings indicated high feasibility to retrieve leaf optical properties, and in turn leaf biochemistry, from the observable top-of-canopy reflectance. In another perspective, this implied accounting for the variability in leaf optical properties would improve optical data interpretation (and inversion e.g., LAI retrieval) in this biome, thus calling for synergistic efforts in ground measurements of both forest structure and leaf optical properties.
5. Conclusions

We presented the first application of the spectral invariants theory in modeling the reflectance of humid tropical forests. In doing so, we integrated field measurements of canopy structure from insular Southeast Asia, coupled leaf-level PROSPECT and canopy-level PARAS model, and concurrent satellite observations. The analysis was done within the context of the operational Landsat-class spatial and spectral resolution. Close examination of canopy structure showed structural similarity between the closed-canopy forests which were undisturbed (primary), lightly logged, twice logged, and salvage logged (stage 1). Consequently, canopy reflectance observed by Landsat-class satellite was not sensitive to these different degrees of degradation. The more degraded salvage logged stage 2, and oil palm were however potentially distinguishable. This structure-induced BRF “saturation” (i.e., weak correlation between BRF and canopy structural variables) however potentially provides advantage for foliage and canopy chemistry sensing in closed-canopy humid tropical forests: global sensitivity analysis revealed the dominant contribution of leaf optical properties to canopy-level BRF in green and shortwave infrared domain. The strongly absorbed red band on the other hand was most sensitive to (vertical) effective canopy cover. Directional gap fraction played a stronger role than hemispherically-integrated leaf area index in driving BRF response, indicating the importance of explicitly accounting for foliage clumping. Further studies are needed concerning the salvage logged stage 2 and oil palm plots characterized by large canopy openings, requiring measurements of forest floor cover and reflectance in stands of varying canopy cover.

Acknowledgements

We thank the two anonymous reviewers for constructive comments. We thank Aarne Hovi for fruitful continuous discussions, Alemu Gonsamo for help with CIMES software, Bertrand Iooss
for discussion on global sensitivity analysis, Mait Lang for help during processing of hemispherical photos, and all parties involved in the establishment and maintenance of the SAFE large-scale experimental forest fragmentation landscape. The Landsat-7 ETM+ images were courtesy of United States Geological Survey. This study was funded by Aalto University (grant 91160122).

Appendix A
Figure A1. Example hemispherical photos of the different forest classes, and oil palm plantation. LAI\text{eff} is effective leaf area index calculated for the respective photo. (a) Primary forest; (b) Lightly logged forest; (c) Twice logged forest; (d) Salvage logged forest stage 1; (e-f) Salvage logged forest stage 2; (g-h) Oil palm plantation.

Table A1. Correlation coefficient between spectral vegetation indices and true leaf area index (LAI\text{true}) or effective canopy cover (ECC). NDVI = normalized difference vegetation index. EVI = enhanced vegetation index. NDMI = normalized difference moisture index. NBR = normalized burn ratio.

<table>
<thead>
<tr>
<th>Forest classes</th>
<th>BRF vs. LAI\text{true}</th>
<th>BRF vs. ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDVI</td>
<td>EVI</td>
</tr>
<tr>
<td>All forests (N = 75)</td>
<td>0.13</td>
<td>-0.10</td>
</tr>
<tr>
<td>Oil palm (N = 13)</td>
<td>0.71</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Formulas:

\begin{align*}
\text{NDVI} & = \frac{(\text{NIR} - \text{red})}{(\text{NIR} + \text{red})} \quad \text{(Tucker, 1979)} \\
\text{EVI} & = 2.5 \times \left(\frac{\text{NIR} - \text{red}}{\text{NIR} + 6 \times \text{red} - 7.5 \times \text{blue} + 1} \right) \quad \text{(Huete et al., 2002)} \\
\text{NDMI} & = \frac{\text{NIR} - \text{SWIR1}}{\text{NIR} + \text{SWIR1}} \quad \text{(Gao, 1996)} \\
\text{NBR} & = \frac{\text{NIR} - \text{SWIR2}}{\text{NIR} + \text{SWIR2}} \quad \text{(Key and Benson, 2006)}
\end{align*}

Table A2. PARAS-modelled BRF vs. Landsat-7 ETM+ BRF for each closed-canopy forest class. In parentheses are relative (%) to average ETM+ BRF (Mean ETM+). MD is modelled minus observed value. RMSDC is root mean squared differences corrected for bias (MD).

<table>
<thead>
<tr>
<th>Band</th>
<th>Primary (N = 5)</th>
<th>Lightly logged (N = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSD</td>
<td>MD</td>
</tr>
<tr>
<td>Green</td>
<td>0.014</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>(38.9)</td>
<td>(-36.1)</td>
</tr>
<tr>
<td>Red</td>
<td>0.006</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(28.6)</td>
<td>(-19.0)</td>
</tr>
<tr>
<td>NIR</td>
<td>0.025</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(7.4)</td>
<td>(5.3)</td>
</tr>
</tbody>
</table>
Table A2 (cont.)

<table>
<thead>
<tr>
<th>Band</th>
<th>Twice logged (N = 13)</th>
<th></th>
<th>Salvage logged stage 1 (N = 26)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSD</td>
<td>MD</td>
<td>RMSDC</td>
<td>RMSD</td>
</tr>
<tr>
<td>Green</td>
<td>0.010</td>
<td>-0.009</td>
<td>0.004</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(32.3)</td>
<td>(-29.0)</td>
<td>(12.9)</td>
<td>(38.2)</td>
</tr>
<tr>
<td>Red</td>
<td>0.005</td>
<td>0.002</td>
<td>0.005</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(33.3)</td>
<td>(13.3)</td>
<td>(33.3)</td>
<td>(82.4)</td>
</tr>
<tr>
<td>NIR</td>
<td>0.042</td>
<td>0.025</td>
<td>0.034</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>(12.8)</td>
<td>(7.6)</td>
<td>(10.4)</td>
<td>(15.1)</td>
</tr>
<tr>
<td>SWIR1</td>
<td>0.032</td>
<td>0.027</td>
<td>0.016</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(24.4)</td>
<td>(20.6)</td>
<td>(12.2)</td>
<td>(29.4)</td>
</tr>
</tbody>
</table>
Table A3. Changes in PARAS-modelled BRF and its agreement to ETM+-observed BRF due to change in specific model input (see Table 3 for model input description). (a) Relative MD is mean difference between BRF modelled with the specific input change, and BRF modelled in base case simulation (Figure 8, Table 7), as percentage from mean base case simulation. (b) Absolute change in relative RMSD (PARAS vs. ETM+, relative to mean ETM+ BRF) i.e., rel. RMSD_{input_changed} minus rel. RMSD_{base_case} (negative value means improved agreement).

<table>
<thead>
<tr>
<th>Input changed</th>
<th>(a) Relative MD (input - Δ% / input + Δ%)</th>
<th>(b) Δ relative RMSD (input - Δ% / input + Δ%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>green red NIR SWIR1</td>
<td>green red NIR SWIR1</td>
</tr>
<tr>
<td>LAI_{true} ± 20%</td>
<td>+12.5 / -8.3 +4.8 / -4.8 +5.4 / -4.9 +11.8 / -8.7</td>
<td>-6.1 / +3.0 0.0 / -5.9 +1.8 / +0.3 +12.3 / -7.7</td>
</tr>
<tr>
<td>p ± 20%</td>
<td>+33.3 / -33.3 +19.0 / -19.0 +19.1 / -33.7 +34.8 / -44.1</td>
<td>-12.2 / +21.2 +5.9 / -5.9 +11.1 / +21.0 +38.4 / +6.9</td>
</tr>
<tr>
<td>p ± 10%</td>
<td>+16.7 / -16.7 +9.5 / -9.5 +10.6 / -14.0 +18.6 / -20.5</td>
<td>-9.1 / +9.1 0.0 / -5.9 +4.7 / +4.4 +19.2 / -10.8</td>
</tr>
<tr>
<td>Q ± 20%</td>
<td>-12.5 / +12.5 -4.8 / +4.8 -19.1 / +19.1 -17.4 / +17.4</td>
<td>+6.0 / -6.1 -5.9 / 0.0 +7.6 / +11.1 -11.6 / +18.4</td>
</tr>
<tr>
<td>w_L ± 20%</td>
<td>-12.5 / +12.5 -4.8 / +4.8 -36.6 / +73.4 -24.8 / +32.3</td>
<td>+6.0 / -6.1 -5.9 / 0.0 +23.1 / +63.0 -10.8 / +35.4</td>
</tr>
<tr>
<td>Wood * = 11%</td>
<td>4.2 9.5 -16.3 -3.1</td>
<td>-3.1 +5.9 +5.6 -3.1</td>
</tr>
<tr>
<td>p_{ground} = litter **</td>
<td>-4.2 -9.5 -0.3 -3.7</td>
<td>0.0 -11.8 0.0 -3.9</td>
</tr>
<tr>
<td>w_L = 40% liana ***</td>
<td>0.0 0.0 +2.9 +2.5</td>
<td>0.0 0.0 +0.6 +2.3</td>
</tr>
<tr>
<td>w_L with PROSPECT bias ****</td>
<td>4.2 +4.8 +5.7 +7.5</td>
<td>-3.1 0.0 +1.8 +7.7</td>
</tr>
</tbody>
</table>

* % wood area relative to total plant area measured by direct harvest in old growth tropical rain forest (plant area index 5.95), Central America (Olivas et al., 2013). Woody stem reflectance obtained from Asner (1998, Figure 2B).

** litter reflectance obtained from Asner (1998, Figure 2A).

*** modelled with PROSPECT-4 based on liana mean leaf constituents in Asner et al. (2012).

**** PROSPECT-4 bias in modelling tropical Hawaii leaf reflectance and transmittance reported in Feret et al. (2008).
References

observations of terrestrial ecosystems, in: Green, R.O. (Ed.), 9th Annual Airborne Earth

Asner, G.P., Martin, R.E., 2016. Spectranomics: Emerging science and conservation opportunities

Asner, G.P., Martin, R.E., 2008. Spectral and chemical analysis of tropical forests: Scaling from

Asner, G.P., Martin, R.E., Suhaili, A. Bin, 2012. Sources of Canopy Chemical and Spectral
Diversity in Lowland Bornean Forest. Ecosystems 15, 504–517.

Morel, A., Mitchell, E.T.A., Nagy, L., Qie, L., Quinones, M.J., Ryan, C.M., Ferry, S.J.W.,
Sunderland, T., Laurin, G.V., Gatti, R.C., Valentini, R., Verbeeck, H., Wijaya, A., Willcock,

Baret, F., Vanderbilt, V.C., Steven, M.D., Jacquemoud, S., 1994. Use of spectral analogy to
evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sens. Environ. 48,
253–260.

GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series

of spectral mixture analysis to improve the estimation accuracy of tropical forest biomass.
Geocarto Int. 27, 329–345.

Chang. 3, 283–287.

determining plant area index and geometry of a forest stand. Agric. For. Meteorol. 56, 129–
143.

Kutler, J., Lim, T.K., 2006. A landsat surface reflectance dataset for North America, 1990-

16, 3203–3209.

biomass in forest and oil palm in Sabah, Malaysia, for 2000-2008 with Landsat ETM plus

Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian, Y., Wang, Y., Song, X.,
Zhang, Y., Smith, G., Lotsch, A., Friedl, M., Morissette, J., Votava, P., Nemani, R.,
Running, S., 2002. Global products of vegetation leaf area and fraction absorbed PAR from

Nilson, T., 1999. Inversion of gap frequency data in forest stands. Agric. For. Meteorol 98/99,
437–448.

Olivas, P.C., Oberbauer, S.F., Clark, D.B., Clark, D.A., Ryan, M.G., O’Brien, J.J., Ordoñez, H.,
2013. Comparison of direct and indirect methods for assessing leaf area index across a

Pfeifer, M., Gonsamo, A., Disney, M., Pellikka, P., Marchant, R., 2012. Leaf area index for biomes
of the Eastern Arc Mountains: Landsat and SPOT observations along precipitation and

Pfeifer, M., Kor, L., Nilus, R., Turner, E., Cusack, J., Lysenko, I., Khoo, M., Chey, V., Chung,
A.Y.C., Ewers, R.M., 2016. Mapping the structure of Borneo’s tropical forests across a

Pfeifer, M., Lefebvre, V., Gonsamo, A., Pellikka, P.K.E., Marchant, R., Denu, D., Platts, P.J.,
2014. Validating and linking the GIMMS leaf area index (LAI3g) with environmental

Propastin, P., 2013. GIScience & Remote Sensing Large-scale mapping of aboveground biomass
of tropical rainforest in Sulawesi, Indonesia using Landsat ETM+ and MODIS data.

Propastin, P., Erasmi, S., 2010. A physically based approach to model LAI from MODIS 250m

Pujol, G., Iooss, B., Janon A., Boumhaout, K., Da Veiga, S., Delage, T., Fruth, J., Gilquin, L.,
Guillaume, J., Le Gratiet, L., Lemaitre, P., Nelson, B.L., Monari, F., Oomen, R., Ramos, B.,

