Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche.

Journal of Hepatology 2016, 64(3), 609-617

Copyright:
2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

DOI link to article:
https://doi.org/10.1016/j.jhep.2015.11.011

Date deposited:
08/12/2017

This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence
Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche

Olivier Govaere1,*, Jasper Wouters1, Michaela Petz2, Yves-Paul Vandewynckel3, Kathleen Van den Eynde1, Anke Van den broeck4, Stefaan Verhulst5, Laurent Dollé5, Lies Gremeaux6, An Ceulemans1, Frederik Nevens7, Leo A. van Grunsven5, Baki Topal4, Hugo Vankelecom6, Gianluigi Giannelli8, Hans Van Vlierberghe9, Wolfgang Mikulits2, Mina Komuta1, Tania Roskams1

1Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium; 2Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria; 3Department of Hepatology & Gastroenterology, Ghent University, Ghent, Belgium 4Department of Abdominal Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium 5Department of Biomedical Sciences, Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium; 6Department of Development and Regeneration, KU Leuven, Leuven, Belgium; 7Department of Hepatology, KU Leuven and University Hospitals Leuven, Leuven, Belgium; 8Department of Medical Biosciences and Human Oncology, Padiglione Semeiotica Medica, Bari, Italy

Background & Aims: Cancer stem cells (CSCs) are thought to be persistent in tumours due to their chemoresistance and to cause relapse and metastasis. Hepatic carcinomas displaying hepatic progenitor cell (HPC) features have been associated with a poor prognosis, though it remains unclear how CSCs relate to these different histological subtypes.

Methods: Candidate CSCs were isolated using the side population (SP) technique from primary tissue samples diagnosed as keratin (K)19-negative or -positive hepatocellular carcinoma (HCC) or as combined hepatocellular/cholangiocarcinoma and analysed for gene and protein expression. The effect of laminin-332 was analysed in vitro by using HCC cell lines and in vivo using a xenograft mouse model.

Results: The size of the SP correlated with the degree of HPC features found in human hepatic cancer, and also showed an elevated mRNA expression of biliary/HPC markers and the extracellular matrix marker LAMC2, the gene encoding the laminin γ2-chain. Immunopositivity for the γ2-chain of laminin-332 was seen in the extracellular matrix surrounding small HPC-like tumour cells with a low proliferation rate. In vitro, laminin-332 increased K19 expression, phosphorylated mTOR and decreased phospho-histone H3 expression, indicating reduced cell mitosis.

Conclusions: In this study we identified a prominent role for laminin-332 as part of the specialised CSC niche in maintaining and supporting cell ‘stemness’, which leads to chemoresistance and quiescence.

Introduction

Resistance to chemo- and radio-therapeutic treatment is a common phenomenon, especially in liver cancer. One possible explanation for this phenomenon is the cancer stem cell (CSC) concept. CSCs are cancer cells that possess characteristics associated with normal stem cells, in particular their ability to give rise to all tumour-derived cell types found in a cancer sample. Such cells are proposed to be persistent in tumours due to their resistance to classical chemotherapeutics and to cause relapse and metastasis. However, although the concept of CSCs is intriguing and a large number of experimental studies support the CSC hypothesis, there are still open questions and room for caution [1]. One debate concerns the origin of CSCs. Does the CSC derive initially from a normal stem cell or from a dedifferentiated cell during tumour progression?

The vast majority of primary liver cancers arise from liver epithelial cells and is classically subdivided into hepatocellular carcinomas (HCCs), cholangiocellular carcinomas (CCs) or combined HCC/CC. An unresolved question regarding liver cancers is which epithelial cells–hepatocytes, cholangiocytes, hepatic progenitor cells (HPCs) or all three– have to be considered as...
Research Article

the cells of origin. Mature hepatocytes and cholangiocytes have an enormous self-renewal capacity and longevity and so meet the requisite to be targets for oncogenesis [2]. HPCs are a target for carcinogenesis as well, since most of the hepatic cancers arise in a background of chronic liver disease where there is an extensive activation of the HPCs (seen as ductular reaction) [3]. In the regenerating liver, HPCs reside in a specialised microenvironment (the so-called niche), where interactions with the extracellular matrix help decide their cell fate: a choice between differentiation, proliferation or maintaining ‘stemness’. Laminins (Ln) are a large family of extracellular matrix proteins mainly distributed along the basement membrane and are comprised of three different chains (α, β and γ). They have been described to be part of the specialised HPC niche in both human and mouse, where they are thought to play a crucial role in sustaining HPC features [4,5]. In the last decade, many laboratories have underlined the role of the isoform-5, more recently renamed as Ln-332, in promoting the hepatic CSC phenotype.

Hypothesised that mTOR could be potentially involved in regulating the hepatic CSC phenotype.

In this study, we aim to characterise the CSC niche in different histopathological subtypes of hepatic carcinomas, reflecting their possible cell of origin. To isolate putative CSCs, the side population (SP) technique was used (based on the functional ability of the ATP-binding cassette transporters to efflux the fluorescent dye Hoeschst33342), which has proven to be useful in HCC cell lines to isolate cells with a ‘stemness’ signature that show an increased ability for tumour-initiation and chemoresistance through activation of the mammalian target of rapamycin (mTOR) axis [11]. mTOR has been described as a central regulator of cell growth, metabolism and survival [12]. We therefore hypothesised that mTOR could be potentially involved in regulating the hepatic CSC phenotype.

Material and methods

Human tissue samples

Eighteen patients diagnosed with an hepatic carcinoma between 2008 and 2012 at the University Hospitals in Leuven (Belgium) were included in this study. Immediately after surgical removal of the tumour (resection samples), part of the tissue was fixed in 6% formalin and embedded in paraffin, while the other part was stored in Recovery™ Cell Culture Freezing Medium (Invitrogen, Carlsbad, CA, USA) in liquid nitrogen. The histopathological diagnosis of HCCs or combined HCC/CiC was performed according to the World Health Organization criteria. Fibrolamellar HCCs were not included. HCCs were further subdivided into K19-negative and K19-positive HCCs as previously described [17]. The study was approved by the ethical committee of the University Hospitals Leuven, Belgium.

Side population analysis

SP analysis was performed as previously published [7]. A detailed description can be found in the Supplementary material. In short, frozen samples were thawed and dissociated using Liberase Blendzyme 3 (0.8 Wunsch unit/ml, 1.5 h, 37 °C) (Roche, Basel, Switzerland). Single cell suspension was incubated with 5 μg/ml Hoechst33342 (Sigma-Aldrich, St Louis MO, USA) for 90 min at 37 °C. The ABC-transporter inhibitor Verapamil (100 μM; Sigma-Aldrich) was used to assess the SP phenotype from the rest of the main population (MP); propidium iodide (2 μg/ml; Sigma-Aldrich) to exclude dead cells. Samples were analysed using a FCASArray (BD Biosciences) under UV excitation (450/50, 675/20 filter).

The size of the SP was calculated as percentage of the total viable population. Median cell size of SP and MP was analysed based on the Forward Scatter Area (FSC-A).

Characterisation cell lines

Human HCC cell lines PLC/PRF/5, HepG2 (ECACC, Salisbury, UK) and Hep3B2 (ATCC-LGC Standards; Molsheim Cedex, France) were grown in different media: PLC/PRF/5 and HepG2 were cultured in RPMI 1640 media (Invitrogen) supplemented with 10% FCS, 50 IU/ml penicillin and 50 μg/ml streptomycin, while Hep3B2 were grown in Advanced DMEM/F12 media (Invitrogen) supplemented with 1% HEPES, 5% FCS, 50 IU/ml penicillin and 50 μg/ml streptomycin. For qPCR analysis, the cells were fixed using BD CytoRich™ System (BD Biosciences) and processed into cytoplasms for Papanicolaou stains or immunocytochemistry. Part of the sorted cells out of twelve patient samples (four per histological group) was processed for qPCR analysis. The description of the qPCR method and the list of primers can be found in Supplementary material and Supplementary Table 1.

Immunohistochemistry/immunocytochemistry

Five-micrometre-thick human formalin-fixed paraffin-embedded (FFPE) tissue slides and cytoplasms were stained with the Leica BOND-MAX™ system (Leica Microsystems GmbH, Wetzlar, Germany), using the Novocastra Bond Polymer Detection Kit (Leica). Visualisation was done using DAB-Chromogen, followed by a haematoxylin counterstaining. Cultured primary cells and cell lines were stained using BrightVision Poly-HP (Immunologic, Duiven, The Netherlands) and visualised with 3-aminio-9-ethylcarbazole. Primary antibodies were directed against ABCB1/MDR1 (1/10 for FFPE slides, 1/100 for cytoplasms; Monosan, Uden, the Netherlands); ABCG2/BCRP (1/5 for FFPE slides, 1/100 for cytoplasms; Santa Cruz Biotechnology, Dallas, Texas, USA), K19 (1/25; Dako, Glostrup, Denmark), γ2-chain of Ln-332 (1/500; Sigma-Aldrich), Ln-332 (an antibody recognizing the complete protein, 1/100; Abcam, Cambridge, UK), phospho-mTOR (pmTOR, 1/100; Cell Signaling, Danvers, MA, USA).

In vitro growth potential of primary samples

To assess the in vitro growth potential of primary samples (n = 2 per histological group) were grown in Advanced Dulbecco’s Modified Eagle’s Medium (Invitrogen), supplemented with 10% heat-inactivated Fetal Bovine Serum and L-Glutamine (Invitrogen); at 37 °C in a humidified chamber supplemented with 5% CO₂. Cells that showed growth potential were passaged on and characterised by immunocytochemistry at twelve weeks.

In vitro Ln-332 coating experiments

Characterisation cell lines

Human HCC cell lines PLC/PRF/5, HepG2 (ECACC, Salisbury, UK) and Hep3B2 (ATCC-LGC Standards; Molsheim Cedex, France) were grown in similar conditions as the dissociated human samples. Cells were processed into FFPE tissue blocks using the Cellient Automated Cell Block System (Hologic, Bedford, MA, USA) and stained for K19, γ2-chain of Ln-332 and integrin α6 receptor chain (ITGα6; 1/50; Sigma-Aldrich) expression using immunohistochemistry as described above.

mRNA expression

Six-well cell culture plates were coated with Ln-332 (Biolamina, Stockholm, Sweden) at a concentration of 2 μg/cm² (1.5 h, 37 °C) and seeded with 6 × 10³ HCC cells (n = 3 per cell line). After 72 h the cells were harvested for mRNA extraction and processed for qPCR analysis (Supplementary material).
Protein expression

The effect of Ln-332 on protein expression was accessed using HepG2 cells (n = 4), grown in 8-well cell culture slides for 48 h. Proliferative activity was assessed by bromodeoxyuridine (BrdU) labelling (Roche, Mannheim, Germany). According to manufacturer’s instructions. Experiments were performed in quadruplicate.

Chemosensitivity

HepG2 cells, grown in coated and non-coated conditions for 72 h, were treated with Doxorurbin (1 μM) or Sorafenib (1 μM, 10 μM and 20 μM) (Selleckchem) for 48 h. Proliferative activity was assessed by bromodeoxyuridine (BrdU) labelling (Roche, Mannheim, Germany), according to manufacturer’s instructions. Experiments were performed in quadruplicate.

Stemness features

Coated and non-coated HepG2 cells were submitted to SP analysis (n = 3) using 5 μg/ml Hoechst33342 with or without Verapamil at 50 μM (Sigma-Aldrich), Colony forming assays were performed by seeding 500 HepG2 cells in coated and non-coated 6-well plates (n = 3). After ten days, cells were visualised with a Giemsa stain (Sigma-Aldrich) and counted using a brightfield microscope.

Xenograft models

Six- to eight-week-old NOD.CB17-Prkd−/−(NCl-Hsd) mice (Harlan, Boxmeer, The Netherlands) were injected subcutaneously with 3 × 10^6 HepG2 cells in a total volume of 200 μl consisting of Dulbecco’s Modified Eagle’s Medium with or without supplement: either Ln-332 (40 μl of the total volume); Biolamina or Matrigel (100 μl of the total volume; Corning, NY, USA) or both. This categorised the animals into four groups (2 animals per group, injected at both flanks): HepG2, HepG2-Ln-332, HepG2-matrigel and HepG2-matrigel+Ln-332. Upon macroscopic observation of the first tumour nodule, tumour dimensions were measured daily using the following formula: volume (mm^3) = ab^2/2, where b was the smaller dimension. All animals were sacrificed at day 10, calculated from the time point when the first tumour nodule was observed. Samples were processed into FFPE blocks and processed for K19-immunostaining and haematoxylin-eosin staining.

Statistical analysis

Statistical qPCR analysis was performed using the Mann-Whitney U test, the unpaired/paired Student’s t test and the two-way mixed ANOVA with GraphPad Prism 5.02 (GraphPad Software, Inc., La Jolla, CA, USA). All analyses were two-tailed. In all cases, p < 0.05 was considered significant.

Results

Side population proportion correlates with the degree of hepatic progenitor cell features

Candidate CSCs were isolated using the SP method, a technique based on the functional ability of the ATP-binding cassette transporters to efflux the fluorescent dye Hoechst33342. Using the ABCB1/MDR1 blocker verapamil, an SP was identified ranging on the basal side of Ln-332, 2.5 × 10^5 HepG2 cells in a total volume of 200 μl, consisting of Dulbecco’s Modified Eagle’s Medium with or without supplement: either Ln-332 (40 μl of the total volume); Biolamina or Matrigel (100 μl of the total volume; Corning, NY, USA) or both. This categorised the animals into four groups (2 animals per group, injected at both flanks): HepG2, HepG2-Ln-332, HepG2-matrigel and HepG2-matrigel+Ln-332. Upon macroscopic observation of the first tumour nodule, tumour dimensions were measured daily using the following formula: volume (mm^3) = ab^2/2, where b was the smaller dimension. All animals were sacrificed at day 10, calculated from the time point when the first tumour nodule was observed. Samples were processed into FFPE blocks and processed for K19-immunostaining and haematoxylin-eosin staining.

Statistical analysis

Statistical analysis was performed using the Mann-Whitney U test, the unpaired/paired Student’s t test and the two-way mixed ANOVA with GraphPad Prism 5.02 (GraphPad Software, Inc., La Jolla, CA, USA). All analyses were two-tailed. In all cases, p < 0.05 was considered significant.

Discussion

The SP of K19-positive HCCs showed a significantly higher expression compared to their respective MP for CD133, TWEAKR, JAG1, LAM1, ITGA3, ITGB4, MUC1 and ALB; the SP of the K19-positive HCCs for EPICAM, TWEAKR, CXCR4, ITGA6 and ITGB1; and the SP of the combined HCC/CC for EPICAM and ITGA3. ITGA3 was significantly reduced in both the SP of K19-positive HCCs. No significant differences were found for the biliary/HPC marker SOX9 or the ABC-transporters MRP1, MRP2, MRP3 and ABCG2. The mesenchymal markers VIM and aSMA, the hematopoietic marker CD45 and the endothelial marker CD31 were not significantly differentially expressed, suggesting that these cell types are not overrepresented in either SP or MP. A comparison of the different SP fractions for each group can be found in Supplementary Fig. 3.

Human cancer stem cells

Sorted samples were analysed by qPCR to examine the purity and to investigate biliary/HPC/stemness features. Compared to the MP, the SP of each group showed significantly elevated expression for the biliary/HPC markers KRT19, KRT7 and TACSTD2, the extracellular matrix marker LAMC2 and the ABC-transporter MDR1 (Table 1). In addition, the SP of the K19-negative HCCs showed a significantly higher expression compared to their respective MP for CD133, TWEAKR, JAG1, LAM1, ITGA3, ITGB4, MUC1 and ALB; the SP of the K19-positive HCCs for EPICAM, TWEAKR, CXCR4, ITGA6 and ITGB1; and the SP of the combined HCC/CC for EPICAM and ITGA3. ITGA3 was significantly reduced in both the SP of K19-positive HCCs. No significant differences were found for the biliary/HPC marker SOX9 or the ABC-transporters MRP1, MRP2, MRP3 and ABCG2. The mesenchymal markers VIM and aSMA, the hematopoietic marker CD45 and the endothelial marker CD31 were not significantly differentially expressed, suggesting that these cell types are not overrepresented in either SP or MP. A comparison of the different SP fractions for each group can be found in Supplementary Fig. 3.

Side population displays elevated expression of hepatic progenitor cell markers

Since mRNA expression levels of the biliary/HPC marker KRT19 and the extracellular matrix marker LAMC2 (encoding the γ2-chain of Ln-332) were upregulated in the SP of each histological group, we aimed to analyse their protein expression in vivo using immunohistochemistry. As expected, K19-negative HCCs showed no positivity for K19 on protein levels (Fig. 2), while immunoreactivity for the γ2-chain of Ln-332 was only observed focally in the cytoplasm and in the surrounding of small tumour cells. In K19-negative HCCs, K19 displayed a submembranous staining pattern, prominently in small to intermediate-sized cells (Fig. 2). The γ2-chain staining pattern was similar to K19-negative HCCs, though the number of positive cells was noticeably higher in the K19-negative HCCs. Combined HCC/CCs showed a strong immunopositivity for K19 in the cholangiocyctic differentiated area and the ductular area, and a scattered positivity in the hepatocytic differentiated area (Fig. 2). The γ2-chain of Ln-332 was prominently expressed in the ductular area. In the surrounding non-tumoural tissue, the γ2-chain was seen as part of the extracellular matrix surrounding the K19-positive HPCs.
a single HPC was observed to show cytoplasmic positivity for the γ2-chain of Ln-332 (Fig. 2, arrow). Additionally, γ2-chain immunopositivity was noted in parts of the inflammatory cells and endothelial cells in both tumour tissue as surrounding liver tissue.

Immunofluorescent double stainings showed that K19 and the γ2-chain of Ln-332 were strongly co-expressed in the ductular area of the combined HCC/CCs, whereas the γ2-chain was low in the hepatocytic differentiated area where a gradual loss of K19 was noted (Fig. 3A). Moreover, in areas where the γ2-chain of Ln-332 was strongly present, the Ki67 nuclear positivity was reduced, indicating a lower proliferation rate (Fig. 3A).

Only the dissociated primary combined HCC/CCs showed capacity to survive in standard cell culture conditions. Characterisation by immunocytochemistry (at passage 12) revealed that these cells were positive for K19, the γ2-chain of Ln-332 and the complete protein Ln-332 (Fig. 3B).

Ln-332 induces K19 expression, quiescence and chemoresistance in vitro

In view of the strong correlation between the γ2-chain of Ln-332 and HPC morphology (K19 expression and low proliferation index), we focused on the influence of Ln-332 in vitro to assess whether it has a direct effect on 'stemness' features of hepatic carcinomas. The Hep3B2 cell line was found to be positive for K19, γ2-chain of Ln-332 and integrin α6 (ITGA6) (Fig. 4A). Hep2C2 showed focal positivity for K19, low to no expression for the γ2-chain and strong positivity for ITGA6. PLC/PRF/5 was negative for all three markers. After a period of 72 h, Ln-332 coating...
significantly increased mRNA expression of KRT19, TACSTD2 and KL4 in HepG2, and KRT19, EPCAM, CD133/PROM1 and JAG1 expression in Hep3B2 cells. No differences were noticed in the PLC/PRF/5 cell line (Fig. 4B).

Using HepG2 as a model focally positive for K19 and low/negative for the γ2-chain of Ln-332, Ln-332 coating increased the number of K19-positive tumour cells and the phosphorylation of mTOR (Ser2481), and reduced the expression of the mitotic marker pH3 (Fig. 4C, D). Morphologically, coated cells grew less in clusters and had irregular shapes with extended filopodia formation. Treatment (72 h) of coated HepG2 cells with rapamycin (mTORC1 inhibitor) ameliorated the effect of Ln-332, more K19 and less pH3 expression, while treatment with WYE-687 (mTORC1+C2 inhibitor) diminished this effect (Fig. 4D, E).

After 72 h Ln-332 coated HepG2 cells displayed an increased SP fraction of 3.00 ± 1.28% compared to 0.17 ± 0.15% found in non-coated cells (Fig. 4F). Additionally Ln-332 coating significantly increased resistance to doxorubicin (20 μM) or sorafenib (10 μM and 20 μM) treatment (Fig. 4G).

HepG2 cell colony formation assays showed that Ln-332 improved survivability after a period of ten days. Intriguingly, the growth pattern of the coated cells was observed as scattered single cells rather than clonogenic colonies, suggesting induction of cell quiescence (Fig. 5A).

Ln-332 delays tumour growth and sustains K19 expression in vivo

The *in vivo* effect of Ln-332 was investigated in a subcutaneous xenograft model injected using HepG2 cells with or without matrigel and/or Ln-332. Tumour formation was observed in both flanks of each animal, with the exception of one animal (HepG2 +Ln-332 group), which only formed a tumour on one flank. Four weeks after tumour inoculation, tumour growth was first observed in an animal injected with HepG2+matrigel. From that time point all animals were monitored daily for a total period of ten days and then sacrificed. Ln-332 significantly reduced tumour growth either with or without matrigel injection (Fig. 5B, C). Mixed model ANOVA analysis of the growth curves can be found in Supplementary Table 2. Morphologically, tumours injected with Ln-332 displayed more stromal and microvascular invasion, as well as invasion in the underlying muscular layer, compared to the tumours that were not injected

Table 1. Side population displays elevated expression of hepatic progenitor cell markers.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold expression SP/MP</th>
<th>K19 neg HCCs</th>
<th>K19 pos HCCs</th>
<th>Combined HCC/CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progenitor cell markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRT19</td>
<td>Keratin 19</td>
<td>2.90 (p <0.05)</td>
<td>4.82 (p <0.05)</td>
<td>6.28 (p <0.01)</td>
<td></td>
</tr>
<tr>
<td>KRT7</td>
<td>Keratin 7</td>
<td>7.14 (p <0.05)</td>
<td>8.99 (p <0.05)</td>
<td>5.47 (p <0.05)</td>
<td></td>
</tr>
<tr>
<td>EPCAM</td>
<td>Epithelial cell adhesion molecule</td>
<td>1.52</td>
<td>4.67 (p <0.05)</td>
<td>2.02 (p <0.01)</td>
<td></td>
</tr>
<tr>
<td>TACSTD2/TROP2</td>
<td>Tumor-associated calcium signal transducer 2</td>
<td>22.32 (p <0.01)</td>
<td>5.52 (p <0.05)</td>
<td>7.50 (p <0.05)</td>
<td></td>
</tr>
<tr>
<td>PROM1/CD133</td>
<td>Prominin 1</td>
<td>7.50 (p <0.05)</td>
<td>201.2</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>SOX9</td>
<td>SOX9 SRY (sex determining region Y)-box 9</td>
<td>3.24</td>
<td>0.82</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>TNFRSF12A/TWEAKR</td>
<td>Tumor necrosis factor receptor superfamily, member 12A</td>
<td>5.60 (p <0.01)</td>
<td>2.31 (p <0.05)</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td>Chemokine (C-X-C motif) receptor 4</td>
<td>0.71</td>
<td>3.19 (p <0.05)</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>JAG1</td>
<td>Jagged 1 (Alagille syndrome)</td>
<td>10.67 (p <0.05)</td>
<td>1.65</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>ATP-binding cassette transporters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB1/MDR1</td>
<td>ATP-binding cassette, sub-family B (MDR/TAP), member 1</td>
<td>1.81 (p <0.05)</td>
<td>10.11 (p <0.05)</td>
<td>6.45 (p <0.05)</td>
<td></td>
</tr>
<tr>
<td>ABCB1/MRP1</td>
<td>ATP-binding cassette, sub-family C (CFTR/MRP), member 1</td>
<td>1.36</td>
<td>6.24</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>ABCB2/MRP2</td>
<td>ATP-binding cassette, sub-family C (CFTR/MRP), member 2</td>
<td>42.29</td>
<td>20.3</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>ABCB3/MRP3</td>
<td>ATP-binding cassette, sub-family C (CFTR/MRP), member 3</td>
<td>19.61</td>
<td>35.68</td>
<td>2.41</td>
<td></td>
</tr>
<tr>
<td>ABCF2</td>
<td>ATP-binding cassette, sub-family F (GJC20), member 2</td>
<td>2.68</td>
<td>1.71</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Laminin and integrin receptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMB1</td>
<td>Laminin, beta 1</td>
<td>4.40 (p <0.05)</td>
<td>8.14</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>LAMC2</td>
<td>Laminin, gamma 2</td>
<td>18.54 (p <0.01)</td>
<td>6.12 (p <0.05)</td>
<td>15.63 (p <0.05)</td>
<td></td>
</tr>
<tr>
<td>ITGA3</td>
<td>Integrin, alpha 3</td>
<td>11.85 (p <0.01)</td>
<td>0.04 (p <0.05)</td>
<td>2.10 (p <0.05)</td>
<td></td>
</tr>
<tr>
<td>ITGA6</td>
<td>Integrin, alpha 6</td>
<td>1.53</td>
<td>10.49 (p <0.01)</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>ITGB1</td>
<td>Integrin, beta 1</td>
<td>1.23</td>
<td>3.87 (p <0.05)</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>ITGB4</td>
<td>Integrin, beta 4</td>
<td>2.96 (p <0.01)</td>
<td>2.26</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Biliary marker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC1/EMA</td>
<td>Mucin 1, cell surface associated</td>
<td>9.98 (p <0.05)</td>
<td>2.72</td>
<td>4.05</td>
<td></td>
</tr>
<tr>
<td>Hepatocytic marker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALB</td>
<td>Albumin</td>
<td>6.13 (p <0.05)</td>
<td>1.36</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>Mesenchymal markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIM</td>
<td>Vimentin</td>
<td>0.75</td>
<td>1.21</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Endothelial marker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAM1/CD31</td>
<td>Platelet/endothelial cell adhesion molecule</td>
<td>0.37</td>
<td>0.41</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Hematopoietic marker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTTPR/CD45</td>
<td>Protein tyrosine phosphatase, receptor type, C</td>
<td>0.38</td>
<td>2.63</td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>
with Ln-332 (Fig. 5C; Supplementary Fig. 4). In addition, tumours injected with Ln-332 showed a higher expression of K19, which appears scattered throughout the tumour with a concentration at the invasive front (Fig. 5D; Supplementary Fig. 4).

Discussion

Current therapeutic strategies for the treatment of hepatic cancer mostly focus on the inhibition of tumour growth, though the results are often unsatisfactory [19]. A prerequisite for the development of new therapies is a good understanding of tumour behaviour and, in particular, understanding the resistant CSC population. The occurrence of HPC markers in hepatic cancer (e.g. HCCs) has been used for prognostic stratification, however to date the relationship between CSCs and HPC features remains unclear [20]. In this study we showed that the size of the CSC fraction (isolated based on the functionality of their ABC-transporters) gradually increases with the degree of HPC features found in hepatic carcinomas, reflecting the possible cell of origin. Holczbauer et al. recently found similar results in mice, reporting that the SP/CSC population is the largest in cell lines derived from different hepatic lineage (e.g. hepatocytes, HPCs and hepatoblasts) [21]. One important player that determines the behaviour of stem cells in general is their specialised microenvironment [22]. We especially focused our study on the role of the γ2-chain of Ln-332 as our group previously showed that its expression was associated with HPC features in HCCs and as other groups described it as a poor prognosis indicator in hepatic cancer [7,23]. Importantly, this current study showed that the γ2-chain was part of the neoplastic CSC niche, as well as the non-neoplastic HPC niche, more specifically in tumour areas with a low proliferation rate and high K19 expression.

In vitro, Ln-332 induced a phenotype switch in hepatic carcinoma cells by pushing them towards a more quiescent cell state and a more biliary/HPC phenotype [24,25]. The Ln-332-induced cell phenotype interestingly proved to be more resistant to doxorubicin and sorafenib treatment. Quiescence and chemoresistance are regarded as typical characteristics of both CSCs as well as normal stem cells [26]. Previous studies in glioblastoma, colorectal and pancreatic cancer showed that slow-cycling tumour cells in a reversible state of quiescence are actually responsible for chemoresistance and recurrence [27–29]. Remarkably, Ln-332 not only protects hepatic cancer cells against chemotherapy but stimulates cell proliferation upon sorafenib exposure. In xenograft mouse models.
Fig. 4. Ln-332 induces K19 expression, quiescence and chemoresistance in vitro. (A) Hep3B2, HepG2 and PLC/PRF/5 HCC cell lines were characterised for K19, the γ2-chain of Ln-332 and integrin α6 (ITGA6) expression. (B) The effect of Ln-332 (t = 72 h) coating on mRNA expression of the Hep3B2, HepG2 and PLC/PRF/5 cells was analysed using qPCR. Results are displayed as relative fold expression, normalised to housekeeping genes (n = 3 per cell line) (Mann-Whitney U test; *p < 0.05). (C, D) The effect of Ln-332 coating on K19, phospho-histone H3 (pHH3) protein and phosphorylated mTOR (pmTOR Ser2481) expression in HepG2 cells (n = 4) was visualised with immunocytochemistry. Immunopositive cells were counted in five high power fields (Mann-Whitney U test; **p < 0.01; ***p < 0.005). (D) The effect of Ln-332 coating on K19, phospho-histone H3 (pHH3) protein and phosphorylated mTOR (pmTOR Ser2481) expression in HepG2 cells (n = 4) was visualised with immunocytochemistry. Immunopositive cells were counted in five high power fields (Mann-Whitney U test; **p < 0.01; ***p < 0.005). (E) Immunofluorescent double staining for K19 and pHH3 on HepG2 cells in non-coated condition, Ln-332 coated condition or Ln-332 coated condition supplemented with mTOR inhibitors (either rapamycin or WYE-687; n = 4). (F) The effect of Ln-332 coating on the SP phenotype in HepG2 cells was assessed using the fluorescent dye Hoechst3342 and the ABC-transporter blocker verapamil (n = 3). (G) Coated and non-coated HepG2 cells (t = 72 h) were submitted to a doxorubicin (1 μM and 20 μM) and sorafenib (1 μM, 10 μM and 20 μM) treatment for 48 h (n = 4). The proliferation rate was assessed using a BrdU incorporation assay. (Scale bars 100 μm) (Mann-Whitney U test; **p < 0.01; ***p < 0.005).

derived from primary urothelial carcinomas, cytotoxic chemotherapy induces proliferation of a sub-fraction of the tumour cells, more precisely the K14-positive ones, despite the reduction seen in the tumour size [30]. So it might be possible that Ln-332 induces quiescence in hepatic cancer under ‘normal’ circumstances and that once under cellular stress (e.g. sorafenib treatment) these cells react by enhanced proliferating. Laminin-mediated activation of the mTOR pathway has been reported to induce cell survival and chemoresistance in small cell lung cancer [11]. The mTOR kinase has multiple downstream effects depending on which distinct protein complex it forms, termed mTORC1 and mTORC2 [31]. The mTORC1 complex promotes cell growth by inducing metabolic processes in response to nutrients and oxygen, whereas the mTORC2 complex responds to growth factors and regulates cell survival, as well as the cytoskeleton [12]. Our study shows that the effect of Ln-332 is mTORC2-dependent, which is further enhanced upon mTORC1 inhibition (more K19 expression and quiescence). Presumably,
there is a shift towards mTORC2 activation, driving the cells into ‘survival mode’.

Rictor, a binding partner of the mTORC2 complex, has recently been linked with early recurrence after curative treatment and poor overall survival in patients diagnosed with HCC [32]. Marquardt et al. reported that when treating HCC cell lines with zebularine, a DNA methyltransferase-1 inhibitor, the SP fractions showed a differential expression of Rictor, associated with an increase in the expression of biliary/HPC cell markers (e.g. KRT19) [16]. The possible link between mTORC2 and Ln-332-induced phenotype switching could have a huge impact on current on-going clinical trials. It might explain why rapamycin, a specific mTORC1 inhibitor, fails its benefit as adjuvant therapy, as it presumably misses its effect on CSCs.

Even though we found a CSC fraction in each histological group, Ln-332 failed to induce 'stemness' markers in the PLC/PRF/5 cell line, characterised as K19-negative. The lack of expression of the ITGA6, one of the receptor subunits for Ln-332, in this cell line could explain why no differences were observed. The presence or absence of specific markers/receptors might reflect the cell of origin [33].

The SP of the K19-positive HCCs is unique in its high expression of CXCR4, a typical CSC marker linked with lymph node metastasis and poor survival in human HCCs [34]. CXCR4 expression was observed at the tumour border as well as in small cells scattered in the tumour bulk, similar to the K19 expression pattern as seen in the human samples and in the xenograft models (Supplementary material). This underlines the complex nature of CSCs. Further research in localisation of CSCs and how they interact with their environment will be necessary.

The future challenge in treatment of hepatic cancer will not only be to reduce tumour growth, but also to target CSCs and their specialised niche. As the CSC phenotype differs depending on the histological subtype, a more personalised treatment would be required for each individual patient diagnosed with hepatic cancer.

Our study demonstrates that tumour behaviour is plastic and depends on the microenvironment of the tumour cell. We particularly identified an important role for Ln-332 and more specifically its γ2-chain as part of the specialised CSC niche in maintaining and supporting ‘stemness’, e.g. quiescence and chemoresistance. Therefore, monoclonal antibody treatment targeting the γ2-chain of Ln-332 could provide an innovative therapy of hepatic cancer.

Fig. 5. Ln-332 promotes survival and delays tumour growth. (A) Colony forming assay for HepG2 cells in coated and non-coated condition (t = 10, n = 3). Cells were visualised and quantified for each well (unpaired Student’s t test; **p < 0.01). (B) HepG2 cells were subcutaneously injected in NOD/SCID mice. Animals were categorised into four groups: HepG2, HepG2+Ln-332, HepG2+matrigel and HepG2+matrigel+Ln-332. After four weeks tumour growth was observed. From that time point all animals were monitored daily for a total period of ten days and then sacrificed. (Mixed model ANOVA; *p < 0.05; detailed statistical analysis: see Supplementary material). (C) Macroscopic picture (left) and haematoxylin-eosin staining (right) of xenograft tumours obtained from HepG2+matrigel injected either with or without Ln-332. Arrow indicates microvascular invasion. (D) Immunohistochemistry was used to examine the effect of Ln-332 on K19 expression in the xenograft models (Scale bars 200 μm).
Financial support

This study was supported by a grant from the Belgian Federal Science Policy Office (Interuniversity Attraction Poles program – P6/20 and P7/83–HEPRO), the Fund of Scientific Research Flanders FWO G.0348.13N and the Austrian Science Fund (FWF), T597 (MP) and FWF P25356 (WM).

Conflict of interest

The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Authors’ contributions

OG and TR designed the study. OG, JW, MP, YV, KVD, AC, GG, HVV, WM collected and analysed in vitro and in vivo data. OG, SL, LD, LG, LVC, HV performed SP analysis. OG, AVDB, FN, BT, MK, TR included patients. MK and TR performed histological classification. OG and TR drafted the manuscript.

All authors revised the manuscript critically for intellectual content, and have approved the final version.

Acknowledgements

The authors would like to thank Prof. Dr. Valeer J. Desmet, Prof. Dr. Joost van den Oord, Christophe Empsen and Paula Aertsen for their indispensable support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jhep.2015.11.011.

References