
Drivers of existing and emerging food safety risks: Expert opinion regarding multiple impacts.

Food Control 2018

DOI: https://doi.org/10.1016/j.foodcont.2018.02.018

Copyright: © 2018. This manuscript version is made available under the [CC-BY-NC-ND 4.0 license](https://creativecommons.org/licenses/by-nc-nd/4.0/)

DOI link to article: https://doi.org/10.1016/j.foodcont.2018.02.018

Date deposited: 22/02/2018

Embargo release date: 19 February 2019

This work is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence](https://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Food-borne risks represent a serious threat globally (FAO, 2006) and have negative impacts in all countries and regions (Ercsey-Ravasz et al., 2012; Johnson et al., 2012; Prakash, 2014; Wu and Chen, 2013). Despite attempts to manage food safety, food borne illness has considerable negative impacts on public health (Havelaar et al, 2010). Food safety has been recognised by many national governments as a major social cost, threatening consumer health, producing inefficiencies in animal and plant production systems, and creating trade barriers across the global food web. Substantial resources have been invested in national and regional initiatives (including those focusing on research, scientific training programmes, and enactment of regulation to protect the environment and human health), which aim to improve international food safety standards. However, external drivers of food safety, which originate in the social and natural domains, mean that new food risks continue to emerge (van de Brug et al., 2014; Sundström et al., 2014; Smith et al.; 2014). Hence, the aim of this research is to identify and map the views of international experts regarding the knowledge gaps associated with the drivers of existing and emerging food risks, as well as understand the potential barriers to risk identification and management. Emerging food risk identification, prevention and mitigation will, at the global level, require harmonisation of existing evidence regarding what is, and what is not, known about emerging risks worldwide, as well as the need to integrate different methodological approaches in single predictive models to ensure transparent and proactive assessment of these risks.

Emerging food risk is defined as an unanticipated risk that occurs accidently or naturally, as well as arising from deliberate fraud or acts of malevolence (Kennedy, 2012; Marvin et al, 2009; Spink and Moyer, 2011; Schwägele, 2005). The extent to which an emerging food risk affects the health of citizens and animals, and the environment, or has economic or social impacts, may depend upon a country or region’s level of development,
internal regulatory system, infra-structure, and capacity relating to identification and mitigation strategies. The impact of such risks may also negatively affect the (regional, national and international) economy and have social consequences (for example, on employment). Direct economic costs include those risks attributable to health care and time lost from employment, plus costs incurred by industry as a consequence of food recalls (Oken et al, 2012). Indirect costs may include loss of consumer confidence in types of food product or specific brands, resulting in lost sales (Jensen and Jensen, 2013; Pennings et al, 2002).

Emerging food risks are not necessarily new risks. Some have only recently been identified due to improved detection techniques (Skovgaard, 2007), while others are the result of mutations and adaptations of well-known microorganisms. In some cases, risks emerge as an unintended side effect of a deliberate control measure (Li et al, 2015; Ladics et al, 2015). Other risks may emerge in specific regions due to changes in external conditions. For example, climate change may introduce tropical food safety hazards in regions with a (previously) moderate climate (Zhang et al, 2008). Global food risk management can only be as effective as local food risk management, which in turn will depend on the effectiveness of localised regulation (and the extent to which these regulations are enforced locally), socio-cultural factors (e.g linked to local cooking practices), and the immediate environment. Local factors may determine whether a food risk emerges in the first place, and whether it can be identified, managed and, if necessary, mitigated.

Regional differences in the application of safety standards may compromise international trade and, as a consequence, have a negative impact on food security (Lee et al, 2012). In this context, the increasing complexity of the food supply (often at the global level) has sometimes resulted in the more rapid national and international spread and impact of food safety problems, which indicates the urgent need for knowledge exchange at the regional, national and international levels across stakeholder groups (Marucheck et al, 2011). Various
potential drivers of existing and emerging food safety risks can also be identified, indicating that food safety policies must address drivers and their consequences originating in both the natural and social domains.

Given that drivers of food safety risks, such as climate change, fraud, unintended effects of implementation policies, perceived risks of new technologies (e.g. biotechnology and nanotechnology), and demographic developments are experienced around the world (albeit with potentially different health, environmental and economic impacts), it is important to acknowledge that policy responses must also include elements which are rooted in different levels of knowledge, cultural traditions and practices, and socio-historical contexts, all of which are also subject to temporal change and influence by external events (Bielenia-Grakewska, 2015; Frewer et al, 2016; Jacobs et al, 2015; Loebe et al, 2011).

Globally, research programmes generate a huge amount of data that could help policy makers and industry deal successfully with the challenges associated with food safety (Crandall et al, 2012; Feskens et al, 2011; Havelaar et al, 2013; Jespersen and Halberg, 2012; Jia and Jukes, 2013; Percy, 2011; USDA, 2015). Thus, at the international level, cooperation on food safety and the sharing of food safety knowledge may lead to more efficient use of research funds, the sharing of best practices, the development of effective risk mitigation strategies and food risk policies (Käferstein and Abdussalam, 1999; Wentholt et al, 2010), and durable partnerships between international food trading partners (Meunier and Nicolaidis, 2006).

In order to explore the views of international experts regarding the knowledge gaps associated with the drivers of existing and emerging food risks and the potential barriers to risk identification and mitigation, the following research questions were developed:

1. What are the drivers of existing and emerging food safety risks according to experts?
2. Do experts consider some drivers of existing or emerging food safety risks to be more important in some regions of the world?

3. Do drivers have a positive or negative impact on the occurrence food safety risks?

4. Are barriers to effective food risk identification and mitigation identifiable? Do these differ for existing and emerging food risks?

5. How might identified barriers be addressed in policy?

2. Methods

Eliciting the opinions of international food safety experts required a method that permitted consultation with geographically dispersed participants. The Delphi methodology is a convenient and economical facilitative mechanism that permits interaction and dialogue between experts that are located in different regions of the world (Stow et al., 2015; Wentholt et al., 2010). It combines the interactivity of group meetings and the practicality of survey methods. Typically, Delphi methodology involves iterated questionnaires being presented anonymously to experts, with controlled feedback between rounds, and the equal weighting of final round responses to produce a group judgement (Linstone and Turoff, 1975).

Variations of the method exist, in terms of the number of rounds used, whether or not the first round is structured (quantitative) or unstructured (qualitative), whether the process takes place using paper-and-pencil questionnaires or ‘online’ data collection methods, whether the process is synchronous or asynchronous. These variations have been reported to have been applied in the literature (e.g. Gordon and Pease, 2006; Rowe et al., 1991). The aims of the approach may vary, that is, Delphi may be conducted in order to gain expert consensus or, importantly, identify dissensus where this exists (e.g. see Turoff, 1970). Typically, Delphi surveys have at least two rounds, whereby participant responses from the first round are fed back to respondents with the aim of providing feedback on the views of other experts regarding the issue at hand. Delphi methodology has successfully been applied to a range of
issues in the food safety domain (Frewer et al., 2011; Kim et al., 2013; More et al., 2010; Soon et al., 2012; Strohbehn et al., 2004; Wentholt et al., 2010; Wentholt et al., 2012). The utility of the method to issues associated with agricultural and food safety policy has therefore been established.

In accordance with the practical recommendations given by Frewer et al., (2011) an exploratory workshop was held in Brussels on March 5th, 2013 at the Northern Ireland Executive Offices. Thirty-eight experts from EU member states were invited via email to participate in the scoping workshop. Experts were identified through the personal networks of the EU-FP7 Collab4safety project consortium members. The workshop was attended by 29 experts including, 15 external food safety experts, representing organisations including the FAO, the European Food Safety Authority and food industry, and 14 researchers/academics from eight countries (i.e. Brazil, Ireland, France, The Netherlands, Poland, Portugal, Russia and the UK). The use of a preliminary workshop provides opportunity for interactive discussions to shape the Delphi survey itself, and represents a slight hybridisation of classical Delphi methodology (Landeta, et al, 2011). The workshop (as a preliminary stage of a Delphi exercise) aimed to identify and refine key issues to be included within the first round of the Delphi survey. Following a plenary session, where the objectives of the workshop were presented, the participants were assigned to 1 of 3 groups. Each group had a moderator, observer and a rapporteur drawn from consortium members, and discussed different topics for 2 hours in total during a moderated discussion. Each group was given a different set of 3 drivers (i.e., demographic change, economic driving forces, environmental driving forces, technological driving forces, geopolitical driving forces, societal values, consumer priorities, malevolent activities, and increased complexity and size.

1 Collab4safety is an EU-FP7 funded project. For more information about Collab4Safety see http://collab4safetyfoodsafetyportal.eu/index.php/home/index/en.

2 These countries represent the project partners of the Collab4Safety project.
of the supply chain) that had been identified prior to the workshop by the consortium partners of the EU-FP7 Collab4Safety project. The participants in each group were asked to list existing threats to food safety, emerging risks to food safety, research needs, training needs, evidence needed for policy development, and national and international policy gaps in relation to each driver. They were also asked to identify one important driver of emerging food risks and list the above regarding this particular driver. As a result, 3 new drivers (i.e., food risk representation in the media, water security, and political will) were suggested by the groups. Resource shortages that was previously included in environmental driving forces was suggested as a separate driver, making 13 drivers in total that were included in the first round Delphi survey. The key results from the workshop are summarised in Table 1, which is presented with additional supporting literature (Kaptan et al, 2013).

TABLE 1 HERE

The outputs of the workshop were used to inform the design of the first round of the Delphi survey, together with findings from a comprehensive literature review. Following a pilot survey, the questionnaire was adjusted, translated into six languages (i.e. French, Portuguese, Spanish, Polish, Chinese and Russian) and then back-translated into English to ensure meaning was retained in the translations. The first round survey was predominantly comprised of closed response questions, although each question was followed by an open response option to allow experts the opportunity to support their answers or indeed provide further issues for consideration. The survey questions focused on eliciting expert opinion regarding the primary drivers of existing and emerging food safety risks, identified as an outcome of the scoping workshop (see Table 1) and the direction (i.e. an increase or decrease) of these drivers on food safety risks. Prioritisation of both existing and emerging food safety risks, which had been suggested by the literature, Collab4Safety partners, and workshop participants in relation to the drivers was explored in terms of importance at the
national and global level. The research and policy gaps relevant to the effective identification
and mitigation of existing and emerging food safety risks included in the Delphi survey were
also identified as a result of the literature review, consultancy with Collab4Safety project
partners, and output of the group discussions at the workshop. Experts were asked to consider
these at the national and global level. Additionally, background information about the
experts participating in the survey (i.e. gender, age group, country of work, type of
organization, area of expertise and job experience) was also collected.

A second round survey sought to build on the findings of the first round. Round 2 aimed
to quantify differences in opinion identified in round 1 and establish directions for the future.
Kher et al., (2010) advocates that 50% agreement can be taken as the threshold for consensus.
In general, a high rate of expert consensus was found in the first round and agreement in this
study was therefore taken as >60%. However, the analysis of the round 1 survey showed that
there was ‘no overall’ agreement that the following drivers, technological changes,
geopolitical driving forces, societal values, consumer priorities, political will, and food risk
representation in the media, would increase or decrease existing or emerging food safety
risks. This was fed back to participants in the round 2 survey.

Overall agreement that the drivers demographic change, economic driving forces, resource
shortages, environmental driving forces, increased complexity and size of the supply chain,
water security, and malevolent activities, increase or decrease existing and emerging food
safety risks was found. The result was also fed back to the participants of the round 2 survey.

Subsequently questions relating to food safety risks and research and policy gaps were asked
to round 2 participants, were asked only in relation to these drivers. In addition, some
questions included in the round 1 survey were further explored in round 2 because of polarity
in responses. For example, in relation to the barriers to effective identification and mitigation
of food risks, 47% agreed that, in their country, there are few skilled professionals working in
the area of food safety. Thus, round 2 survey participants were fed back information about this result and asked about training and capacity building needs in their own countries.

Feedback from the first round was provided to expert participants, and a mixture of closed and open response questions permitted experts to elaborate on their responses. Given the high rate of consensus obtained in the first round, the second round contained fewer survey questions than the first. Table 2 provides a complete description of the questions asked in both rounds of the Delphi and a full version of both surveys are available from the authors on request.

2.1 Sampling

Based on selection criteria (e.g. geographical location and sectorial representation) n=504 experts were selected from a stakeholder database (n=1,257) created within the Collab4Safety project, and were invited to participate in the first round of the online Delphi survey. Data for the first round survey were collected between December 2013 and January 2014. To increase international participant response rates, participants were offered the opportunity to complete the survey in any one of eight languages (English, Dutch, Chinese, Spanish, Portuguese, French, Polish and Russian). To encourage participation, follow-up emails were sent to participants that had not responded at the mid-point of the survey launch, a week prior to the survey closing, the day before the survey closed, as well as a week after the survey had closed. A total n=106 completed questionnaires were collected in round one. The second round was conducted between October and November 2014. An email invitation was sent to all respondents (n=106) from round one including anonymised feedback on issues where consensus had not occurred in the first round. Again, the second round survey was translated and available in same eight languages as round 1. The same follow up procedures
established in round 1 were followed in round 2. A total of n=42 responses to the second round survey were collected achieving a 40.5% response rate.

2.2 Data Analysis

Analysis was conducted in response to the questions framing the research. To address research question 1, descriptive statistics were used to identify areas of consensus in terms of agreement and disagreement and the polarisation of views. ‘Reasonable consensus’ in this case was regarded as more than 60%. Second, analysis of variance (ANOVA) was performed using the LM function in R package 3.2.1 to identify statistically significant drivers of existing and emerging risk, and to explore whether there was a significant difference between the expert ratings of importance regarding the drivers of existing, compared to emerging, food safety risks.

As the response variable was categorical, multinomial regression using the nnet package (Venables and Ripley, 2002), in the R programme (R Core Team, 2016), was used to identify significant interactions between drivers of existing and emerging food safety risk and the following variables; expert’s geographical region, level of expertise, gender and age. The global model included all interactions. AIC (Akaike’s Information Criterion) to select the most parsimonious models (ΔAIC <2), and model averaging using the MuMIN package (Barton, 2016) was used. In response to research question 2, analysis of variance (ANOVA) was performed to explore whether there was significant differences in the impact of some drivers of existing and emerging food safety risks in different parts of the world. To explore the impact (positive or negative) on the occurrence of food safety risks (research question 3), graphs were produced using ‘ggplot2’ (Wickham, 2009) in R, to map the extent to which experts considered drivers to be increasing or decreasing food safety risks, against the geographical region in which the expert was working. Finally, barriers to the effective identification and mitigation of food safety risks and gaps in current food safety research (research questions 4 and 5) were ranked
using mean response, with low mean response scores (i.e. mean value close to 1=agree) and low variation across the sample indicated by Z-score.

3. Results

3.1 Sample

A final sample of 106 responses was achieved in round 1 (21% response rate). In round 2, 42 participants completed the questionnaire (40.5% response rate) (see Table 3). A reduction in response between rounds is typical within Delphi surveys, and in this case there was a 60% reduction in response between the first and second round surveys. Wentholt et al (2010) report a 27% response rate between the first and second rounds of a Delphi survey applied to food safety issues. The time which elapsed between the first and second rounds may provide a possible explanation for the higher than average rates of attrition in the current study. Using the criteria of age (57% of the total respondents in round one, were aged 45 and over) and number of years of experience in current job (73.6% of the participants in round 1 reported having >10 years of experience in their current role), the participants were reasonably senior within their respective organisations. Having greater levels of responsibility associated with more senior positions, and so being particularly engaged with high level work issues, may also have been problematic in terms of second round response attrition.

Women were underrepresented in both rounds with 30% female participants in round 1 and 38% in round 2, which may reflect differences in the extent to which women work in the food safety area. European participants dominated both samples (round 1, 43% and round 2, 52.4%) which are consistent with previous Delphi studies focused on agrifood policy sponsored by the European Commission (Wentholt et al, 2010; Wentholt et al, 2009).

INSERT TABLE 3 HERE
Consistent with previous Delphi studies focused on agri-food policy funded by the EU Commission (Wentholt et al, 2010; Wentholt et al, 2009), there was a relatively low response rate from experts residing outside of the EU. In order to permit comparative analysis, respondents were categorised as being ‘European’ (due to the unitary regulation) or ‘International’ experts.

3.2 Drivers of existing and emerging food safety risk

In accordance with research question 1) *What are the drivers of existing and emerging food safety risks according to experts?*, descriptive statistical analysis based upon the highest percentage agreement (>60%) was adopted to provide an initial identification of the drivers agreed by experts to increase or decrease existing and emerging food safety risks. Seven key drivers of existing and emerging food safety risks were identified: *demographic change, economic driving forces, resource shortages, environmental driving forces, increased complexity of the food supply chain, water security and malevolent activities*. In a second stage, regression analysis was performed to identify the statistically significant drivers of existing and emerging food safety risks (see Table 4). The drivers *economic driving forces, resource shortages and environmental driving forces*, were statistically significant and could therefore be regarded as the main determinants of both existing and emerging food safety risks. These risks represent both socio-economic and biophysical challenges to the mitigation of food safety risks. Further analysis was conducted to explore whether there was a significant difference between the expert ratings of importance regarding the drivers of existing, compared to emerging food safety risks. AIC indicated that the distinction between drivers of existing and emerging food safety risk did not explain sufficient variation to justify additional model complexity. It can therefore, be argued that the experts perceive there to be no substantial differences between the drivers of existing and emerging food safety risks, at least for the period under consideration, and perhaps unsurprisingly, experts regard drivers of existing food safety risk to also represent emerging risks.
Multinomial regression was then used to explore drivers with significant interactions, in other words, to identify drivers with differences in significance based on a range of expert characteristics. Interactions between drivers and the following variables were explored; region represented by experts, area of expertise, gender and age (see Annex 1 and 2 for analytical outputs). For all models, model selection did not retain interaction terms. Drivers with large coefficients and small standard errors were identified to be the primary determinants of existing and emerging food safety risks. Limited statistically significant interactions were found, although, three drivers of existing food safety risks with statistically significant interactions were identified; societal values, technological changes and water security. Perhaps unsurprisingly, drivers of existing risks were also identified to be drivers of emerging risk with significant interactions, namely societal values and technological changes. Additionally, media representation, political will were also found to be identified to be drivers of emerging food safety risks with significant interactions.

3.3 Regional differences in drivers of existing and emerging food safety risks and the impacts upon food safety risks

Drivers of existing and emerging food safety risks are likely to have varying impacts in different regions of the world. A lack of statistical power and risk of overfitting the data precluded robust inferential analysis. However, ANOVA (of round 2 data) was conducted to explore whether there was significant difference in the impact of some drivers of existing and emerging food safety risks in different parts of the world. For analysis, expert responses by geographical region were divided into seven ‘supra- regions’ (Africa (n=6), Asia (n=2), Australasia (n=3), BRICS (n=3), Europe (n=25), North America (n=1) and South America (n=2)). The impacts of all the drivers on food safety risks was shown to be greatest in Africa compared to other continents (Table 5), although
some caution must be exerted when interpreting this finding given the Eurocentric nature of the sample and the relatively low response rates from international experts.

Expert response was also presented as a histogram to explore which specific drivers were considered to be impacting which parts of the world (Figure 1). Visual inspection of Figure 1 highlights there to be regional differences in drivers of existing and emerging food safety risks, and shows that experts may consider some drivers to be more important in some regions compared to others. Whilst some drivers present universal challenges to food safety risks irrespective of region (i.e. water shortages, demographic change, resource shortages and environmental driving forces), others are shown to be regionally dependant. For example, the distribution of African expert’s responses for the drivers, the complexity of the food supply chain, malevolent activities and resource shortages, reflects uncertainty regarding their impact in this region. Asian experts consider all drivers to affect existing and emerging food safety risks in their region, likewise, Australasian experts also consider all drivers to increase food safety risks, with the complexity of the food supply chain and environmental driving forces identified as having most impact in this region. Experts representing BRICS countries appear to be more positive in their estimations reporting marginal decreases in the impact of some drivers particularly the impact of malevolent activities and resource shortages. From a policy perspective this indicates the need to ensure that policies are aimed at targeting universal drivers of food safety risks, but also regionally specific drivers to address geographically prevalent risks.

3.4 Direction of impacts of drivers on existing and emerging food safety risks

Understanding the direction of the impact (positive or negative) of the drivers on a range of known food safety risks were explored in the second round Delphi survey. Level of agreement was taken as a proxy measure of importance. The impacts of drivers on a range of food safety risks were considered for the following: demographic change, economic driving forces,
resource shortages, environmental driving forces, increased complexity of the food supply chain, water security and malevolent activities (identified through the analysis of descriptive statistics described in Section 3.2.) Figure 2 plots the extent to which experts considered these key drivers of existing and emerging food risk to increase a range of specific food safety risks. Each individual graph represents expert response to the driver and the extent to which experts consider this to be increasing or decreasing specific food safety risks. Figure 2 indicates there to be no substantial differences between the drivers of existing and emerging risks and their impact on a range of food safety risks, at least for the period under consideration. This finding further reinforces the arguments that unless mitigated, existing risks are also likely to pose an emerging food safety risk. Further interpretation of Figure 2 suggests that experts consider each driver to be associated with increasing or decreasing multiple food safety risks. It can therefore be argued that there are multiple potential pathways for intervention in order to reduce specific food safety risks. From a policy perspective this is advantageous in that if a particular policy intervention fails, alternative approaches can be implemented. However, if multiple policy approaches are implemented it may be difficult to establish the effectiveness of individual interventions.

INSERT FIGURE 2 HERE

3.5 Barriers to effective food risk identification and mitigation

Table 6 shows there to be little variation in the expert ranking of barriers to existing and emerging food safety risk mitigation policies, according to whether these apply at the national or international level. The barriers were ranked according to low response scores (i.e. mean value close to 1 = agree) and low variation in responses across the sample (indicated by Z-score). Although the prioritization of the barriers to food safety risk identification and mitigation did differ slightly, expert consensus was reached. Five main barriers to effective identification and management of existing and emerging food safety risks globally were; the lack of harmonisation of regulations between countries, data sharing between institutions, economic
pressures on the production chain, poor communication between different actors in the food supply chain, and the lack of resources for funding organisations. This accentuates the expert perception that there is lack of cohesion in the global governance of food safety risks and emphasises that it is the socio-economic basis, rather than the technical base of risk assessments, that are the primary barriers to risk mitigation. Similarly convergence in disagreement was also identified. Experts believed that the lack of a responsible food safety agency and insufficient enforcement of food safety measures did not represent barriers to food safety risk identification and mitigation globally. Rather, the challenges were associated with insufficient efforts to harmonise existing food safety risk governance and mitigation structures globally, and improve mechanisms for data sharing between responsible food safety agencies. There was a greater level of variation in response indicated by larger z-scores, which adds additional support to the argument for greater harmonisation of existing governance frameworks, whilst also recognising disparities in capability and capacity to detect and manage food safety risks globally, which was particularly pronounced in some developing world regions. However, the highest mean responses were around the mid-point indicating that experts considered all barriers to be of some importance.

Gaps in current food safety research were identified according to the same approach (low response scores (i.e. mean value close to 1 = agree) and low variation in response across the sample (indicated by Z-score) shown in Table 7. Gaps in research nationally and internationally were identified to be very similar, although, slight differences in prioritisation were observed. For existing food safety risks, experts identified the need for future research to encompass the entire food chain, for research to improve existing risk monitoring, and for the development of new detection methods. Internationally the need for future research to assess the social impacts of food safety risks was recognized, but this was not considered to be a knowledge gap.
nationally. Perhaps unsurprisingly, in relation to emerging food safety risks both nationally and internationally, the need for research to develop new detection methods to deal with new risks were prioritized, as was research that seeks to understand the impacts of multiple drivers on food safety risks. Similar patterns in expert disagreement regarding research priorities for existing and emerging food safety risks both nationally and internationally were observed. Unanimously, experts gave the lowest priority to research into the use of Health Adjusted Life Years (HALYS) in risks assessments. Additionally, experts disagreed on the need for future research to consider a range of aspects relating to food safety risk assessment including research to understand risk-benefit tradeoffs, uncertainty reduction in risk models and effective risks ranking methodologies. This suggests that experts perceive that current risk assessment approaches are adequate and a need for future research to be directed towards risk detection rather than assessment.

4. Discussion

This research has demonstrated that, in terms of expert opinion, specific potential drivers of food risk do not increase or decrease specific food safety risks, but that there exists a complex set of interactions which have positive and negative impacts on existing and emerging food risks. Each potential driver is associated with increasing or decreasing multiple food safety risks, and cannot be considered in isolation of other factors, either in research or policy. In order to develop policies to effectively mitigate food safety risks, the adoption of a “systems approach” is needed, which is capable of simultaneously modelling the impacts of multiple drivers, and generating a portfolio policy response based on the impacts of different potential future food safety scenarios. In other words, developing policies which influence a single driver in a single geographic location will have very little impact on existing or emerging food safety risks. Traditional reductionist approaches to delivering
evidence for policy makers will not enable the effective translation of policy outcomes to occur. While this conclusion is not novel (see, for example, the global Food Security Programme currently running in the U.K., which prioritises research utilising a systems approach addressing social and biophysical factors influencing food security\(^3\)), the results support the idea that multiple interacting drivers of risk (an important component of food security) need to be considered as part of an evidence base for policy responses. A summary of the research findings and relevance for policy development, is provided in Table 8.

INSERT TABLE 8 HERE

An important factor shaping the discourse about food security, which also addresses food safety, is the complex, qualitative, and systemic view of the post-agricultural production side of the food system, which emphasises nutrition as well as food availability, and the role of human behaviour (including that associated with producers, the food industry, and consumers). As a consequence, decisions regarding food safety need to be made within this systemic context using diverse information from multiple sources, including stakeholder inputs into models, and identification of relevant knowledge and data. More evidence may be required to reduce uncertainties where these exist, although this needs to be quantified within models. Interventions also require the adoption of a systems approach as is common in other areas of public health policy (Midgley, 2015). The experts prioritised the need for establishing and maintaining national and international food safety agencies, but it is possible that, as a consequence of the interrelationship between food safety and food security, such agencies might be better placed to manage broad food (and nutrition) security through

application of an integrated, coherent policy response, particularly at the international, intergovernmental agency level.

In addition, such a systems approach cannot ignore other aspects of food security, as it is likely to interact with food quality on the one hand, and food availability on the other. Understanding this complexity is central to the development of methodologies. For example, the research presented here has demonstrated that climate change is already negatively impacting food production (Shindell *et al*, 2015), and may also have negative impacts on the nutritional quality of food (Mueller Loose and Remaud, 2013). At the same time, malnutrition (including, for example, nutrient intakes, including nutrient needs at different stages the life cycle, and obesity) continues to have negative effects on public health, with disproportionately negative effects on vulnerable groups such as the less affluent, or the elderly (Stow *et al*, 2015).

Simultaneous consideration of food safety and sustainability of production, the energy provided by the diet, and its nutritional quality within the entire food system is required in terms of the evidence generated by research, and its subsequent translation into concrete policies. To be secure, the food system must ensure both supply and demand, and address food safety, quality and availability simultaneously. The balance between supply, cost and environmental impact requires careful consideration to meet the challenge of provision of safe, nutritious food whilst maintaining or enhancing ecosystem services. Given that the food system must be resilient to future shocks (whether these originate in the social or natural environment, and compromise safety or other aspects of food security) a portfolio policy response is required, which will enable flexible responses to predictable, but uncertain, future events.
There were few surprises in terms of expert opinion regarding the barriers to effective food safety risk mitigation. Consistent with previous research (Wentholt et al, 2010), the barriers to effective food safety mitigation identified represented the socio-economic rather than the technical basis of risk assessment. Experts believed that an adequate global infrastructure to detect food safety risks and acceptable capabilities globally to enforce regulation currently exists. They also saw inconsistencies with food safety regulation globally as a significant barrier to mitigation of food safety risks. Whilst previous research has suggested that different food safety standards might be applied globally, for example in developing countries (Wentholt et al, 2009), the current research suggests an expert preference for increasing food safety standards globally rather than tolerating the application of different standards as the status quo. This will require further national and regional investment, and militates against the principle of ‘business as usual’.

5. Limitations

An important limitation of this Delphi survey was the lower level of response from international experts. Although this is consistent with other expert-based agrifood policy research, it makes it difficult to draw firm conclusions regarding the inter-regional differences in expert opinions regarding existing and emerging food safety risks other than those comparing Europe to the rest of the world. Although efforts were made to increase participation of international experts in terms of their responses to the survey, including translating the survey into important global languages, respondents tended to prefer to complete the survey in English. However, a further contributing factor could be over reliance on the (project) stakeholder database as the primary sampling mechanism. Future research might therefore increase response by adopting additional sampling approaches. For example, the use of ‘cascade’ methodology, utilising the personal contacts of researchers or members of existing policy networks as a basis for sampling, can also help to improve response rates.
in subsequent Delphi rounds, although it can potentially introduce biases into the sampling procedure (Frewer et al, 2011).

6. Conclusions

International experts express the opinion that there are, in general, no major differences between the drivers of existing and emerging food safety risks within the timeframe of the next five years. Demographic change, economic driving forces, resource shortages and environmental driving forces were identified to be drivers of both existing and emerging food safety risks. Limited numbers of interactions were found between the key drivers of existing and emerging risk and specific food safety risks, indicating that existing and emerging food safety risks have the same drivers. Introducing policies which affect a single driver may have impacts on multiple food safety risks. A systems approach to identifying, managing and mitigating food safety risks may therefore represent a useful policy tool. Attempting to manage or mitigate single risks at a single point in time, or within a limited geographical frame, potentially will have limited impacts on global food safety. Finally, the identification of barriers to effective food safety mitigation and future research requirements suggested the need to develop policies which foster sustained international networks and mechanisms for effective data sharing between food safety stakeholders in expert communities globally. This will act to facilitate the international harmonisation of food safety standards globally, rather than tolerate exceptions, which is the approach that has previously been advocated. The need for a holistic approach suggests that some drivers of existing or emerging food safety risks are not necessarily more important in some regions of the world, but rather that the emergence of food safety risks need to be considered from a global perspective. Climate change or economic recession may have global and multiple impacts on emerging food risks for example, but these impacts may be different in different locations and contexts. None-the-less these need to be considered simultaneously. At the same time, various barriers to
effective food risk identification and mitigation can be identified. Eliminating these must be a policy priority. Notably the same barriers appear relevant for both existing and emerging food safety risks, and so policy measures designed to address these are likely to be effective in terms of existing and emerging food safety risk identification.

Acknowledgements

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement nº 311611. This paper reflects only the authors’ views and the European Union is not responsible for any use that might be made of the content of the information contained in it. We would like to thank the European Commission for funding this research.

REFERENCES

Heidelberg Bolger: Springer.

Bizikova, L., Roy, D., Swanson, D., Venema, H.D. and McCandless, M., 2013. The water-
energy-food security nexus: Towards a practical planning and decision-support
framework for landscape investment and risk management. Winnipeg, Manitoba:
International Institute for Sustainable Development.

risk assessment. In Synthetic Biology (pp. 197-211). Springer International Publishing.

Bolger, F., Rowe, G. (2015). The aggregation of expert judgment: do good things come to

Botting, N., Barnett, J., Gowland, M.H. and Lucas, J.S., 2012. The problems that peanut and
tree nut allergic people encounter when travelling abroad. Clinical & Experimental
Allergy, 42(12), p.1831.

emerging food safety risks: From past cases to future identification. *Food Control; 39*:75-
86.

Methods as a Tool for Source Attribution of Enteric Illness, *Foodborne Pathogens and

Caduff, L. and Bernauer, T., 2006. Managing risk and regulation in European food safety

Cooke, R.M. (2015). The aggregation of expert judgment: do good things come to those who

Verbraucherschutz und Lebensmittelsicherheit, 7(3), pp.179-194

