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A B S T R A C T

Multi-arm multi-stage trial designs can bring notable gains in efficiency to the drug development process.
However, for normally distributed endpoints, the determination of a design typically depends on the assumption
that the patient variance in response is known. In practice, this will not usually be the case. To allow for
unknown variance, previous research explored the performance of t-test statistics, coupled with a quantile
substitution procedure for modifying the stopping boundaries, at controlling the familywise error-rate to the
nominal level. Here, we discuss an alternative method based on Monte Carlo simulation that allows the group
size and stopping boundaries of a multi-arm multi-stage t-test to be optimised, according to some nominated
optimality criteria. We consider several examples, provide R code for general implementation, and show that our
designs confer a familywise error-rate and power close to the desired level. Consequently, this methodology will
provide utility in future multi-arm multi-stage trials.

1. Introduction

With the cost of drug development increasing, study designs that
can enhance the efficiency of clinical research are of great interest. One
such class of designs is the group sequential [1]. This approach exploits
the fact that data are accumulated over time: incorporating interim
analyses at which the study may be stopped early, reducing the re-
quired sample size.

Recently, this methodology was extended to allow multiple treat-
ments to be compared to a shared control [2]. These multi-arm multi-
stage (MAMS) designs can bring sizeable gains in efficiency over con-
ducting a series of single-stage two-armed trials [3]. Unfortunately, a
limitation of this methodology in the case of normally distributed
outcome data is that designs are usually determined under the suppo-
sition of known patient variance in response. Typically, this will not be
the case at the design stage. Then, utilising test statistics that assume
known variance will result in operating characteristics that differ from
their nominal level if the true variance is not equal to the specified
value.

For two-armed group sequential trials, several authors have sug-
gested methods to broach this problem. These include a recursive al-
gorithm [4], and a quantile substitution procedure [1,5]. The latter
approach was also explored for MAMS trials, and demonstrated to more
accurately control the familywise error-rate (FWER) to the desired

level, at a small cost to the trial's power [6].
A Monte Carlo based procedure was also proposed for two-armed

group sequential trials [7]. In this paper, we extend it to MAMS trials.
Explicitly, we describe how the stage-wise group size and stopping
boundaries can be optimised. Finally, using the TAILoR trial [2] as a
motivating example, we compare the performance of our method to
several other approaches.

2. Methods

We consider a MAMS trial with K+1 arms, and a maximum of J
stages. Of the arms, K (indexed k=1, …, K) are to be compared to a
single control arm (indexed k=0). We test the following hypotheses
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Here, μk is the mean response of patients allocated to arm k=0, …,
K. We assume that in each stage, n patients are allocated to each arm
present in the trial. To allow for the early dropping of arms, we denote
by nkj the actual number of patients allocated to arm k=0, …, K in
stage j=1, …, J. Thus, nkj∈ {0,n}. Designs with unequal allocation, or
with two-sided null hypotheses could be treated similarly.

Denoting by Xkji the response of the ith patient, in treatment arm k,
in stage j, we assume that the Xkji are independent and distributed as
Xkji~N(μk,σ2). Extending [7], set
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where Xkji=0 ∀i if nkj=0. At interim analysis j the following test
statistics are constructed
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When σ is assumed known, the Tkj(σ) are together multivariate
normal (henceforth, the z-test statistics). With σ replaced by its estimate

̂σj, the joint distribution of the resulting t-test statistics, ̂=T T σ( )kj kj j ,
does not have a simple form. It is this that makes the determination of
stopping boundaries for use with t-test statistics difficult.

The parameters describing a MAMS design are then fully specified
given efficacy and futility stopping boundaries e=(e1,…,eJ)T∈ℝJ and
f=(f1,…, fJ)T∈ℝJ, with eJ= fJ to ensure the trial has at most J stages.

We now consider two categories of MAMS design: one that termi-
nates the entire trial as soon as any null hypothesis is rejected, and one
that stops recruitment only to those arms for which the corresponding
null hypothesis has been accepted or rejected. These two types of design
have been referred to as including simultaneous and separate stopping
respectively [8].

To describe our design, we introduce the vectors ψ=(ψ1,…,ψK) and
ω= (ω1,…,ωK), where

• ψk∈ {0,1}, with ψk=1 if H0
(k) is rejected, and ψk=0 otherwise;

• ωk∈ {1,…,J}, with ωk= j if j is the analysis at which H0
(k) is re-

jected, accepted, or the whole trial is stopped and no decision on
H0

(k) is made.

Our MAMS t-test is then defined as follows

1. Set ψ=(ψ1,…,ψK)=ω= (ω1,…,ωK)= (0,…,0) and j=1.
2. Conduct stage j of the trial, allocating n patients to the control arm,

and n patients to each arm k with ωk=0.
3. Compute the Tkj.
4. For k=1, …, K

4.1. If Tkl∈ (fl,el] for l=0, …, j− 1 (with the convention
Tk0∈ (f0,e0] ∀k), then:
4.1.1. If Tkj≥ ej reject H0

(k) and set ψk=1, ωk= j;
4.1.2. If Tkj < fj accept H0

(k) and set ωk= j;
5. When using the simultaneous stopping rule, if ∑ = == ψ{ 1} 0k

K
k1 �

and ∑ = >= ω{ 0} 0k
K

k1 � , set j= j+1 and return to 2. Else stop the
trial, and for each k with ωk=0, set ωk= j. When using the separate
stopping rule, if ∑ = >= ω{ 0} 0k

K
k1 � , set j= j+1 and return to 2.

Else stop the trial.

On trial completion, ψ and ω then conform to their designations
above.

We would like to ensure that the FWER, the probability of rejecting
at least one true null hypothesis, is controlled to some level α. Note that
our methodology could be altered to instead control the pairwise error-
rate (PWER), the probability of rejecting a particular true null hy-
pothesis, if desired. There are several ways to define power in a multi-
arm setting. Here, as in [2] we desire power of at least 1− β to reject
H0

(1) when θ1= δ1 and θk= δ0 for k=2, …, K. This is the so-called
pairwise power for H0

(1) (see, e.g., [9]).
To this end, define
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Here x{ }� is the indicator function on event x. Furthermore, Ξsim and
Ξsep represent the set of possible ω,ψ combinations when using the si-
multaneous and separate stopping rules respectively.

Then, for Ξ∈ {Ξsim,Ξsep} set according to the chosen stopping rule,
take
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Here, Ξrej and Ξ1 are respectively the subsets of the Ξ such that at
least one null hypothesis, or H0

(1), is rejected. In the Supplementary
material we elaborate on the meaning and construction of these sets.

Denoting the probability of a particular (ω,ψ) combination on trial
completion for a given vector of treatment effects θ=(θ1,…,θK) by ℙ

(ω,ψ | θ), we specify our required operating characteristics as

∑
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where δ=(δ1,δ0,…,δ0).
Additionally, we optimise our choices of n, e, and f. In theory, this

could be achieved for almost any optimality criteria, with several sen-
sible choices having been previously proposed (see, e.g., [10]). Here,
we focus on minimising some weighted combination of the expected
sample sizes (ESSs) when θ= 0 and θ= δ, and the maximal possible
sample size; an approach that has in several trial design settings proved
effective [5,11]. Note that
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This could therefore, following [12], be achieved by identifying the
n, e, and f that minimise the following function
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Here P∈ℝ+ is a penalty for designs with undesirable operating
characteristics, taken as the sample size required by a corresponding
single-stage design. Moreover, the wi∈ℝ ∪ {0}, for i=1, 2, 3, are
weights given towards the desires to minimise the three included fac-
tors. Note that previous work suggests that designs that place all of their
weight on one of the three factors (e.g., w1= 1, w2=w3= 0), will
perform particularly badly for other choices of the weights [5,11]. It is
therefore advisable to consider a range of options for the weights, and
also to take wi≠ 0, for i=1, 2, 3.

In the case where σ is assumed to be known we can proceed forward
with this approach, using the methodology described in the
Supplementary material. Unfortunately, the complex joint distribution
of the Tkj when σ is not assumed to be known prevents us from calcu-
lating the ℙ(ω,ψ | θ) required for this exactly. Therefore, instead, we
use a Monte Carlo method. We offer first a more practical description of
how this works, before providing a formal description below.

Suppose as an example that J= K=2, μ0= μ1= μ2= 0, σ2= 1,
and that we will use the simultaneous stopping rule. For any choice of
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values for n, e= (e1,e2)T, and f= (f1, f2)T (with e2= f2), we can simu-
late a trials outcome by generating data from each treatment arm in
stage one, using the fact that Xk1i~N(0,1) for k=0, 1, 2 and i=1, …,
n. With this data, the Tk1 for k=1, 2 can be formed. If Tk1≥ e1 for
k=1 or 2, the trial terminates, with a familywise error (FWE) having
occurred. If Tk1 < f1 for k=1 and 2, then the trial also terminates
here, with no FWE having occurred. Otherwise the trial progresses to
stage 2, with recruitment continued in arm 0 and the arms k with
f1≤ Tk1 < e1. We draw data for stage two in these arms again using
the standard normal distribution, and then compute the Tk2 for those k
with f1≤ Tk1 < e1. The trial now terminates, either with a FWE having
been committed if for at least one of these k, Tk2≥ e2, or without a FWE
having been committed otherwise. The FWER can then be estimated for
this design by repeating the above process many times, and counting
the proportion of instances in which a null hypothesis is rejected.

Similarly, one can estimate the power under the LFC, or estimate
ESSs. For example, if in the above T11 < f1, but f1≤ T21 < e1, this
implies the required sample size for this particular trial would have
been 5n. Again, by replicating this process and averaging the realised
sample size in each simulation, we can compute the ESS.

Finally, a suitable global optimisation routine can then be used to
search for the optimal values of n, e, and f. Many such routines are now
available in standard statistical software, with simulated annealing in
particular having been used to good effect in clinical trial design (see,
e.g., [11,12]).

Formally, we generate R=100,000 independent sets of responses
for each treatment arm under θ= 0 for some suitably large value of n.
Subsets of these datasets are then used to form the responses for any
smaller value of n. Next, for any n, e, and f, and chosen stopping rule,
for the rth dataset, the trial is conducted as specified above.
Importantly, the values of ω and ψ on trial completion are determined,
and denoted ωr and ψr. An approximation to αFWER for this design is
then

̂ ∑= ∈
=

ω ψα
R
1 {( , ) Ξ }.

r

R
r rFWER 1 rej�

We can similarly compute approximations βpower
 , 0ESS( ) , and δESS( )

to βpower ESS(0), and ESS(δ). Thus, to find the optimal design, we
minimise the following function in n, e and f
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Note that this equation is equal to that of Eq. (2), except we have
replaced αFWER and βpower, which we cannot evaluate because of the
complexity of the joint distribution of the test statistics, by their esti-
mates computed via our Monte Carlo simulation approach.

Furthermore, note that the requirement to generate datasets ne-
cessitates n to be treated as an integer. Thus, an algorithm that can
simultaneously search over the discrete n, and the continuous e and f is
required. We achieve this using CEoptim in R [13]. Code to implement
our method is available from https://sites.google.com/site/jmswason/
supplementary-material.

3. Results

We consider examples based on the TAILoR trial [2]. The trial tested
three experimental treatments. We therefore take K=3, and as an
example set J=2, σ2= 1, α=0.05, and β=0.1. Conforming to our
recommendations above, we additionally take w1=w2=w3= 1/3
(the ‘balanced-optimal design’). As in previous work, we consider two
scenarios [6]. For Scenario 1 we set δ1= 0.545, δ0= 0.178, and for
Scenario 2, δ1= 1, δ0= 0.

For both scenarios, and both considered stopping rules, we de-
termined the balanced-optimal design for t-test statistics using the
Monte Carlo method described above (denoting the optimal parameter
values for this design by nt, et, ft). For comparison, we use the triangular
designs [14] for z-test statistics (denoting the parameter values for this
design by nz, ez, fz), which can be found using the MAMS package in R
[2]. These designs are so-named for the shape of their stopping regions,
can be found quickly, and have been shown to confer good performance
in terms of their associated ESSs for MAMS trials [12]. The resultant
designs are given in Table 1. Note that it is by construction of the tri-
angular test that the boundaries are equal in each instance, subject to
numerical error. The choice of stopping rule, along with the values of δ1
and δ0, influence the group size.

We then examined, using 100,000 trial simulations, the perfor-
mance of the following approaches as a function of the true variance σT2

A1. nz, ez, fz (the triangular design) with z-test statistics and the pre-
sumed value of σ2;

A2. nz, ez, fz (the triangular design) with t-test statistics;
A3. nz, ez, fz (the triangular design) with t-test statistics, and mod-

ification of the ez, fz using quantile substitution. That is, at interim
analysis j we replace ezj and fzj by ezj′= T∑k=0

KNkj−(K
+1)(1−Φ(ezj)) and fzj′= T∑k=0

KNkj−(K+1)(1−Φ(fzj)), where Tν
is the cumulative distribution function of Student's t-distibution
with ν degrees of freedom;

A4. nt, et, ft (the balanced-optimal design) with the t-test statistics.

The results of these comparisons are given in Table 2. In both sce-
narios, using either stopping rule, assumption of known variance results
in large inflation of the FWER when σT2 > σ2. In contrast, Approaches
3 and 4 far more accurately control the FWER in all cases, with Ap-
proach 4 controlling to the nominal level on slightly more occasions
overall. Moreover, whilst δESS( ) is comparable for Approaches 3 and 4,
Approach 4 always attains a lower value for 0ESS( ) .

In the Supplementary material, we also present and discuss our
findings for the PWER.

4. Discussion

In this article, we extended previous work for two-armed group
sequential trials to allow the design parameters of a MAMS t-test to be
optimised, when employing either a simultaneous or separate stopping
rule. For the considered examples, the method was successful in pro-
viding operating characteristics close to their nominal level.

It is important to note that by Eq. (1), the FWER is controlled under

Table 1
The triangular designs determined using the known variance test statistics, and the balanced-optimal designs determined using the unknown variance test statistics, are displayed for the
two considered trial design scenarios, and the two considered stopping rules. All boundaries are given to three decimal places.

Scenario Stopping rule Triangular design Balanced-optimal design

nz fz ez nt ft et

Scenario 1 Simultaneous 45 (0.777,2.197)T (2.330,2.197)T 41 (0.606,2.084)T (2.742,2.084)T

Scenario 1 Separate 43 (0.777,2.198)T (2.330,2.197)T 40 (0.721,2.052)T (2.925,2.052)T

Scenario 2 Simultaneous 13 (0.777,2.197)T (2.330,2.197)T 12 (0.603,2.010)T (2.942,2.010)T

Scenario 2 Separate 13 (0.777,2.197)T (2.330,2.197)T 12 (0.668,2.086)T (2.990,2.086)T

M.J. Grayling et al. Contemporary Clinical Trials 67 (2018) 116–120

118

https://sites.google.com/site/jmswason/supplementary-material
https://sites.google.com/site/jmswason/supplementary-material


the global null hypothesis (θ= 0). This is known to provide strong
control under the assumption of known variance with z-test statistics
[2]. However, it is not known whether this is the case for the t-test
statistics considered here. Therefore, whilst intuitively it seems logical
that Eq. (1) would provide strong control in this setting, a search over
the vector θ should be employed after initial design determination to
verify this.

In conclusion, our method provides an alternative approach for
dealing with unknown variance to the heuristic quantile substitution
procedure. Precisely, quantile substitution offers a quick, often effective
means of controlling the FWER relatively accurately. However, if it is
vital to control the FWER, the proposed method should be preferable,
and additionally allows the stopping boundaries to be optimised. In
certain circumstances it can therefore be expected to allow the de-
termination of more efficient designs.
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A3 180.3 190.9 223.6 247.8 252.8 52.1 55.2 63.4 69.2 70.5
A4 165.6 190.5 232.6 251.3 250.3 48.7 55.9 66.4 70.7 70.6

Separate stopping rule designs
̂αFWER A1 0.0000 0.0035 0.0494 0.1820 0.3410 0.0000 0.0035 0.0507 0.1818 0.3461

A2 0.0509 0.0519 0.0519 0.0517 0.0522 0.0569 0.0561 0.0567 0.0575 0.0568
A3 0.0489 0.0500 0.0501 0.0499 0.0504 0.0501 0.0497 0.0504 0.0509 0.0499
A4 0.0494 0.0501 0.0497 0.0498 0.0508 0.0504 0.0498 0.0499 0.0506 0.0497

− β1 power
 A1 0.9970 0.9720 0.9060 0.8110 0.7260 0.9975 0.9747 0.9096 0.8168 0.7292

A2 1.0000 0.9960 0.9050 0.6220 0.3490 1.0000 0.9964 0.9080 0.6347 0.3625
A3 1.0000 0.9960 0.9040 0.6170 0.3440 1.0000 0.9960 0.9020 0.6183 0.3462
A4 1.0000 0.9950 0.9000 0.6220 0.3520 1.0000 0.9953 0.8992 0.6215 0.3536

ESS 0( ) A1 185.6 201.2 217.0 224.1 222.5 56.1 60.9 65.5 67.8 67.3
A2 216.6 216.3 217.0 216.6 216.7 65.5 65.4 65.5 65.5 65.6
A3 216.5 216.3 217.0 216.6 216.7 65.5 65.4 65.5 65.5 65.6
A4 205.7 205.6 206.2 205.7 205.8 62.7 62.6 62.7 62.7 62.8

δESS( ) A1 271.1 270.4 263.5 250.0 234.7 63.4 67.7 70.7 70.9 68.8
A2 253.5 255.8 263.3 263.3 255.3 61.8 64.2 70.7 73.9 73.2
A3 254.3 256.6 264.0 263.9 255.6 61.8 64.6 71.4 74.4 73.4
A4 254.1 257.9 263.9 257.9 245.9 59.4 65.6 72.1 73.0 71.0
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